1
|
Li Q, Niu X, Cai Y, Li L, Xia Z. Exposure to submicroplastics promotes the progression of nonalcoholic fatty liver disease in ApoE-deficient mice. Toxicology 2025; 515:154137. [PMID: 40222581 DOI: 10.1016/j.tox.2025.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Microplastics (MPs) pose emerging threats to human health, with growing concerns about liver toxicity and other harmful effects from plastic particles. While aquatic species exhibit hepatic vulnerability to micro/nanoplastics, the role of submicroplastics (100 nm-1 μm) in mammalian non-alcoholic fatty liver disease (NAFLD) progression remains unclear. We investigated the effects of a 12-week exposure to 0.5 μm polystyrene MPs (submicroplastics) in drinking water, administering this to ApoE-deficient mice fed either a chow diet (CD) or a Western diet (WD). Submicroplastics accumulated predominantly in the liver and were excreted in the feces. Histologically, submicroplastics significantly increased NAFLD activity scores, hepatic steatosis (Oil Red O-positive area), and fibrosis (Masson-positive area), with maximal severity in the WD+MPs group. Also, the MPs exposure group had increases in positive areas for F4/80 and inflammatory markers TNF-α, IL-1β and IL-6 expression under both diets. Concurrently, submicroplastics inhibited antioxidant defenses by lowering levels of superoxide dismutase and glutathione, while also increasing the lipid peroxidation marker malondialdehyde. WD-fed mice exhibited pronounced MPs-induced lipid dysregulation, including elevated hepatic triglycerides, total cholesterol, and free fatty acids (FAs). Mechanistically, submicroplastics upregulated FA synthesis regulators (ACC, FASN, SREBP1) while downregulating FA oxidation mediators (CPT1A, ACOX1, PPARα) in the livers under a WD. Our findings demonstrate that chronic submicroplastics-exposure exacerbates the progression of NAFLD in ApoE-deficient mice by disturbing lipid metabolism, enhancing oxidative stress, and amplifying inflammatory responses. This study provides experimental evidence linking environmental plastic pollution to accelerated metabolic liver disease, thereby highlighting the urgent need for plastic exposure control strategies.
Collapse
Affiliation(s)
- Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Cui Y, Wu Y, Shi P, Ni Y, Zeng H, Zhang Z, Zhao C, Sun W, Yi Q. Mitigating microplastic-induced organ Damage: Mechanistic insights from the microplastic-macrophage axes. Redox Biol 2025; 84:103688. [PMID: 40412021 DOI: 10.1016/j.redox.2025.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
We live in a world increasingly dominated by plastic, leading to the generation of microplastic particles that pose significant global health concerns. Microplastics can enter the body via ingestion, inhalation, and direct contact, accumulating in various tissues and potentially causing harm. Despite this, the specific cellular mechanisms and signaling pathways involved remain poorly understood. Macrophages are essential in absorbing, distributing, and eliminating microplastics, playing a key role in the body's defense mechanisms. Recent evidence highlights oxidative stress signaling as a key pathway in microplastic-induced macrophage dysfunction. The accumulation of microplastics generates reactive oxygen species (ROS), disrupting normal macrophage functions and exacerbating inflammation and organ damage. This review serves as the first comprehensive examination of the interplay between microplastics, macrophages, and oxidative stress. It discusses how oxidative stress mediates macrophage responses to microplastics and explores the interactions with gut microbiota. Additionally, it reviews the organ damage resulting from alterations in macrophage function mediated by microplastics and offers a novel perspective on the defense, assessment, and treatment of microplastic-induced harm from the viewpoint of macrophages.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China; Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Yuqi Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Pan Shi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yan Ni
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Huaying Zeng
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| |
Collapse
|
3
|
Xiong B, Wang H, Song YX, Lan WY, Li J, Wang F. Natural saponins and macrophage polarization: Mechanistic insights and therapeutic perspectives in disease management. Front Pharmacol 2025; 16:1584035. [PMID: 40417220 PMCID: PMC12098594 DOI: 10.3389/fphar.2025.1584035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 05/27/2025] Open
Abstract
