1
|
Sarker M, Chowdhury N, Bristy AT, Emran T, Karim R, Ahmed R, Shaki MM, Sharkar SM, Sayedur Rahman GM, Reza HM. Astaxanthin protects fludrocortisone acetate-induced cardiac injury by attenuating oxidative stress, fibrosis, and inflammation through TGF-β/Smad signaling pathway. Biomed Pharmacother 2024; 181:117703. [PMID: 39586138 DOI: 10.1016/j.biopha.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Hypertensive rats serve as a good experimental model for studying the pathophysiology of cardiac hypertrophy and remodeling leading to heart failure. In this study, we aimed to analyze the effect of astaxanthin and possible mechanisms involved in alleviating oxidative stress, fibrosis and inflammation that triggers cardiac remodeling using male uninephrectomized Long Evans rats. Cardiac hypertrophy and hypertension were induced in rats termed as 'FCA-Salt rats' by an oral administration of fludrocortisone acetate (FCA) and 1 % NaCl in drinking water. Biochemical assays showed that FCA-Salt rats exhibited an upregulation of oxidative stress markers AOPP, MDA and downregulation of NO in heart and kidney, which was reversed by astaxanthin treatment. Astaxanthin further regularized the reduced activities of antioxidant enzymes GSH, SOD and CAT in these tissues. ELISA revealed that astaxanthin significantly reduced the inflammatory response by reducing the elevated levels of IL-1β, IL-17a, and TNF-α and pro-fibrotic marker TGF-β1 in plasma. Real-time qPCR depicted an upregulation of TNF-α, IL-1β, IL-6, IL-17A as well as signaling molecules TGF-β1, Smad2 and Smad3 in heart of FCA-Salt rats, which was reduced significantly by astaxanthin. Sirius red staining showed that the cardiac and renal fibrosis was significantly improved by astaxanthin treatment. Together, our results suggest that astaxanthin treatment is beneficial in protecting cardio-renal damage in hypertension through TGF-β/Smad signaling pathway, hence, this molecule may be considered for the maintenance of cardio-renal health.
Collapse
Affiliation(s)
- Manoneeta Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nowreen Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Reatul Karim
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mostaid Shaki
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharkar
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
2
|
Carvalho JDS, Ramadan D, de Carvalho GG, de Paiva Gonçalves V, Pelegrin ÁF, de Assis RP, Brunetti IL, Muscara MN, Spolidorio DM, Spolidorio LC. Repercussions of Long-Term Naproxen Administration on LPS-Induced Periodontitis in Male Mice. J Periodontal Res 2024. [PMID: 39609079 DOI: 10.1111/jre.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
AIMS Chronic periodontitis is the sixth most prevalent disease worldwide and the leading cause of tooth loss in adults. With growing attention on the role of inflammatory and immune responses in its pathogenesis, there is an urgent need to evaluate host-modulatory agents. Non-steroidal anti-inflammatory drugs (NSAIDs) drugs play a crucial role in managing inflammatory conditions. This study examined the repercussions of long-term naproxen use in a periodontal inflammation model known for causing significant inflammation, disrupting epithelial and connective tissue attachment and leading to alveolar bone destruction. METHODS Thirty BALB/c mice were treated with naproxen for 60 days or left untreated. From Day 30, an LPS solution was injected into gingival tissues three times per week for four weeks. This model enables LPS control over the inflammatory stimulus intensity throughout the experimental period, leading to chronic inflammation development involving both innate and adaptive immunity. The liver, stomach and maxillae were submitted to histological analysis. The oxidative damage was determined by measuring lipid peroxidation (LPO) in plasma and gingiva. The activities of myeloperoxidase (MPO), eosinophil peroxidase (EPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and levels of leukotriene B4, the interleukin (IL)-1β, TNF-α, IL-4, IL-5, IL-10, the chemokine CCL11 were also assessed in the gingival tissues. RESULTS The results indicated that none of the groups displayed any indications of liver damage or alterations; however, the NPx treatment led to severe gastric damage. In contrast, the treatment alleviated periodontal inflammation, resulting in a reduction of chronic and acute inflammatory cell infiltration and prevention of connective tissue loss in the gingival tissue. Additionally, the treatment increased the activities of endogenous antioxidant enzymes SOD, CAT and GPx, as well as the IL-10 cytokine, while decreasing the levels of leukotriene B4, TNF-α, IL-4 and IL-5. Furthermore, the activities of MPO, EPO and LPO were reduced in the treated groups. CONCLUSION These results suggest that NPx effectively inhibits periodontal inflammation in an inflammatory periodontal model. However, the harmful gastric effects dramatically limit its long-term use.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Álvaro Formoso Pelegrin
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renata Pires de Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Denise Madalena Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Shama AT, Shova LM, Bristy AT, Emran T, Shabnam S, Shill MC, Bepari AK, Reza HM. Anti-obesity effects and underlying molecular mechanisms of the ethanolic extract of figs from Ficus hispida using high fat-fed wister rats. Heliyon 2024; 10:e35392. [PMID: 39170114 PMCID: PMC11336639 DOI: 10.1016/j.heliyon.2024.e35392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity is a known risk factor for many chronic diseases and a substantial threat to public health. We investigated the effects of figs sourced from Ficus hispida on a high fat-fed experimental rat model. We found that a 500-mg dose of ethanolic extract of figs (EFH) reduced oxidative stress markers nitric oxide (NO), malondialdehyde (MDA), and advanced oxidation protein products (AOPP), which were increased in high fat-fed rats. Antioxidant enzymes superoxide dismutase (SOD), catalase, reduced glutathione (GSH), and myeloperoxidase (MPO), found elevated in high fat-fed rats, were also normalized to nearly regular levels by fig treatment. Administration of EFH further reduced fat deposition and expression of adipogenic genes leptin, fatty acid synthase (FAS), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1c (SERBP-1c). Our results suggest that figs have significant effects on reducing oxidative stress and mitigating obesity-associated liver and adipose tissue abnormalities via suppressing adipogenesis. Thus, we propose that F. hispida has potential benefits in reducing obesity.
Collapse
Affiliation(s)
- Anika Tabassum Shama
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Luluin Maknun Shova
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Sadia Shabnam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
4
|
Zhu Z, Chambers S, Bhatia M. Substance P Promotes Leukocyte Infiltration in the Liver and Lungs of Mice with Sepsis: A Key Role for Adhesion Molecules on Vascular Endothelial Cells. Int J Mol Sci 2024; 25:6500. [PMID: 38928206 PMCID: PMC11204161 DOI: 10.3390/ijms25126500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Substance P (SP), encoded by the Tac1 gene, has been shown to promote leukocyte infiltration and organ impairment in mice with sepsis. Neurokinin-1 receptor (NK1R) is the major receptor that mediates the detrimental impact of SP on sepsis. This investigation studied whether SP affects the expression of adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) on vascular endothelial cells in the liver and lungs, contributing to leukocyte infiltration in these tissues of mice with sepsis. Sepsis was induced by caecal ligation and puncture (CLP) surgery in mice. The actions of SP were inhibited by deleting the Tac1 gene, blocking NK1R, or combining these two methods. The activity of myeloperoxidase and the concentrations of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, were measured. The activity of myeloperoxidase and the concentration of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, increased in mice with CLP surgery-induced sepsis. Suppressing the biosynthesis of SP and its interactions with NK1R attenuated CLP surgery-induced alterations in the liver and lungs of mice. Our findings indicate that SP upregulates the expression of ICAM1 and VCAM1 on vascular endothelial cells in the liver and lungs, thereby increasing leukocyte infiltration in these tissues of mice with CLP surgery-induced sepsis by activating NK1R.
Collapse
Affiliation(s)
| | | | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
5
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
6
|
El-Gohary RM, Ghalwash AA, Awad MM, El-Shaer RAA, Ibrahim S, Eltantawy AF, Elmansy A, Okasha AH. Novel insights into the augmented effect of curcumin and liraglutide in ameliorating cisplatin-induced nephrotoxicity in rats: Effects on oxidative stress, inflammation, apoptosis and pyroptosis via GSK-3β. Arch Biochem Biophys 2023; 749:109801. [PMID: 37884117 DOI: 10.1016/j.abb.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin dose-dependent nephrotoxicity is a major issue limiting its proper use in cancer treatment. Inflammation, redox imbalance, and dysregulated cell death are the most plausible underlying pathomechanics. Curcumin and the glucagon-like peptide-1 receptor agonist, liraglutide, have been investigated in various experimental models for their antioxidant, anti-inflammatory, and cell death modulatory effects. Hence, this work was designed to investigate curcumin and liraglutide nephroprotective effects and how they behave together against cisplatin-induced acute kidney injury (AKI) in an experimental Wistar rat model. The study comprised 61 rats divided randomly into 6 unequal groups: control I and II, cisplatin-induced nephrotoxicity, curcumin-treated, liraglutide-treated, and co-treated groups. Renal index, serum nephrotoxicity markers (Cr, BUN, NGAL), renal glycogen synthase kinase-3 β (GSK-3β), oxidant/antioxidant parameters (MDA, MPO, GSH, NQO1, HO-1), and inflammatory biomolecules (TNF-α, IL-1β) were assayed. Moreover, renal cleaved-caspase3 and the pyroptotic biomolecules (nod-like receptor family pyrin domain containing 3, gasdermin D N-terminal fragment) were immunoassayed. Furthermore, relative renal expression of both nuclear factor erythroid 2-related factor 2 (Nr-F2) and caspase1 was evaluated by qRT-PCR. Histopathological examination of renal tissue was carried out along with detection of Bcl-2 and Bax immunoreactivity. Cisplatin induced acute renal damage, augmented inflammation, dysregulated redox balance and induced apoptosis and pyroptosis. On the other hand, curcumin and liraglutide corrected the dysregulated mechanisms and normalized results to a great extent. Mutual use of curcumin and liraglutide exerted the greatest effect in the co-treatment group. Nr-F2/HO-1 axis and GSK-3β play a master role in their nephroprotective effect. In conclusion, curcumin and liraglutide have an ameliorative effect against cisplatin-induced nephrotoxicity and can be used alone or better in combination owing to their augmented effect launching promising avenues for cancer patients under cisplatin treatment, retarding AKI and enabling them to gain the best protocol effectiveness.