Macrophage polarization plays a pivotal role in immune homeostasis and disease progression across inflammatory, neoplastic, and metabolic disorders. Saponins, which are natural compounds with steroidal/triterpenoid structures, demonstrate therapeutic potential through immunomodulatory, anti-inflammatory, and anti-tumor activities. This study aims to highlight the potential of key saponins-such as ginsenosides, astragaloside IV, dioscin, platycodin D, pulsatilla saponins, and panax notoginseng saponins-in modulating macrophage polarization and enhancing conventional therapies, particularly in oncology. We conducted structured searches in PubMed, Google Scholar, and SciFinder (2013-2024) using controlled vocabulary, including "saponins," "macrophage polarization," and "therapeutic effects." Our findings demonstrate that saponins significantly modulate immune responses and improve treatment efficacy. However, clinical translation is hindered by challenges such as poor bioavailability and safety concerns, which limit systemic exposure and therapeutic utility. To overcome these barriers, innovative delivery strategies, including nanoemulsions and engineered exosomes, are essential for enhancing pharmacokinetics and therapeutic index. Future research should prioritize elucidating the molecular mechanisms underlying saponin-mediated macrophage polarization, identifying novel therapeutic targets, and optimizing drug formulations. Addressing these challenges will enable the restoration of immune balance and more effective management of diverse diseases.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Fang Wang
- Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
4
|
Lopez GL, Adda-Bouchard Y, Laulhé X, Chamberlain G, Bourguignon L, Charpentier T, Cyr DG, Lamarre A. Short-term oral exposure to nanoplastics does not significantly impact the antiviral immune response of the mouse. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137316. [PMID: 39854993 DOI: 10.1016/j.jhazmat.2025.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The increasing prevalence of nanoplastics (NPs) in the environment, particularly polystyrene (PS) nanoparticles, raises concerns regarding their potential impact on human and animal health. Given their small size, NPs can cross biological barriers and accumulate in organs, including those critical for immune functions. This study investigates the effects of short-term oral exposure to 100 and 500 nm PS NPs on the adaptive immune responses during viral infections in vivo, using vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV) as models. Male and female C57BL/6 mice were orally exposed to PS NP for a period of 28 days, during which they were infected with either VSV or LCMV to study the humoral and cellular responses, respectively. The humoral responses were assessed by measuring total and VSV-specific antibody levels, and splenic immune populations. T cell phenotypes, activation, exhaustion and functionality towards LCMV epitopes were studied as readouts of the cellular responses. Our results demonstrate that short-term NP exposure does not significantly affect the generation or neutralizing capacity of antibodies against VSV, nor the cellular responses directed against LCMV. These findings indicate that, under these conditions, PS NP exposure does not significantly compromise the adaptive immune responses during viral infections, underscoring the value of in vivo models.
Collapse
Affiliation(s)
- Guillaume L Lopez
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Yasmine Adda-Bouchard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Gabriel Chamberlain
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Léa Bourguignon
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Tania Charpentier
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Daniel G Cyr
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada.
| |
Collapse
|
5
|
Mognetti B, Cecone C, Fancello K, Saraceni A, Cottone E, Bovolin P. Interaction of Polystyrene Nanoplastics with Biomolecules and Environmental Pollutants: Effects on Human Hepatocytes. Int J Mol Sci 2025; 26:2899. [PMID: 40243532 PMCID: PMC11988602 DOI: 10.3390/ijms26072899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The inevitable exposure of humans to micro/nanoplastics has become a pressing global environmental issue, with growing concerns regarding their impact on health. While the direct effects of micro/nanoplastics on human health remain largely unknown, increasing attention is being given to their potential role as carriers of environmental pollutants and organic substances. This study investigates the direct toxicity of 500 nm polystyrene nanoplastics (NPs) on human hepatocytes (HepG2) in vitro, both alone and in combination with cadmium (Cd), a hazardous heavy metal and a prevalent environmental pollutant. One-hour exposure to 100 µg/mL of NPs causes a significant increase in ROS production (+25% compared to control) but cell viability remains unaffected even at concentrations much higher than environmental levels. Interestingly, NPs significantly reduce Cd cytotoxicity at LC50 concentrations (cell viability compared to control: 55.4% for 50 µM Cd, 66.9% for 50 µM Cd + 10 µg/mL NPs, 68.4% for 50 µM Cd + 100 µg/mL NPs). Additionally, NPs do not alter the cellular lipid content after short-term exposure (24 h). However, when Cd and fatty acids are added to the medium, NPs appear to sequester fatty acids, reducing their availability and impairing their uptake by cells in a dose-dependent manner. We confirmed by Dynamic Light Scattering and Scanning Electron Microscopy the interaction between NPs, Cd and free fatty acids. Although polystyrene NPs exhibited minimal cytotoxicity in our experimental model, collectively our findings suggest that predicting the effects of cell exposure to NPs is extremely challenging, due to the potential interaction between NPs, environmental pollutants and specific components of the biological matrix.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