Collapse
Affiliation(s)
- Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | | | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Alshaimma Elmansy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, 31527, Tanta, Egypt.
| | - Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Chou AH, Lee HC, Liao CC, Yu HP, Liu FC. ERK/NF-kB/COX-2 Signaling Pathway Plays a Key Role in Curcumin Protection against Acetaminophen-Induced Liver Injury. Life (Basel) 2023; 13:2150. [PMID: 38004290 PMCID: PMC10672507 DOI: 10.3390/life13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Recent experimental studies have highlighted the beneficial effects of curcumin on liver injury induced by acetaminophen (APAP). However, the specific molecular mechanisms underlying curcumin's hepatoprotective effects against APAP-induced liver injury remain to be fully elucidated. This study aimed to investigate the therapeutic effect of curcumin on APAP-induced liver injury using a mouse model. In the experiment, mice were subjected to an intraperitoneal hepatotoxic dose of APAP (300 mg/kg) to induce hepatotoxicity. After 30 min of APAP administration, the mice were treated with different concentrations of curcumin (0, 10, 25, or 50 mg/kg). After 16 h, mice with hepatotoxicity showed elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), hepatic myeloperoxidase (MPO), TNF-α, and IL-6, and decreased levels of glutathione (GSH). Moreover, there was an increased infiltration of neutrophils and macrophages following intraperitoneal injection of APAP. However, curcumin-treated mice displayed a pronounced reduction in serum ALT, AST, hepatic MPO, TNF-α, and IL-6 levels, coupled with a notable elevation in GSH levels compared to the APAP-treated hepatotoxic mice. Moreover, curcumin treatment led to reduced infiltration of neutrophils and macrophages. Additionally, curcumin inhibited the phosphorylation of ERK and NF-kB proteins while reducing the expression of cyclooxygenase-2 (COX-2). These findings highlight the hepatoprotective potential of curcumin against APAP-induced liver injury through the suppression of the ERK, NF-kB, and COX-2 signaling pathways.
Collapse
Affiliation(s)
- An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Hanning N, De Man JG, De Winter BY. Measuring Myeloperoxidase Activity as a Marker of Inflammation in Gut Tissue Samples of Mice and Rat. Bio Protoc 2023; 13:e4758. [PMID: 37456337 PMCID: PMC10338346 DOI: 10.21769/bioprotoc.4758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023] Open
Abstract
Myeloperoxidase (MPO) is an enzyme contained in lysosomal azurophilic granules of neutrophils. MPO activity has been shown to correlate with the number of neutrophils in histological sections of the gastrointestinal tract and is therefore accepted as a biomarker of neutrophil invasion in the gut. This protocol describes an easy, cost-effective kinetic colorimetric assay to quantify myeloperoxidase activity in intestinal tissue samples. It is explained using tissue collected in mice but can also be used for other laboratory animals. In a first step, tissue specimens are homogenized using a phosphate buffer containing 0.5% hexadecyltrimethylammonium bromide (HTAB), which extracts MPO from neutrophils. The obtained supernatant is added to a reagent solution containing o-dianisidine dihydrochloride, which is a peroxidase substrate. Finally, the change in absorption is measured via spectrophotometry and converted to a standardized unit of enzyme activity. The assay is illustrated and compared to a commercially available enzyme-linked immunoassay (ELISA), demonstrating that MPO activity does not necessarily correlate with MPO protein expression in tissue samples. Key features Optimized for use in mice and rats but can also be used for samples of other species. Measures enzymatic activity instead of mRNA or protein expression. Requires a spectrophotometer. Can be performed in duplo using 10 mg of (dry-blotted) gut tissue or more. Graphical overview.
Collapse
Affiliation(s)
- Nikita Hanning
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
9
|
Souza ABF, Diedrich Y, Machado-Junior PA, Castro TDF, Lopes LSE, Cardoso JMDO, Roatt BM, Cangussú SD, de Menezes RCA, Bezerra FS. Exogenous surfactant reduces inflammation and redox imbalance in rats under prone or supine mechanical ventilation. Exp Biol Med (Maywood) 2023; 248:1074-1084. [PMID: 37092748 PMCID: PMC10581162 DOI: 10.1177/15353702231160352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/12/2023] [Indexed: 04/25/2023] Open
Abstract
Mechanical ventilation (MV) is a lifesaving therapy for patients with acute or chronic respiratory failure. Despite, it can also cause lung injury by inducing or worsening inflammatory responses and oxidative stress. Several clinical approaches have protective effects on the lungs, including the prone position and exogenous surfactant; however, few studies have evaluated the association between the two strategies, especially in individuals without previous lung injury. We tested the hypothesis that the effects of the homogenization in lung aeration caused by the prone position in association with the anti-inflammatory properties of exogenous surfactant pre-treatment could have a cumulative protective effect against ventilator-induced lung injury. Therefore, Wistar rats were divided into four experimental groups: Mechanical Ventilation in Supine Position (MVSP), Mechanical Ventilation in Prone position (MVPP), Mechanical Ventilation in Supine Position + surfactant (MVSPS), and Mechanical Ventilation in Prone Position + Surfactant (MVPPS). The intranasal instillation of a porcine surfactant (Curosurf®) was performed in the animals of MVSPS and MVPPS 1 h before the MV, all the rats were subjected to MV for 1 h. The prone position in association with surfactant decreased mRNA expression levels of pro-inflammatory cytokines in ventilated animals compared to the supine position; in addition, the NfκB was lower in MVPP, MVSPS and MVPPS when compared to MVSP. However, it had no effects on oxidative stress caused by MV. Pre-treatment with exogenous surfactant was more efficient in promoting lung protection than the prone position, as it also reduced oxidative damage in the lung parenchyma. Nevertheless, the surfactant did not cause additional improvements in most parameters that were also improved by the prone position. Our results indicate that the pre-treatment with exogenous surfactant, regardless of the position adopted in mechanical ventilation, preserves the original lung histoarchitecture, reduces redox imbalance, and reduces acute inflammatory responses caused by mechanical ventilation in healthy adult Wistar rats.
Collapse
Affiliation(s)
- Ana Beatriz Farias Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Yannick Diedrich
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
- HZ University of Applied Sciences, 4382 Vlissingen, The Netherlands
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leonardo Spinelli Estevão Lopes
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Immunopathology Laboratory (LIMP), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Bruno Mendes Roatt
- Immunopathology Laboratory (LIMP), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI) and Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| |
Collapse
|
10
|
Ebirim CG, Esan O, Adetona MO, Oyagbemi AA, Omobowale TO, Oladele OA, Adedapo AA, Oguntibeju OO, Yakubu MA. Naringin administration mitigates oxidative stress, anemia, and hypertension in lead acetate-induced cardio-renal dysfunction in cockerel chicks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34890-34903. [PMID: 36520287 DOI: 10.1007/s11356-022-24656-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Lead is one of the major pollutants that is harmful to both animals and humans. It is found in every aspect of the environment such as the air, water, and soil. This pollutant affects both wild and domestic birds. Naringin has an active principle called flavonoid that has been found to have medicinal properties, mostly because of its antioxidant and metal chelating properties. This study was carried out to investigate the protective effect of naringin as an antioxidant against lead-induced anemia, cardio and nephrotoxicity, and hypertension. This study also aimed at elucidating the use of naringin as a heavy metal binder in poultry feed. Thirty-six cockerel chicks were used for this study, and randomly grouped into six groups per group; group A served as the control, group B received Pb-only (300 ppm), group C (Pb and naringin; 80 mg/kg), group D (Pb and naringin; 160 mg/kg), group E (naringin 80 mg/kg), and group F (naringin 160 mg/kg), respectively, for 8 weeks. Lead (Pb) was administered via drinking water, while naringin was administered via oral gavage. Lead acetate intoxication precipitated anemia as indicated by significant reductions in the values of PCV, RBC, and Hb concentration in lead-treated chicks when compared with the controls. Also, lead administration induced hypertension together with increased oxidative stress, depletion of the antioxidant defense system, reduced nitric oxide production, and an increase in high blood pressure. Immunohistochemistry indicated high expressions of cardiac troponin, renal angiotensin-converting enzymes, and renal neutrophil gelatinase-associated lipocalin. Treatment with naringin corrected anemia, reduced oxidative stress, improved antioxidant system, reduced high blood pressure, and offered protection against lead acetate-induced cardio-renal dysfunction in cockerel chicks. We recommend that naringin should be incorporated poultry feeds as a metal binder.
Collapse
Affiliation(s)
- Chinomso Gift Ebirim
- Institute of Earth and Life Sciences Institute, Pan African University, Lagos, Nigeria
| | - Oluwaseun Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Omolade Abodunrin Oladele
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
11
|
Oyagbemi AA, Ajibade TO, Esan OO, Adetona MO, Obisesan AD, Adeogun AV, Awoyomi OV, Badejo JA, Adedapo ADA, Omobowale TO, Olaleye OI, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Yakubu MA, Nwulia E, Oguntibeju OO. Naringin abrogates angiotensin-converting enzyme (ACE) activity and podocin signalling pathway in cobalt chloride-induced nephrotoxicity and hypertension. Biomarkers 2023; 28:206-216. [PMID: 36480283 DOI: 10.1080/1354750x.2022.2157489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PurposeThe persistent and alarming rates of increase in cardiovascular and renal diseases caused by chemicals such as cobalt chloride (CoCl2) in mammalian tissues have led to the use of various drugs for the treatment of these diseases. This study aims at evaluating the nephron-protective action of Naringin (NAR), a metal-chelating antioxidant against CoCl2-induced hypertension and nephrotoxicity.MethodsForty-two male Wistar rats were randomly distributed to seven rats of six groups and classified into Group A (Control), Group B (300 part per million; ppm CoCl2), Group C (300 ppm CoCl2 + 80 mg/kg NAR), Group D (300 ppm CoCl2 + 160 mg/kg NAR), Group E (80 mg/kg NAR), and Group F (160 mg/kg NAR). NAR and CoCl2 were administered via oral gavage for seven days. Biomarkers of renal damage, oxidative stress, antioxidant status, blood pressure parameters, immunohistochemistry of renal angiotensin-converting enzyme and podocin were determined.ResultsCobalt chloride intoxication precipitated hypertension, renal damage, and oxidative stress. Immunohistochemistry revealed higher expression of angiotensin-converting enzyme (ACE) and podocin in rats administered only CoCl2.ConclusionTaken together, the antioxidant and metal-chelating action of Naringin administration against cobalt chloride-induced renal damage and hypertension could be through abrogation of angiotensin-converting enzyme and podocin signalling pathway.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayobami Deborah Obisesan
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adewumi Victoria Adeogun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Joseph Ayotunde Badejo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Aduragbenro Deborah A Adedapo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Israel Olaleye
- Department of Pathology, Histopathology Laboratory, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, Florida, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, TX, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, DC, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
12
|
Pelegrin ÁF, de Paiva Gonçalves V, Carvalho JDS, Spolidorio DMP, Spolidorio LC. Testosterone replacement relieves ligature-induced periodontitis by mitigating inflammation, increasing pro-resolving markers and promoting angiogenesis in rats: A preclinical study. Arch Oral Biol 2023; 146:105605. [PMID: 36521281 DOI: 10.1016/j.archoralbio.2022.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aimed to evaluate the inflammatory profile as well as the resolution of inflammation in a ligature-induced periodontal inflammation in rats with depletion and/or supraphysiological testosterone replacement. DESIGN Sixty male rats (Holtzman) were used in the present study. Study groups were created as following: (1) Sham (no testicle removal); (2) Orchiectomy (OCX), 3) OCX + Testosterone (OCX + T); (4) Sham + Ligature (SH + L); (5) OCX+L; and 6) OCX + T + L. The surgeries were performed on day 1, and testosterone was administered weekly since day 1. On day 15, a cotton ligature was placed around the lower first molars and maintained for 15 days. Morphological changes in periodontal tissues were determined by histopathological analysis. Immunohistochemistry (factor VIII) and immunoenzymatic assay were performed to evaluate angiogenesis process and (pro- and anti-) inflammatory markers, respectively. RESULTS Ligature promoted a marked inflammatory gingival infiltrate and bone loss (P < 0.05). Supraphysiological testosterone treatment increased the percentage of blood vessels, extracellular matrix and fibroblasts in the presence and absence of periodontal inflammation (P < 0.05). A high dose of testosterone increased factor VIII+ blood vessels and IL-10 expression in inflamed gingival tissue, while PGE2, LXA4 and MPO were reduced as a result of supraphysiological testosterone administration (P < 0.05). CONCLUSIONS These results, in our experimental model, suggest that supraphysiological testosterone treatment stimulated gingival tissue repair during ligature-induced periodontitis, and it seems to be related to an anti-inflammatory and pro-resolutive mechanism resulting by the modulatory effect on PGE2 and IL-10 related to an enhanced angiogenesis.
Collapse
Affiliation(s)
- Álvaro Formoso Pelegrin
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Vinícius de Paiva Gonçalves
- Department of Dentistry, Pontifical Catholic University of Minas Gerais, 500 Dom José Gaspar Avenue, - Coração Eucarístico, 30535-901 Belo Horizonte, MG, Brazil.
| | - Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
13
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
14
|
Shoeib H, Keshk W, Al-Ghazaly G, Wagih A, El-Dardiry S. Interplay between long non-coding RNA MALAT1 and pyroptosis in diabetic nephropathy patients. Gene 2023; 851:146978. [DOI: 10.1016/j.gene.2022.146978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
15
|
Ayobami AFOLABI O, Adebola ALABI B, Adedamola AJIKE R, Simeon OYEKUNLE O, ADEGOKE W, Adebayo OJETOLA A. Evaluation of testicular torsion management in Ogbomoso, South-Western Nigeria and surgical detorsion-augmented treatment with phytochemical fractions of Corchorus olitorius leaf in expermiental rats. Saudi J Biol Sci 2022; 30:103495. [DOI: 10.1016/j.sjbs.2022.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
|
16
|
Oni AA, Osoh MO, Obikoya AO, Ohore OG. Oxidative stress responses as a marker of toxicity in mice exposed to polluted groundwater from an automobile junk market in South-Western Nigeria. Cell Stress Chaperones 2022; 27:685-702. [PMID: 36322346 PMCID: PMC9672174 DOI: 10.1007/s12192-022-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The global trade in used vehicles and their components generates huge financial benefits but leads to detrimental environmental consequences including groundwater pollution and potential adverse health effects mediated by free-radical processes such as lipid peroxidation. We investigated oxidative stress responses in thirty-six, female mice orally exposed (via drinking) to graded concentrations (0%, 50%, and 100%) of groundwater from a well located within a major automobile junk market in SW-Nigeria containing extremely high levels of arsenic (0.332 ± 0.089 mg/l) and seventeen PAHs, which serves as domestic water supply. Blood samples from the mice were assayed for selected biochemical parameters at intervals of 7, 14, and 28 days. A significant dose- and duration-dependent increase in malondialdehyde (MDA) and Myeloperoxidase (MPO) confirmed oxidative stress onset due to exposure to the polluted well-water, while a significant decline in nitric oxide (NO-) levels may suggest impaired endothelial smooth-muscle relaxation which may lead to the development of metabolic diseases over time. Superoxide dismutase (SOD) and reduced glutathione (GSH) showed a contrasting trend with Glutathione peroxidase (GPx), while Glutathione-S-Transferase (GST) declined significantly by the 28th day. Two clusters were identified by principal component analysis-one involving MDA, SOD, and GSH suggesting that antioxidant responses driven mainly by SOD and GSH proved insufficient in scavenging the free radicals generated by lipid peroxidation. NO- and total protein clustered together possibly due to the significant declines in both over the study period. Histological examination of liver tissue of exposed mice corroborated the above findings and highlights the need for urgent remedial action.
Collapse
Affiliation(s)
- Adeola A Oni
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria.
| | - Miracle O Osoh
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria
- Institute for Water Research, Rhodes University, Grahamstown, South Africa
| | - Adedayo O Obikoya
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria
| | - Obokparo G Ohore
- Department of Veterinary Pathology, University of Ibadan, Ibadan, 200284, Nigeria
| |
Collapse
|
17
|
Suda T, Hanawa T, Tanaka M, Tanji Y, Miyanaga K, Hasegawa-Ishii S, Shirato K, Kizaki T, Matsuda T. Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection. Sci Rep 2022; 12:15656. [PMID: 36123529 PMCID: PMC9483902 DOI: 10.1038/s41598-022-19922-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need to develop phage therapies for multidrug-resistant bacterial infections. However, although bacteria have been shown to be susceptible to phage therapy, phage therapy is not sufficient in some cases. PhiMR003 is a methicillin-resistant Staphylococcus aureus phage previously isolated from sewage influent, and it has demonstrated high lytic activity and a broad host range to MRSA clinical isolates in vitro. To investigate the potential of phiMR003 for the treatment of MRSA infection, the effects of phiMR003 on immune responses in vivo were analysed using phiMR003-susceptible MRSA strains in a mouse wound infection model. Additionally, we assessed whether phiMR003 could affect the immune response to infection with a nonsusceptible MRSA strain. Interestingly, wounds infected with both susceptible and nonsusceptible MRSA strains treated with phiMR003 demonstrated decreased bacterial load, reduced inflammation and accelerated wound closure. Moreover, the infiltration of inflammatory cells in infected tissue was altered by phiMR003. While the effects of phiMR003 on inflammation and bacterial load disappeared with heat inactivation of phiMR003. Transcripts of proinflammatory cytokines induced by lipopolysaccharide were reduced in mouse peritoneal macrophages. These results show that the immune modulation occurring as a response to the phage itself improves the clinical outcomes of phage therapy.
Collapse
Affiliation(s)
- Tomoya Suda
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Mayuko Tanaka
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.,Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takeaki Matsuda
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan. .,Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
18
|
Oladokun OO, Olaleye TC, Moses NM, Oladosu OA, Babatunde AA, Adedokun KI, Owonikoko MW, Ajeigbe KO. Tocopherol Enhances the Antioxidant Defense System and Histomorphometric Parameters in The Gastrointestinal Tract of Rats Treated with Sodium Arsenite. Niger J Physiol Sci 2022; 37:83-92. [PMID: 35947839 DOI: 10.54548/njps.v37i1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown. Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment. These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.
Collapse
|
19
|
Alabi QK, Akomolafe RO, Omole JG, Aturamu A, Ige MS, Kayode OO, Kajewole-Alabi D. Polyphenol-rich extract of Ocimum gratissimum leaves prevented toxic effects of cyclophosphamide on the kidney function of Wistar rats. BMC Complement Med Ther 2021; 21:274. [PMID: 34727903 PMCID: PMC8562005 DOI: 10.1186/s12906-021-03447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cyclophosphamide (CP) is one of the potent and low cost chemotherapy used in clinical setting against a variety of tumors. However, its association with nephrotoxicity limits its therapeutic use. Ocimum gratissimum leaf is a medicinal plant with numerous pharmacological and therapeutic efficacies, such as antioxidant, anti-inflammation, and anti-apoptotic properties. METHODS The present study was designed to evaluate the protective effect of Ocimum gratissimum (OG) against CP-induced kidney dysfunction in rats. Rats were pre-treated with 400 mg/kg b.w. of leave extract of Ocimum gratissimum (Ocimum G.) for 4 days and then 50 mg/kg b.w. of CP was co-administered from day 5 to day 7 along with Ocimum G. Markers of renal function and oxidative stress, food and water intake, electrolytes, aldosterone, leukocytes infiltration, inflammation and histopathological alteration were evaluated. RESULTS Obvious renal inflammation and kidney injuries were observed in CP treated groups. However, administration of leave extract of Ocimum G. prevented oxidative stress, kidney injuries, attenuated inflammation, increased aldosterone production and reduced sodium ion and water loss in rats. The plasma creatinine, urea and urine albumin concentration were normalized after the administration of Ocimum G. extract in rats treated with CP. Ocimum G. also decreased the plasma concentrations of Interleukin-(IL)-6, C-reactive protein and activity of myeloperoxidase and malondialdehyde in CP treated rats. CONCLUSION Ocimum G. prevented kidney injury and enhanced renal function via inhibiting inflammation and oxidant-induced CP toxicity. The efficacy of Ocimum G. is related to the presence of various phytochemicals in the plant.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Joseph G Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Ayodeji Aturamu
- Department of Physiology, Faculty of Basic Medical Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mokolade S Ige
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oyindasola O Kayode
- Department of Public Health, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Deborah Kajewole-Alabi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
20
|
Awoyomi OV, Adeoye YD, Oyagbemi AA, Ajibade TO, Asenuga ER, Gbadamosi IT, Ogunpolu BS, Falayi OO, Hassan FO, Omobowale TO, Arojojoye OA, Ola-Davies OE, Saba AB, Adedapo AA, Oguntibeju OO, Yakubu MA. Luteolin mitigates potassium dichromate-induced nephrotoxicity, cardiotoxicity and genotoxicity through modulation of Kim-1/Nrf2 signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:2146-2160. [PMID: 34272807 DOI: 10.1002/tox.23329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Environmental and occupational exposure to chromium compounds has become potential aetiologic agent for kidney disease with excessive generation of free radicals, apoptosis, and inflammatory. These pathophysiologic mechanisms of potassium dichromate (K2 Cr2 O7 ) have been well correlated with nephrotoxicity and cardiotoxicity. The cardioprotective and nephroprotective effects of Luteolin, a known potent antioxidant were evaluated in this study with 40 healthy rats in four experimental groups: Group A (normal saline), Groups B (30 mg/kg K2 Cr2 O7 ), Group C (Luteolin 100 mg/kg and K2 Cr2 O7 30 mg/kg), and Group D (Luteolin 200 mg/kg and K2 Cr2 O7 30 mg/kg), respectively. Markers of antioxidant defense system, oxidative stress, blood pressure and micronucleated polychromatic erythrocytes (MnPEs), immunohistochemistry of Kidney, injury molecule (Kim-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and cardiac troponin I were determined. Administration of K2 Cr2 O7 increased blood pressure parameters in systolic, diastolic and mean arterial blood pressures, markers of oxidative stress, and frequency of micronucleated polychromatic erythrocytes, together with reduction in serum nitric oxide level. Renal Kim-1 and cardiac troponin I expressions were higher, but lower expressions of renal and cardiac Nrf2 were recorded with immunohistochemical analysis. Pre-treatment with Luteolin restored blood pressure parameters, with concomitant reduction in oxidative stress indicators, augmented antioxidant mechanisms and serum Nitric oxide level, lowered the expressions of Kim-1, cardiac troponin I and up-regulated of both cardiac and renal Nrf2, reduced the frequency of micronucleated polychromatic erythrocytes. Taken together, this study therefore demonstrates the cardioprotective, nephro protective and antigenotoxic effects of Luteolin through antioxidantive and radical scavenging mechanisms.