| | - Claudio Cecone
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Katia Fancello
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Astrid Saraceni
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
| |
Collapse
|
6
|
Li X, Li Y, Liu B, Sui G, Liu S, Song G. A digestive system microphysiological platform for assessment of internal-exposure risks and metabolic disease mechanisms induced by multi-size nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136865. [PMID: 39700947 DOI: 10.1016/j.jhazmat.2024.136865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Nano-plastics (NPs) are emerging hazardous environmental contaminants that pose health risks with size-dependent toxic effects and are potential risk factors for hepatocellular carcinoma (HCC) and lipid metabolism disorders including non-alcoholic fatty liver disease (NAFLD). However, their underlying molecular mechanisms remain unclear. To shed more light on the causes of these risks, we developed a digestive system microphysiological platform (DS-MPP) for simulating dynamic internal-exposure of multi-size NPs in the gastrointestinal tract and liver. Multi-omics analysis based on DS-MPP revealed hepatic cells are more sensitive to 72 μg/day NPs than gastrointestinal mucosa cells. Specifically, 50 nm NPs disrupt phospholipid metabolism, promote diacylglycerol (DG) accumulation, convert more DG to phosphatidic acid (PA) than triacylglycerol (TG), thus facilitating endocytic vesicles production. Meanwhile, it can active tumorigenesis related pathway mTOR, inducing HCC marked by CAB39. Moreover, 500 nm NPs promote NAFLD by inducing insulin resistance pathways and decreasing PLD1 expression. Our results demonstrate the mechanism of disease and metabolic disorders induced by NPs vary depending on particle size. DS-MPP is a reliable platform for evaluating risk of dynamic NPs exposure and elucidating mechanisms of related metabolic diseases. This platform provides a promising method for health risk assessment caused by environmental pollutants.
Collapse
Affiliation(s)
- Xinran Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Life Science Innovation Research Laboratory, Shanghai Yichuan High School, 101 Huayin Road, Shanghai 200065, China
| | - Yueyi Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
7
|
Wang Q, Yang X, Chen C, Xing Y, Chitakwa N, Jiang J, Wei H, Ding X, Wu D. Sex-specific effects of aged polystyrene microplastics on hepatic AMPK pathway activation and lipid droplet accumulation in MAFLD mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117963. [PMID: 40058092 DOI: 10.1016/j.ecoenv.2025.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
Microplastics (MPs) are environmental pollutants attracting widespread attention due to their environmental omnipresence and potential health effects. MPs undergo ageing in the environment and our previous research found that aged Polystyrene microplastics (PS-MPs) affected lipid metabolism in healthy female mice, but not males. In this study, we examined the effects of aged PS-MP exposure on lipid metabolism in mice with Metabolic Associated Fatty Liver Disease (MAFLD). 14 female and 14 male mice were furnished with a high-fat diet (HFD) for eight weeks to create MAFLD model mice. They were then orally administered aged PS-MPs for four weeks, and changes in the AMP-activated protein kinase signalling pathway were examined in order to determine PS-MP's effect on hepatic metabolism. The outcomes showed that though serum estradiol, inflammatory gene expression and ROS levels increased significantly in both male and female HFD-aged PS-MP groups, hepatic steatosis was attenuated only in the female group. Furthermore, serum ERα, ERβ, AMPKα, acetyl-CoA carboxylase, sterol regulatory element binding protein-1c, and Fas expressions were significantly increased in the MAFLD mice groups compared to the control group. Combining serum E2 levels, AMPK pathway changes, oxidative stress markers, and inflammatory gene levels, aged PS-MPs may stimulate E2 production and mobilize the liver AMPK signalling pathway of both male and female MAFLD mice. However, lipid metabolism is only affected in female MAFLD mice, suggesting other possible mechanisms besides the AMPK pathway may be at play. These results provide a new perspective on the potential health effects of MP exposure in individuals with metabolic disorders such as MAFLD.