Collapse
Affiliation(s)
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Rachael Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
21
|
Mahmoud HA, Salama WM, Mariah RA, Eid AM. Ameliorative effect of Leiurus quinquestriatus venom on acetic acid-induced colitis in mice. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Afolabi O, Alabi B, Omobowale T, Oluranti O, Iwalewa O. Cysteamine mitigates torsion/detorsion-induced reperfusion injury via inhibition of apoptosis, oxidative stress and inflammatory responses in experimental rat model. Andrologia 2021; 54:e14243. [PMID: 34498746 DOI: 10.1111/and.14243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress, inflammation and apoptosis are major pathways in pathophysiology of testicular torsion/detorsion (TTDT) reperfusion injury. This study evaluated the antioxidant, anti-inflammatory and anti-apoptotic role of cysteamine in TTDT-induced injury. Male Wistar rats (n = 32) were grouped into four (n = 8): sham, ischaemia-reperfusion injury (IRI), cysteamine (100 mg/kg and 200 mg/kg) for in vivo study. Samples were taken for biomolecular and histological evaluation 48 hr after detorsion. Tissue SOD, GPx, GSH, GST activity, total thiol, H2 O2 and MDA were assessed. Serum levels of NO, MPO, TNF-alpha and IL-6 and sperm motility, count and viability were assessed. Caspase-3 and bax were evaluated by immunohistochemistry. Significant difference was set as p < .05. Significant increase in H2 O2, MDA and nitrite but reduction in SOD, GPx, GSH, GST and total thiol in the testicular tissue of IRI rats was reversed by cysteamine. Serum MPO and TNF-α were significantly elevated in RI, while treated-RI rats showed decrease (p < .05) in tissue level of the inflammation markers. Reduced sperm motility in RI was significantly reversed by cysteamine. Increased tissue expression of bax and caspase-3 was reversed by cysteamine. Cysteamine protected the testis against reperfusion injury through anti-inflammatory, antioxidant effects and inhibition of apoptosis in rats.
Collapse
Affiliation(s)
- Oladele Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Babatunde Alabi
- Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | | | | | - Olugbenga Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
23
|
Chronic exposure of adult male Wistar rats to bisphenol A causes testicular oxidative stress: Role of gallic acid. Endocr Regul 2021; 54:14-21. [PMID: 32597147 DOI: 10.2478/enr-2020-0003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) has been reported that among other male reproductive dys-functions, it can cause marked estrogenic effects including alteration in serum hormones as well as testicular lesions in exposed animals. This work sought to study the role of gallic acid (GA), a known antioxidant, on the BPA-induced testicular oxidative stress in adult male Wistar rats using serum hormone analysis, histopathology, and biochemical assays. METHODS Adult male rats were divided into four groups (n=10) including control (0.2 ml of corn oil), GA (20 mg/kg/day), BPA (10 mg/kg/day), BPA+GA (BPA, 10 mg/kg/day + GA, 20 mg/kg/day). All medications were given by oral gavage for 45 consecutive days. The body and testicular weights were measured. Blood and organ samples were collected for the serum hormonal assay: testosterone (T), luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL), and tissue biochemistry analysis: superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-S-transferase (GST), malondialdehyde (MDA), hydrogen peroxide (H2O2), respectively. RESULTS The BPA-treated rats showed significant reduction in the gonadosomatic index. BPA also caused significant decrease in the levels of the serum testosterone and prolactin. Furthermore, BPA induced testicular oxidative stress by decreasing the activities of antioxidant enzymes and increasing reactive oxygen species. However, co-treatment with GA protected against these alterations. CONCLUSION Findings from the present study confirmed the previously reported data and show that the ability of GA, as a potent antioxidant, may protect against BPA-induced alterations in the male reproductive function. Hence, GA protects against testicular oxidative stress in adult male Wistar rats following chronic exposure to BPA.
Collapse
|
24
|
Akinrinde AS, Hameed HO. Glycine and L-Arginine supplementation ameliorates gastro-duodenal toxicity in a rat model of NSAID (Diclofenac)-gastroenteropathy via inhibition of oxidative stress. J Basic Clin Physiol Pharmacol 2021; 33:285-295. [PMID: 33559459 DOI: 10.1515/jbcpp-2020-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study examined the possible protective roles of exogenous glycine (Gly) and L-Arginine (l-Arg) against Diclofenac (DIC)-induced gastro-duodenal damage in rats. METHODS Rats were divided into Group A (control), Group B (DIC group) and Groups C-F which were pre-treated for five days with Gly1 (250 mg/kg), Gly2 (500 mg/kg), l-Arg1 (200 mg/kg) and l-Arg2 (400 mg/kg), respectively, before co-treatment with DIC for another three days. Hematological, biochemical and histopathological analyses were then carried out. RESULTS DIC produced significant (p<0.05) reduction in PCV (13.82%), Hb (46.58%), RBC (30.53%), serum total protein (32.72%), albumin (28.44%) and globulin (38.01%) along with significant (p<0.05) elevation of serum MPO activity (83.30%), when compared with control. In addition, DIC increased gastric H2O2 and MDA levels by 33.93 and 48.59%, respectively, while the duodenal levels of the same parameters increased by 19.43 and 85.56%, respectively. Moreover, SOD, GPx and GST activities in the DIC group were significantly (p<0.05) reduced in the stomach (21.12, 24.35 and 51.28%, respectively) and duodenum (30.59, 16.35 and 37.90%, respectively), compared to control. Treatment with Gly and l-Arg resulted in significant amelioration of the DIC-induced alterations although l-Arg produced better amelioration of RBC (29.78%), total protein (10.12%), albumin (9.93%) and MPO (65.01%), compared to the DIC group. The protective effects of both amino acids against oxidative stress parameters and histological lesions were largely similar. CONCLUSIONS The data from this study suggest that Gly or l-Arg prevented DIC-induced gastro-duodenal toxicity and might, therefore be useful in improving the therapeutic index of DIC.
Collapse
Affiliation(s)
- Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimot Olawalarami Hameed
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Carvalho JDS, Ramadan D, de Paiva Gonçalves V, Maquera-Huacho PM, Assis RP, Lima TFO, Brunetti IL, Spolidorio DMP, Cesar T, Manthey JA, Spolidorio LC. Impact of citrus flavonoid supplementation on inflammation in lipopolysaccharide-induced periodontal disease in mice. Food Funct 2021; 12:5007-5017. [PMID: 33950049 DOI: 10.1039/d0fo03338c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In general, the consumption of flavonoid-rich foods may influence the control/dysregulation of the magnitude and duration of inflammation and oxidative stress, which are known to contribute to multiple pathologies. Information regarding the impact of citrus flavonoid dietary supplementation on periodontal disease is still scarce. Herein, we investigated whether a diet supplemented with eriocitrin and eriodictyol could alter the course of the inflammatory response associated with LPS-induced periodontal disease in mice. Sixty BALB/c mice received a standard diet or a diet supplemented with different concentrations of eriocitrin or eriodictyol. After 30 days of food supplementation, a solution containing LPS from Escherichia coli was injected into the gingival tissues three times per week for four weeks. Neutrophils, mononuclear cells and eosinophils were assessed using a severity analysis system in H&E-stained sections and modified picrosirius red. The activities of myeloperoxidase (MPO), a marker of granulocyte infiltration, and eosinophil peroxidase (EPO) were determined spectrophotometrically. The oxidative damage was determined by measuring the malondialdehyde (MDA) content and anti-oxidative activity through the assessment of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Interleukin (IL)-1β, TNF-α, and IL-10 were quantified by multiplex immunoassay. Periodontal inflammation was significantly inhibited by citrus flavonoid supplementation, including reduced flatness of the gingival epithelium and chronic and acute inflammatory cell infiltration, as well as loss of connective tissue in the gingival papillae. Both eriocitrin and eriodictyol inhibited gingival IL-1β and TNF-α and increased IL-10 secondary to periodontitis. Significant protection and decreased MPO and EPO activity were detected in the periodontal tissue of citrus flavonoid-treated animals. In comparison with the LPS group, SOD, CAT and GPx activities were increased, while the MDA content was reduced, indicating decreased oxidative damage. These results suggest that a diet supplemented with the citrus flavonoids eriocitrin or eriodictyol may aid in the prevention of periodontitis, representing a potential method to enhance local immunity and host defense.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinícius de Paiva Gonçalves
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | | | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | | | - Thais Cesar
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - John A Manthey
- U.S. Horticultural Research Laboratory, Agricultural Research Service, USDA, 2001 South Rock Road/Port Fierce, FL 34945, USA
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
26
|
Adedapo AA, Osaretin ER, Falayi OO, Oyagbemi AA, Ogunpolu BS, Omobowale TO, Oguntibeju OO, Yakubu MA. Ramipril blunts glycerol-induced acute renal failure in rats through its antiapoptosis, anti-inflammatory, antioxidant, and renin-inhibiting properties. J Basic Clin Physiol Pharmacol 2020; 32:225-235. [PMID: 33155993 DOI: 10.1515/jbcpp-2020-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a malady with a sudden onset resulting in buildup of waste matters in the body, but a specific cure hasn't been found as a lasting solution to AKI. In this study, ramipril was evaluated for its potential therapy in glycerol-induced AKI in rats. METHODS Twenty animals were divided into four groups of five animals each. Group I was the control while group II was given glycerol on day 8 only, groups III and IV were administered with pioglitazone (reference drug) and ramipril for seven days respectively and on day 8 received glycerol. On the ninth day, blood and tissue samples were taken to assay for serum indicators of oxidative damage, enzymatic and nonenzymatic antioxidants, and creatinine and blood urea nitrogen. Animals were sacrificed thereafter; kidney was harvested for histological and immunohistochemical analysis. Expressions of caspase 3, renin receptor, NK-KB, and KIM-1 were carried out. RESULTS Ramipril significantly inhibited indicators of oxidative damage while also significantly increasing levels of enzymatic and nonenzymatic antioxidant markers. These drugs also significantly lowered the levels of creatinine and blood urea nitrogen. Histology also indicated that while there were massive infiltration of leucocytes and congestion of the kidney in toxicant group, the ramipril-treated group showed a milder condition. In immunohistochemistry, the two drugs significantly inhibited the expressions of the four proteins, which were highly expressed in the toxicant group. CONCLUSIONS The study showed that ramipril and pioglitazone have nephroprotective effect and thus have the ability to blunt AKI through their anti-inflammatory, antiapoptosis, antirenin, and antioxidant properties.
Collapse
Affiliation(s)
- Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Ehizogie Ruth Osaretin
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
27
|
Oyagbemi AA, Akinrinde AS, Adebiyi OE, Jarikre TA, Omobowale TO, Ola-Davies OE, Saba AB, Emikpe BO, Adedapo AA. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103488. [PMID: 32898663 DOI: 10.1016/j.etap.2020.103488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-induced cardiomyopathy and renal toxicity have been reported in workers in processing plants, hard metal industries, diamond polishing and manufacture of ceramics. This study was designed to investigate the influence of Luteolin supplementation on cobalt-induced cardiac and renal toxicity in rats. Exposure of rats to cobalt chloride (CoCl2) alone caused significant (p < 0.05) increases in cardiac and renal H2O2, malondialdehyde (MDA) and nitric oxide (NO), along with increased serum myeloperoxidase (MPO) activity. In addition, there were significant (p < 0.05) reductions in cardiac and renal glutathione peroxidase (GPx), glutathione S-transferase (GST) and reduced glutathione (GSH). CoCl2 induced higher immuno-staining of nuclear factor kappa beta (NF-κB) in the heart and kidneys, and the kidney injury molecule (Kim-1) in the kidneys. Treatment with Luteolin or Gallic acid produced significant reversal of the oxidative stress parameters with reductions in NF-κB and Kim-1 expressions, leading to suppression of histopathological lesions observed in the tissues.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
28
|
Oyagbemi AA, Bolaji-Alabi FB, Ajibade TO, Adejumobi OA, Ajani OS, Jarikre TA, Omobowale TO, Ola-Davies OE, Soetan KO, Aro AO, Emikpe BO, Saba AB, Adedapo AA, Oyeyemi MO, Nkadimeng SM, Kayoka-Kabongo PN, McGaw LJ, Oguntibeju OO, Yakubu MA. Novel antihypertensive action of rutin is mediated via inhibition of angiotensin converting enzyme/mineralocorticoid receptor/angiotensin 2 type 1 receptor (ATR1) signaling pathways in uninephrectomized hypertensive rats. J Food Biochem 2020; 44:e13534. [PMID: 33089540 DOI: 10.1111/jfbc.13534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022]
Abstract
Hypertension is the most common cardiovascular disease that affects approximately 26% of adult population, worldwide. Rutin is one of the important flavonoids that is consumed in the daily diet, and found in many food items, vegetables, and beverages. Uninephrectomy (UNX) of the left kidney was performed, followed by induction of hypertension. The rats were randomly divided into four groups of 10 rats: group 1-Sham-operated rats; group 2-UNX rats, group 3-UNX-L-NAME (40 mg/kg) plus rutin (100 mg/kg bwt), and groups 4-UNX-L-NAME plus lisinopril (10 mg/kg bwt), orally for 3 weeks. Results revealed significant heightening of arterial pressure and oxidative stress indices, while hypertensive rats treated with rutin had lower expressions of angiotensin converting enzyme (ACE) and mineralocorticoid receptor in uninephrectomized rats. Together, rutin as a novel antihypertensive flavonoid could provide an unimaginable benefits for the management of hypertension through inhibition of angiotensin converting enzyme and mineralocorticoid receptor. PRACTICAL APPLICATIONS: Hypertension has been reported to be the most common cardiovascular disease, affecting approximately 26% of the adult population worldwide with predicted prevalence to increase by 60% by 2025. Recent advances in phytomedicine have shown flavonoids to be very helpful in the treatment of many diseases. Flavonoids have been used in the treatment and management of cardiovascular diseases, obesity and hypertension. The study revealed that rutin, a known flavonoid inhibited angiotensin converting enzyme (ACE), angiotensin 2 type 1 receptor (ATR1), and mineralocorticoid receptor (MCR), comparable to the classic ACE inhibitor, Lisinopril, indicating the novel antihypertensive property of rutin. Therefore, flavonoids such as rutin found in fruits and vegetables could, therefore, serve as an antihypertensive drug regimen. Combining all, functional foods rich in flavonoids could be used as potential therapeutic candidates for managing uninephrectomized hypertensive patients.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Foluso Bolawaye Bolaji-Alabi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Samuel Ajani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Theophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kehinde Olugboyega Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Obemisola Aro
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Gauteng, South Africa
| | - Adeolu Alex Adedapo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Gauteng, South Africa
| | | | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Pretoria, South Africa
| | | | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Pretoria, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
29
|
Oyagbemi AA, Adejumobi OA, Ajibade TO, Asenuga ER, Afolabi JM, Ogunpolu BS, Falayi OO, Hassan FO, Nabofa EW, Olutayo Omobowale T, Ola-Davies OE, Saba AB, Adedapo AA, Oguntibeju OO, Yakubu MA. Luteolin Attenuates Glycerol-Induced Acute Renal Failure and Cardiac Complications Through Modulation of Kim-1/NF-κB/Nrf2 Signaling Pathways. J Diet Suppl 2020; 18:543-565. [PMID: 32938255 DOI: 10.1080/19390211.2020.1811442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute renal failure (ARF) has been documented as a life-threatening disease with high morbidity and mortality. We investigated the protective effect of Luteolin against ARF. In this study, forty-male Wistar albino rats were randomly divided into four groups (n = 10). Group A received normal saline. Group B received glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.). Groups C and D were pretreated with Luteolin 100 and 200 mg/kg for 7 days, and thereafter administered Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.). Administration of glycerol significantly increased systolic blood pressure, diastolic blood pressure and mean arterial pressure. Renal protein carbonyl and xanthine oxidase increased significantly while significant reduction in the activity of renal glutathione peroxidase, glutathione S-transferase and glutathione reductase was observed in the glycerol intoxicated rats. Furthermore, administration of glycerol led to significant increases in serum creatinine and blood urea nitrogen together with reduction in nitric oxide (NO) bioavailability. Immunohistochemistry revealed that glycerol intoxication enhanced expressions of kidney injury molecule 1, nuclear factor kappa beta and cardiac troponin (CTnI). However, Luteolin pretreatment normalized blood pressure, reduced markers of oxidative stress, renal damage, and improved NO bioavailability. Luteolin also downregulated the expressions of kidney injury molecule 1, nuclear factor kappa beta and cardiac troponin. Together, Luteolin might open a novel therapeutic window for the treatment of acute renal failure and cardiac complication.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Enivwenaye Williams Nabofa
- Department of Physiology, Ben-Carson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
30
|
Gbadamosi IT, Opatola DG, Oyagbemi A, Ajibade TO, Bolaji-Alabi FB, Omobowale TO, Saba AB, Adedapo AA, Yakubu MA, Oguntibeju OO. Methanol extract of Caesalpinia benthamiana normalizes blood pressure and attenuates oxidative stress in uninephrectomized hypertensive rats. J Basic Clin Physiol Pharmacol 2020; 32:109-119. [PMID: 32920540 DOI: 10.1515/jbcpp-2020-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Hypertension is the number one risk factor and primary contributor of cardiovascular diseases. Caesalpinia benthamiana is a valuable medicinal plant with unvalidated anti-hypertensive activity. This study was carried out to explore the antihypertensive effect of C. benthamiana on uninephrectomized hypertensive rats. METHODS Fifty rats were grouped into five groups, each containing 10 animals: Group A-normal control (normotensive); B-uninephrectomized control; C-uninephrectomized treated with 50 mg/kg C. benthamiana extract; D-uninephrectomized treated with 100 mg/kg C. benthamiana; and E- uninephrectomized treated with 10 mg/kg of Lisinopril. RESULTS Significant increases were observed in systolic, diastolic and mean blood pressure of uninephrectomized control rats. Furthermore, markers of oxidative stress (malondialdehyde, hydrogen peroxide, protein carbonyl, myeloperoxidase and the advanced oxidative protein products) increased significantly while antioxidant status (reduced glutathione, glutathione peroxidase, glutathione S-transferase and superoxide dismutase), reduced significantly in uninephrectomized hypertensive rats. Histopathology revealed thrombosis and occlusion of coronary vessels in the heart, and congestion in the kidney. However, the observed high blood pressure parameters were remarkably normalized together with reduction in markers of oxidative stress and improvement in antioxidant defence system of uninephrectomized hypertensive rats treated with C. benthamiana extract similar to normotensive rats. CONCLUSIONS C. benthamiana extract exhibited antihypertensive action, strong antioxidant ability, attenuated oxidative stress-mediated hypertension and lessened the development of cardiac and renal damage associated with hypertension induced by uninephrectomy and high dietary intake of salt. Together, C. benthamiana extract might be useful in the management of hypertension due to volume overload in the cardiovascular system.
Collapse
Affiliation(s)
| | | | - Ademola Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Foluso Bolawaye Bolaji-Alabi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, 7535Bellville, South Africa
| |
Collapse
|
31
|
Sevoflurane Preconditioning Prevents Septic Myocardial Dysfunction in Lipopolysaccharide-Challenged Mice. J Cardiovasc Pharmacol 2020; 74:462-473. [PMID: 31425341 DOI: 10.1097/fjc.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial dysfunction accompanied by severe sepsis could significantly increase the mortality rate of septic patients. This study investigated the effects and the potential mechanisms of sevoflurane preconditioning on septic myocardial dysfunction, which was induced by lipopolysaccharide (LPS; from Escherichia coli O55:B5; 18 mg/kg) in mice. Results indicated that 1 hour after the administration, LPS induced a significant increase in cell-surface Toll-like receptor 4 (TLR4), cytoplasmic IKKα protein expression, and nuclear translocation of nuclear factor kappa-B (NF-κB) protein (P < 0.05), which was attenuated by preconditioning with sevoflurane. Two hours after the administration, inhalation of sevoflurane significantly reduced the serum levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-10 (P < 0.05). Twelve hours after administration, LPS caused pathological damage to the heart and elevated the serum levels of lactate dehydrogenase (LDH) and creatine kinase-MB (P < 0.05). Echocardiography indicated that sevoflurane preconditioning significantly improved systolic and diastolic function. The inhalation of sevoflurane inhibited increases in myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), TNF-α, and IL-1β levels (P < 0.05) induced by endotoxemia, whereas IL-6 release was facilitated. Sevoflurane attenuated the myocardial levels of nitric oxide (P < 0.05) without an apparent influence on malondialdehyde (MDA) or superoxide dismutase (P > 0.05). In conclusion, our study indicates that exposure to 2% sevoflurane before LPS challenge is protective against myocardial dysfunction. Sevoflurane preconditioning may attenuate neutrophil infiltration and the release of inflammatory mediators during endotoxemia.
Collapse
|
32
|
Nabofa EE, Alada AR. Cardiovascular Effects of Caffeine in Rabbits Involve Beta-1 Adrenergic Receptor Activation. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2019.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Oyagbemi AA, Omobowale TO, Adejumobi OA, Owolabi AM, Ogunpolu BS, Falayi OO, Hassan FO, Ogunmiluyi IO, Asenuga ER, Ola-Davies OE, Soetan KO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway. Eur J Pharmacol 2020; 880:173142. [PMID: 32422184 DOI: 10.1016/j.ejphar.2020.173142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
Hypertension is a condition with chronic elevation of blood pressure and a common preventable risk factor for cardiovascular disease with attendant global morbidity and mortality. The present study investigated the novel antihypertensive and neuroprotective effect of Naringenin on L-NG-Nitro arginine methyl ester (L-NAME) induced hypertension together with possible molecular mechanism of action. Rats were divided into four groups. Rats in Group A were normotensive. The hypertensive group (Group B) received 40 mg/kg) of L-NAME alone while Groups C and D were concurrently administered Naringenin (50 mg/kg) or Lisinopril (10 mg/Kg) together with L-NAME orally for 3 weeks. Blood pressure parameters, markers of oxidative stress and renal damage were measured. The immunohistochemistry of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme were also determined. Results indicated significant increases in malondialdehyde, advanced oxidation protein products, protein carbonyl contents and decrease in serum nitric oxide bioavailability in hypertensive rats. Furthermore, there were significant increases in serum myeloperoxidase, urinary creatinine, albumin and blood urea nitrogen in hypertensive rats in comparison to hypertensive rats treated with either Naringenin or Lisinopril. Immunohistochemistry reveal significant expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme in hypertensive rats. However, co-treatment with either Naringenin or Lisinopril mitigated both renal and neuronal oxidative stress, normalized blood pressure and lowered the expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme. Collectively, Naringenin offered a novel antihypertensive and neuroprotective effect through down regulation of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | | | | | - Abiodun Mary Owolabi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kehinde Olugboyega Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
34
|
Anti-Inflammatory Effects of Cerium Dioxide Nanoparticles on Peritonitis in Rats Induced by Staphylococcus epidermidis Infection. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/3591508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of cerium dioxide (CeO2) nanoparticles on the inflammatory response of peritonitis rats induced by Staphylococcus epidermidis infection. Methods. Green tea polyphenol CeO2 nanoparticles were synthesized and characterized by transmission microscopy, ultraviolet-visible spectroscopy, FT-IR, and powder diffractometer. 40 male adult SD rats were randomly divided into 4 groups (n = 10 each): a control group, a model group, a CeO2 group, and a CeO2 + model group. Staphylococcus epidermidis solution was injected intraperitoneally with 107 CFU/ml of bacterial solution in the model group, while the control group was injected intraperitoneally with the same amount of normal saline, and the CeO2 and CeO2 + model groups were injected with 0.5 mg/kg CeO2 nanoparticles through the tail vein for 2 h and then injected with saline or bacterial solution for 2 h, respectively. After 0 h, 3 h, 12 h, 24 h, and 48 h of model construction, rats were sacrificed, and serum and peritoneal lavage fluid were collected. The total number of leukocytes and the percentage of each type of leukocytes in the peritoneal lavage fluid were determined. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factor TNF-α in serum and peritoneal lavage fluid, and myeloperoxidase (MPO) activity in peritoneal tissue was also measured. In addition, real-time fluorescence quantitative PCR (RT-PCR) was used to measure the expression of TLR2 and TLR4 in peritoneal tissue, and western blotting was used to detect the expression of TLR2, TLR4, and the activation of NF-κB signaling pathways as well. Results. The CeO2 has an average size of 37 ± 3 nm with binding activity to proteins, phenolic compounds, and alkaloids. After counting the white blood cells in the peritoneal lavage fluid, it was found that the total number of white blood cells and the percentage of neutrophils in the model group were significantly increased (both P<0.05), and CeO2 treatment significantly reversed the above changes (both P<0.05). The ELISA results showed that compared with the control group, the TNF-α in the peritoneal lavage fluid and serum of the model group increased in a time-dependent manner (all P<0.05); however, there was no significant change in the CeO2 group (P>0.05); at the same time in the CeO2 + model group, the TNF-α content was significantly reduced (all P<0.05). Detection of MPO activity in peritoneal tissue revealed that MPO activity was significantly increased under peritonitis (all P<0.05), and CeO2 treatment could mitigate that increase (all P<0.05). RT-PCR results showed that compared with the control group, the expression of TLR2 and TLR4 mRNA levels in the peritoneum of the model group were increased in a time-dependent manner (all P<0.05), and there was no significant change in the CeO2 group (P>0.05); however, TLR2 and TLR4 mRNA levels were significantly reduced in the CeO2 + model group (all P<0.05). Western blotting test was performed on the peritoneal tissue collected after 48 h of the model establishment. Compared with the control group, the levels of TLR2, TLR4, p–NF–κB, and p-IκBα protein in the model group were significantly increased (all P<0.05), while CeO2 group showed no significant changes (P>0.05) and administration of CeO2 before model construction can significantly reverse the above protein activation (all P<0.05). Conclusion. CeO2 nanoparticles have anti-inflammatory effects in peritonitis caused by Staphylococcus epidermidis infection.
Collapse
|
35
|
Alabi QK, Akomolafe RO. Kolaviron Diminishes Diclofenac-Induced Liver and Kidney Toxicity in Wistar Rats Via Suppressing Inflammatory Events, Upregulating Antioxidant Defenses, and Improving Hematological Indices. Dose Response 2020; 18:1559325819899256. [PMID: 32165871 PMCID: PMC7054740 DOI: 10.1177/1559325819899256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DF) is widely used in the treatment of pain and fever. Despite it
therapeutic benefits, it triggered hepatorenal injury. Thus, the present study
investigated the protective roles of kolaviron (KV) against DF-induced hepatic
and renal toxicity in rats. The rats were allotted into groups: control group
received propylene glycol and treatment groups received DF, which induced
hepatorenal toxicity in rats and different doses of KV that prevented systemic
toxicity of DF in rats. Twenty-four hours after the last treatment, all the rats
were killed. Pro-inflammatory levels, markers of liver and kidney functions,
oxidative stress, hematological indices, and histopathological alterations were
evaluated. Diclofenac caused significant increase in the plasma levels of
creatinine and urea and activities of liver enzymes, including bilirubin level,
pro-inflammatory markers, and plasma prostaglandin E2
(PGE2). It also caused significant alteration in renal and
hepatic PGE2, antioxidants, lipid peroxidation (malondialdehyde), and
hematological indices. These toxic effects were confirmed by histological
studies and levels of inflammatory infiltration (myeloperoxidase). However, KV
significantly prevented or reduced the adverse effects of DF in the plasma,
liver, and kidney of the rats pretreated with KV before DF administration. This
study showed the efficacy of KV as hepatic and renal protector in DF-induced
hepatorenal toxicity through reduction of oxidative stress and suppression of
inflammation.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.,Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
36
|
Le Chapelain O, Jadoui S, Boulaftali Y, Ho-Tin-Noé B. The reversed passive Arthus reaction as a model for investigating the mechanisms of inflammation-associated hemostasis. Platelets 2020; 31:455-460. [PMID: 32105152 DOI: 10.1080/09537104.2020.1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, accumulating evidence has indicated that platelets continuously repair vascular damage at sites of inflammation and/or infection. Studies in mouse models of inflammation have highlighted the fact that the mechanisms underlying bleeding prevention by platelets in inflamed organs can substantially differ from those supporting primary hemostasis following tail tip transection or thrombus formation in models of thrombosis. As a consequence, exploration of the hemostatic function of platelets in inflammation, as well as assessment of the risk of inflammation-induced bleeding associated with a platelet deficit and/or the use of anti-thrombotic drugs, require the use of dedicated experimental models. In the present review, we present the pros and cons of the cutaneous reversed passive Arthus reaction, a model of inflammation which has been instrumental in studying how inflammation causes vascular injury and how platelets continuously intervene to repair it. The limitations and common issues encountered when working with mouse models of inflammation for investigating platelet functions in inflammation are also discussed.
Collapse
Affiliation(s)
| | - Soumaya Jadoui
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France
| | | | | |
Collapse
|
37
|
Oyagbemi A, Omobowale T, Adejumobi O, Ugbor F, Asenuga E, Ajibade T, Afolabi J, Ogunpolu B, Falayi O, Gbadamos I, Ola-Davies O, Saba A, Ashafa A, Yakubu M, Adedapo A, Oguntibeju O. Antihypertensive effect of methanol leaf extract of Azadirachta indica is mediated through suppression of renal caspase 3 expressions on Nω-Nitro-l-arginine methyl ester induced hypertension. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Akinrinde AS, Adebiyi OE, Asekun A. Amelioration of Aflatoxin B1-induced gastrointestinal injuries by Eucalyptus oil in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0002/jcim-2019-0002.xml. [PMID: 31421041 DOI: 10.1515/jcim-2019-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 11/15/2022]
Abstract
Background Eucalyptus oil (EO), derived from Eucalyptus species, possesses vast remedial and healing properties, although its gut health-promoting properties have not been well investigated. In this study, we investigated the chemical composition of a commercial EO formulation and its potential role in protecting against aflatoxin B1 (AfB1)-induced gastrointestinal damage in rats. Methods Male Wistar rats were divided into six groups with eight rats each. Control rats were administered with the vehicle (1% Tween 80) for 14 days, while another group was exposed to two oral doses of AFB1 on days 12 and 14. Two other groups were pre-treated with oral doses of EO (50 and 100 mg/kg b.w.) for 14 consecutive days, along with two oral doses of AfB1 (5 mg/kg b.w.) on days 12 and 14. The remaining two groups were treated with EO alone at the two doses for 14 days. At the end of the experiment, blood samples, stomach and intestinal tissues were collected for measurement of oxidative stress and antioxidant parameters and light microscopic examination. Results Gas chromatography-mass spectrometry analysis revealed Eucalyptol (1, 8-cineole) as the main constituent (67.48%) of the oil. AfB1 administration induced oxidative and inflammatory disturbances, indicated by significantly (p<0.05) increased serum nitric oxide level and myeloperoxidase activity; increased tissue contents of hydrogen peroxide, malondialdehyde and protein carbonyls, accompanied with corresponding histological alterations. AfB1 also induced significant (p<0.05) reductions in glutathione peroxidase and superoxide dismutase (SOD) activities. Treatment with EO produced significant improvements in the biochemical parameters as well as the appearance of the gastric and intestinal mucosa. EO alone, at the two doses tested did not produce any significant changes in the parameters investigated. Conclusion The findings from this study showed that EO demonstrated protective activity against Aflatoxin-induced toxicity in stomach and intestinal tissues and may thus find application in treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- A S Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O E Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A Asekun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
39
|
Ola-Davies OE, Oyagbemi AA, Omobowale TO, Akande I, Ashafa A. Ameliorative effects of Annona muricata Linn. (Annonaceae) against potassium dichromate-induced hypertension in vivo: involvement of Kim-1/p38 MAPK/Nrf2 signaling. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0172. [PMID: 31050655 DOI: 10.1515/jbcpp-2018-0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/06/2019] [Indexed: 01/03/2023]
Abstract
Background Recently, the incidences of hypertension and environmental pollution have increased significantly. This study investigates the antihypertensive effect of Annona muricata extract against K2Cr2O7-induced hypertension. Methods Fifty rats were used for this study, which were divided into five groups of 10 rats each. Rats in Group A received normal saline, and those in Groups B, C, D, and E were treated with A. muricata extract alone at 250 mg/kg, K2Cr2O7 at 30 mg/kg, pretreated with the extract at 250 mg/kg, and pretreated with gallic acid at 60 mg/kg for 14 days, respectively, and thereafter administered with a single intraperitoneal injection of K2Cr2O7 at 30 mg/kg. Results Administration of K2Cr2O7 significantly increased systolic, diastolic, and mean arterial pressure and caused prolonged QT and QTc intervals. Further, pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg significantly reduced high blood pressure to near-normal values. K2Cr2O7 intoxication led to significant increases in serum advanced oxidative protein products, myeloperoxidase, and xanthine oxidase, while serum nitric oxide (NO) also reduced significantly. Immunohistochemistry of the renal kidney injury molecule (Kim-1) and p38 MAPK showed increased expressions following the administration of K2Cr2O7 together with the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg also increased the expressions of Nrf2 and downregulated Kim-1 and p38. Conclusion Together, we found that pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg normalized the blood pressure, reduced the markers of oxidative stress, and improved the antioxidant defense system and serum NO bioavailability.
Collapse
Affiliation(s)
- Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +234833639776
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Israel Akande
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anofi Ashafa
- Faculty of Natural and Agricultural Sciences, Qwaqwa Campus, University of the Free State, Blemfontein, South Africa
| |
Collapse
|
40
|
Jayeola OC, Oyagbemi AA, Okunlola OI, Olubamiwa O, Omobowale TO, Ajibade TO, Bolaji-Alabi FB, Ogunpolu BS, Falayi OO, Saba AB, Adedapo AA, Yakubu MA, Oluwadun A, Oguntibeju OO. Effect of cocoa powder on hypertension and antioxidant status in uninephrectomized hypertensive rats. Vet World 2019; 13:695-705. [PMID: 32546914 PMCID: PMC7245715 DOI: 10.14202/vetworld.2020.695-705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM High salt diet and uninephrectomy are associated with high blood pressure with attendant cardiovascular disease conditions such as hypertension, renal damage, myocardial infarction, and stroke. The aim of this study was to investigate the beneficial effects of consumption of cocoa and cocoa-containing products in the management of high blood pressure in uninephrectomized hypertensive rats. MATERIALS AND METHODS The effect of cocoa powder on blood pressure, markers of inflammation, oxidative stress, and histopathology were investigated in uninephrectomized animals fed with cocoa feed alone or in combination with a high salt diet. Male rats were randomly divided into five groups: Group A was the control group and fed with normal feed alone, Group B was fed with cocoa feed alone, Group C was fed with high salt diet (8% salt), GroupD was fed with cocoa-feed compounded with 8% salt for 4weeks after uninephrectomy, and GroupE was uninephrectomized rats on a normal diet. The left kidneys of animals in GroupsC, D, and E were removed by surgery. After 4weeks of treatment, the systolic, diastolic, and mean arterial blood pressure was measured. The serum markers of renal damage and oxidative stress were determined. Histological examination was also performed on renal and cardiac tissues. RESULTS Results showed significant increases in biomarkers of oxidative stress, inflammation, and renal damage with a concomitant decrease in antioxidant status in hypertensive uninephrectomized rats. Cocoa feed, however, significantly improved blood pressure and nitric oxide bioavailability, antioxidant status and reduced markers of inflammation and oxidative stress. CONCLUSION These findings show that cocoa powder could be used to maintain blood pressure levels in hypertensive rats through its antioxidant capacity.
Collapse
Affiliation(s)
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences (COPHS), Texas Southern University, Houston, Texas, USA
| | - Afolabi Oluwadun
- Department of Medical Microbiology, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
41
|
Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, Fadeyi BA. Protective Effect of Kolaviron on Cyclophosphamide-Induced Cardiac Toxicity in Rats. J Evid Based Integr Med 2019; 23:2156587218757649. [PMID: 29468886 PMCID: PMC5871040 DOI: 10.1177/2156587218757649] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cyclophosphamide (CP) is a nitrogen mustard alkylating drug used for the treatment of chronic and acute malignant lymphomas, myeloma, leukemia, neuroblastoma, adenocarcinoma, retinoblastoma, breast carcinoma, and immunosuppressive therapy. Despite its vast therapeutic uses, it is known to cause severe cardiac toxicity. Kolaviron (KV), a Garcinia kola seed extract containing a mixture of flavonoids, is reputed for its antioxidant and membrane stabilizing properties. OBJECTIVE This study investigated the protective effect of KV on CP-induced cardiotoxicity in rats. METHODS Thirty rats were used, and they were divided into 6 groups of 5 rats each. Group I received 2 mL/kg propylene glycol orally for 14 days; group II received CP (50 mg/kg/d, intraperitoneally [i.p.]) for 3 days; groups III and IV received 200 and 400 mg/kg/d KV, respectively, orally for 14 days and groups V and VI were pretreated with 200 and 400 mg/kg/d KV, respectively, orally for 14 days followed by CP (50 mg/kg/d, i.p.) for 3 days. RESULTS CP treatment resulted in a significantly lower food consumption and body weight in rats. The lactate dehydrogenase and creatine kinase enzymes in cardiac tissues of rats treated with CP were significantly higher. In cardiac tissues, 3-day doses of CP resulted in significantly higher heart weight, cardiac troponin I, myeloperoxidase, malondialdehyde, hydrogen peroxide and lower superoxide dismutase, catalase, glutathione peroxidase activities, and reduced glutathione levels. Histological examination of cardiac tissues showed sign of necrosis of myocardium after CP treatment. However, administration of KV at 200 and 400 mg/kg for 14 days prior to CP treatment, increase food consumption, body weight, and attenuates the biochemical and histological changes induced by CP. CONCLUSIONS These results revealed that KV attenuates CP-induced cardiotoxicity by inhibiting oxidative stress and preserving the activity of antioxidant enzymes.
Collapse
Affiliation(s)
| | | | - Quadri Kunle Alabi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,2 Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Modinat Adebukola Adefisayo
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,3 University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | | | | | - Benson Akinloye Fadeyi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,4 Federal Teaching Hospital, Ido-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
42
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Ayodeji F, Hassan FO, Saba AB, Adedapo AA, Yakubu MA. Ameliorative effect of Rutin on sodium fluoride-induced hypertension through modulation of Kim-1/NF-κB/Nrf2 signaling pathway in rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1284-1297. [PMID: 30259632 DOI: 10.1002/tox.22636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 05/26/2023]
Abstract
Sodium fluoride is one of the neglected environmental contaminants. Inorganic fluorides in the environment are found in the air, water, and land. In the study, forty-male Wistar albino rats were randomly divided into four groups with 10 rats in a group. Group A was the control group which was given normal saline, Group B was exposed to 300 ppm of NaF in drinking water, while Groups C and D received NaF along Rutin (100 mg/kg and 200 mg/kg) orally daily for a week. Administration of NaF alone led to significant increases in blood pressure, and deceased serum nitric oxide. Immunohistochemistry revealed higher expressions of kidney injury molecule I (Kim-1), nuclear factor kappa beta (NF-κB), and down regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in rats administered NaF. Rutin co-treatment with NaF normalized blood pressure, lowered Kim-1 and NF-κB expressions, and improved nitric oxide bioavailability.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Benin, Benin City, Nigeria
| | - Temitayo Olabisi Ajibade
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Fatimah Ayodeji
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas
| |
Collapse
|
43
|
Adeoye BO, Oyagbemi AA, Asenuga ER, Omobowale TO, Adedapo AA. The ethanol leaf extract of Andrographis paniculata blunts acute renal failure in cisplatin-induced injury in rats through inhibition of Kim-1 and upregulation of Nrf2 pathway. J Basic Clin Physiol Pharmacol 2018; 30:205-217. [PMID: 30500779 DOI: 10.1515/jbcpp-2017-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/25/2018] [Indexed: 06/09/2023]
Abstract
Background Cisplatin (CP) is a novel drug of choice in the treatment of cancer but its major limitation is nephrotoxicity, which is dose limiting. Andrographis paniculata (AP) is a common Indian dietary component. It is well known for its medicinal properties. This present study investigated the nephroprotective effect of ethanol leaf extract of Andrographis paniculata (EEAP) on CP-induced nephrotoxicity. Methods CP was used to induce nephrotoxicity in male Wistar rats to study the effect of EEAP on renal damages using hematological parameters, biochemical parameters, histology, and immunohistochemistry studies. Results The effects of EEAP were determined by CP-induced changes in different kidney tissue on antioxidant enzymes, markers of oxidative stress, serum creatinine, and urine parameters. Administration of EEAP (200 mL/kg and 400 mg/kg orally), prior to and following a single dose CP treatment (10 mg/kg i.p), significantly mitigated the CP-induced decrease in antioxidant enzymes, and increase in markers of oxidative stress, serum creatinine, and urinary protein. On histopathological examination of the kidney tissue, there was severe glomerular degeneration and infiltration of inflammatory cells in CP only treated rats, mild glomerular degeneration, and infiltration of inflammatory cells in EEAP pre-treated rats. Furthermore, EEAP activated Nrf2 and mitigated Kim-1 pathways in CP-induced nephrotoxicity. Conclusions The results showed the protective effect of EEAP against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Bisi O Adeoye
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Pharmacology, University of Benin, Benin, Nigeria
| | | | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria, Phone: +2348162746222
| |
Collapse
|
44
|
Nabofa WEE, Alashe OO, Oyeyemi OT, Attah AF, Oyagbemi AA, Omobowale TO, Adedapo AA, Alada ARA. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci Rep 2018; 8:16649. [PMID: 30413767 PMCID: PMC6226538 DOI: 10.1038/s41598-018-35145-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Myocardial infarction (MI) is the most prevalent cause of cardiovascular death. A possible way of preventing MI maybe by dietary supplements. The present study was thus designed to ascertain the cardio-protective effect of a formulated curcumin and nisin based poly lactic acid nanoparticle (CurNisNp) on isoproterenol (ISO) induced MI in guinea pigs. Animals were pretreated for 7 days as follows; Groups A and B animals were given 0.5 mL/kg of normal saline, group C metoprolol (2 mg/kg), groups D and E CurNisNp 10 and 21 mg/kg respectively (n = 5). MI was induced on the 7th day in groups B-E animals. On the 9th day electrocardiogram (ECG) was recorded, blood samples and tissue biopsies were collected for analyses. Toxicity studies on CurNisNp were carried out. MI induction caused atrial fibrillation which was prevented by pretreatment of metoprolol or CurNisNp. MI induction was also associated with increased expressions of cardiac troponin I (CTnI) and kidney injury molecule-1 (KIM-1) which were significantly reduced in guinea pig's pretreated with metoprolol or CurNisNp (P < 0.05). The LC50 of CurNisNp was 3258.2 μg/mL. This study demonstrated that the formulated curcumin-nisin based nanoparticle confers a significant level of cardio-protection in the guinea pig and is nontoxic.
Collapse
Affiliation(s)
- Williams E E Nabofa
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria.
| | - Oluwadamilola O Alashe
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiologv and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola R A Alada
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
45
|
Gallic acid protects against bisphenol A-induced alterations in the cardio-renal system of Wistar rats through the antioxidant defense mechanism. Biomed Pharmacother 2018; 107:1786-1794. [DOI: 10.1016/j.biopha.2018.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
|
46
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Saba AB, Adedapo AA, Yakubu MA. Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications. Biofactors 2018; 44:518-531. [PMID: 30474894 DOI: 10.1002/biof.1449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The use of sodium fluoride (NaF) as a major ingredient for tooth paste, mouth wash, and mouth rinse has become inevitable in our day-to-day life. However, flavonoids such as Luteolin might be of great value in the prevention of toxicity associated with accidental or inevitable ingestion of NaF. In the study, 40 male Wistar albino rats were randomly divided into four groups with 10 rats in a group. Group A was the control group and received normal saline, Group B was exposed to NaF at 300 ppm (300 mg/L) in drinking water daily for a week, Groups C and D were exposed to 300 ppm (300 mg/L) of NaF and coadministered with Luteolin orally daily at a dosage of 100 mg/kg and 200 mg/kg for the same time point. Our results indicated that NaF caused significant increases in systolic blood pressure, diastolic blood pressure, mean arterial pressure, malondialdehyde, protein carbonyl, myeloperoxidase, advanced oxidative protein products, together with significant reductions in glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and nitric oxide (NO) bioavailability. The electrocardiogram results showed that NaF alone caused significant prolongation of QT and QTc intervals. Immunohistochemistry revealed that NaF caused increase expressions of Kidney injury marker 1 (Kim-1), nuclear factor kappa bet (NF-κB), nuclear factor erythroid 2-related factors 2 (Nrf2), and cardiac troponin I (CTnI). Together, Luteolin coadministration with NaF improved NO bioavailability, reduced high blood pressure, markers of oxidative stress, reversed prolongation of QT and QTc intervals, and lowered the expressions of Kim-1, NF-κB, and CTnI. © 2018 BioFactors, 44(6):518-531, 2018.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, NSB303, Sr. Scientist & Head, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
47
|
Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2018-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Doxorubicin (DOX) is a common chemotherapeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy.
Objective
The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E (VIT.E) against DOX-induced cardiomyopathy.
Material and methods
Seventy rats were allocated into seven groups: control, HSP (50 mg/kg, orally), VIT.E (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], DOX+HSP, DOX+VIT.E and DOX+HSP+VIT.E.
Results
Our findings showed that serum lactate dehydrogenase (LDH), creatine kinase (CK), myeloperoxidase (MPO), cardiac catalase and caspase activities as well as cardiac malondialdehyde (MDA) and serum nitric oxide (NO) concentrations were reduced DOX+HSP or DOX+VIT.E or DOX+VIT.E+HSP groups compared to DOX group. Whereas, cardiac reduced glutathione (GSH) level, serum arylesterase, and paraoxonase activities were higher in rats injected with DOX and administrated with HSP and VIT.E than that of rats injected with DOX only. Cardiac histopathology of DOX group showed some changes that were improved during administration with HSP and VIT.E.
Conclusion
HSP and VIT.E possess a protective effect against DOX-induced cardiomyopathy via inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
|
48
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Arojojoye OA, Afolabi JM, Ogunpolu BS, Falayi OO, Hassan FO, Ochigbo GO, Saba AB, Adedapo AA, Yakubu MA. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors 2018; 44:465-479. [PMID: 30171731 DOI: 10.1002/biof.1445] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Hypertension is one of the silent killers in the world with high mortality and morbidity. The exposure of humans and animals to fluoride and/or fluoride containing compounds is almost inevitable. This study investigated the modulatory effects of quercetin on sodium fluoride (NaF)-induced hypertension and cardiovascular complications. Forty male rats were randomly separated into four groups (n =10). Group A animals served as the control, rats in Group B were exposed to 300 ppm of NaF, Groups C and D animals were exposed to 300 ppm of NaF along with quercetin orally at 50 mg/kg and 100 mg/kg orally by gavage, while NaF was administered in drinking water, respectively, for a week. Administration of NaF caused severe hypertension as indicated with significant increases in the systolic, diastolic, and mean arterial blood pressure, together with prolonged ventricular depolarization (QRS) and the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle (QT) intervals when compared with controls. NaF significantly decreased the activities of antioxidant enzymes, caused increase in markers of oxidative stress and renal damage when compared with controls. Immunohistochemical staining revealed lower expressions of Hsp70, ERK, and PPARγ in the heart, kidney, and aorta of rats-administered NaF relative to the controls. Together, quercetin co-treatment with NaF restored blood pressure, normalized QRS interval, and improved antioxidant defense system. © 2018 BioFactors, 44(5):465-479, 2018.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Jeremiah Moyinoluwa Afolabi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Cell Biology & Physiology track, Integrated Biomedical Sciences PhD, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Grace Onyeche Ochigbo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
49
|
Omóbòwálé TO, Oyagbemi AA, Alaba BA, Ola-Davies OE, Adejumobi OA, Asenuga ER, Ajibade TO, Adedapo AA, Yakubu MA. Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. J Basic Clin Physiol Pharmacol 2018; 29:155-164. [PMID: 28981443 DOI: 10.1515/jbcpp-2017-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Toxicities due to fluoride exposure from natural and industrial sources occur commonly in man and animals with severe consequences ranging from mild cardiac derangements to sudden death. In this study, we investigated the protective effects of the methanol extract of Azadirachta indica (AI) against sodium fluoride (NaF)-induced hypertension and genotoxicity in rats. METHODS Sixty rats were divided into six groups of ten rats each as follows: Group A, the control group received distilled water; Group B rats were administered NaF at 600 ppm in drinking water; Groups C and D rats were pre-treated with the methanol extract of AI and thereafter administered NaF at 600 ppm in drinking water for 7 consecutive days; Groups E and F rats were co-administered with AI and NaF. RESULTS The administration of NaF caused significant (p<0.05) increases in the blood pressure, markers of oxidative stress, serum myeloperoxidase, xanthine oxidase values in NaF-alone treated rats, compared with the control. Significant (p<0.05) decreases were observed in cardiac and renal antioxidant defence system in rats administered NaF alone compared with the control group. NaF treatment also resulted in a reduction in the expressions of extracellular signal-regulated kinase (ERK) 1/2 in cardiac and renal tissues of NaF-treated rats. Moreover, NaF treatment elicited an increase in the frequency of micronucleated polychromatic erythrocytes when compared with the control group. CONCLUSIONS This study shows the protective effect of AI on NaF-induced hypertension and genotoxicity through antioxidant and ERK 1/2 signaling in rats.
Collapse
Affiliation(s)
- Temidayo Olutayo Omóbòwálé
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Bukola Ayokunmi Alaba
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Faculty of Veterinary Medicine, Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Benin, Benin, Nigeria
| | - Temitayo Olabisi Ajibade
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, College of Pharmacy, Texas Southern University, Houston, TX, USA
| |
Collapse
|
50
|
Soliman AF, Anees LM, Ibrahim DM. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:819-832. [PMID: 29736620 DOI: 10.1007/s00210-018-1506-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 01/24/2023]
Abstract
Despite their clinical benefits in cancer treatment, the deleterious effects on heart following chemo/radiotherapy are of increasing importance. Zingerone, a natural polyphenol, possesses multiple biological activities, such as antioxidant and anti-inflammatory. Thus, the current study was designed to assess the potential cardioprotective effects of zingerone against cisplatin or γ-radiation. Zingerone was given by intragastric intubation (25 mg/kg) daily for three successive weeks prior to the induction of cardiotoxicity using a single dose of cisplatin (20 mg/kg, i.p.) or a whole body γ-irradiation at a single dose of 6 Gy. Zingerone pre-treatment significantly reduced the abnormalities in heart histology and the increase in the cardiotoxicity indices, serum lactate dehydrogenase, and creatine kinase-MB activities, as well as plasma cardiac troponin T and B-natriuretic peptide, induced by cisplatin or γ-radiation. Further, zingerone, except for superoxide dismutase, notably ameliorated the state of oxidative stress as evidenced by a significant decrease in malondialdehyde level accompanied with a significant increase in the reduced glutathione content and catalase activity. Additionally, zingerone mitigated the increase in the inflammatory markers including serum level of tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein expression. Moreover, zingerone alleviated the elevation of caspase-3 gene expression and the prominent nuclear DNA fragmentation and attenuated the decrease in mitochondrial complexes' activities. This study sheds the light on a probable protective role of zingerone as an antioxidant, anti-inflammatory, and antiapoptotic agent against cisplatin- or γ-radiation-induced cardiotoxicity and holds a potential in regard to therapeutic intervention for chemo/radiotherapy mediated cardiac damage.
Collapse
Affiliation(s)
- Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Lobna M Anees
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|