Collapse
Affiliation(s)
- Qing Wang
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Disease Prevention and Control Center of Linping District, Hangzhou 311100, China
| | - Chuan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Xing
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Natasha Chitakwa
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Di Wu
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Li Q, Zhu K, Huang L, Niu X, Li L, Gao L, Xia Z. Polystyrene microplastics induce liver fibrosis and lipid deposition in mice through three hub genes revealed by the RNA-seq. Sci Rep 2025; 15:2583. [PMID: 39833454 PMCID: PMC11747203 DOI: 10.1038/s41598-025-86810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Nano- and microplastics (NMPs) have become a serious global environmental threat that causes damage to mammalian organs. In this work, we investigated the potential molecular mechanism underlying the development of liver fibrosis induced by long-term exposure to three different sized polystyrene (PS)-NMPs (80 nm, 0.5 µm and 5 µm) in mice. Liver fibrosis levels were evaluated in mice after chronic exposure to PS-NMPs. Liver inflammation was mainly increased in chronic exposure to 80 nm and 0.5 µm PS-NMPs. Liver lipid deposition was significantly enhanced after PS-NMPs exposure. However, oxidative stress was not changed under PS-NMPs exposure. GO enrichment and KEGG pathway analyses revealed that the DEGs and shared DEGs were mainly enriched in the metabolism of lipids. The mRNA expression levels of genes related to fatty acid oxidation, synthesis and transport were dramatically induced by PS-NMPs exposure. Four hub genes, Acot3, Abcc3, Nr1i3 and Fmo2, were identified by CytoHubba analysis of shared DEGs. The mRNA expression levels of three hub genes, Acot3, Abcc3 and Nr1i3, were significantly augmented under chronic PS-NMPs exposure. Our results suggest that Acot3, Abcc3 and Nr1i3 are potential molecules involved in the development of liver fibrosis under chronic exposure to PS-NMPs.
Collapse
Affiliation(s)
- Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kai Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Ruggieri L, Amato O, Marrazzo C, Nebuloni M, Dalu D, Cona MS, Gambaro A, Rulli E, La Verde N. Rising Concern About the Carcinogenetic Role of Micro-Nanoplastics. Int J Mol Sci 2024; 26:215. [PMID: 39796071 PMCID: PMC11720132 DOI: 10.3390/ijms26010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens. Currently, evidence in this field is scarce and heterogeneous, but the reported increased incidence of malignant tumors among younger populations, together with the ubiquitous environmental abundance of MNPs, are rising a global concern regarding the possible role of MNPs in the development and progression of cancer. In this review, we provide an overview of the currently available evidence in eco-toxicology, as well as methods for the identification and characterization of environmental MNP particulates and their health-associated risks, with a focus on cancer. In addition, we suggest possible routes for future research in order to unravel the carcinogenetic potential of MNP exposure and to understand prognostic and preventive implications of intratumoral MNPs.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Ottavia Amato
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Cristina Marrazzo
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Manuela Nebuloni
- Pathology Unit, Luigi University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Davide Dalu
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Anna Gambaro
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Eliana Rulli
- Methodology for Clinical Research Laboratory, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| |
Collapse
|
10
|
Zhang Y, Zhao Q, Zhao R, Lu Y, Jiang S, Tang Y. Efficacy of DHA-enriched phosphatidylserine and its underlying mechanism in alleviating polystyrene nanoplastics-induced hepatotoxicity in mice. Int Immunopharmacol 2024; 142:113154. [PMID: 39278057 DOI: 10.1016/j.intimp.2024.113154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Plastic pollution has become a global pollution problem that cannot be ignored. As the main destination of human oral intake, the toxic effects of plastic on the digestive system represented by the intestine and liver are the focus of current research. Marine-derived DHA-PS has a variety of biological activities, mainly focusing on improving brain function and regulating lipid metabolism. However, whether it has an improvement effect on PS-NPs-induced hepato-intestinal injury and the underlying mechanism remain unclear. METHODS A murine liver injury model was established by gavage of PS-NPs for six weeks. By integrating approaches from lipidomics, transcriptomics, and gut microbiota analysis, the molecular mechanism by which DHA-PS alleviates PS-NPs-induced murine hepatotoxicity was explored through the "gut-liver axis". RESULTS Our findings reveal that prolonged exposure to PS-NPs results in significant murine liver damage and dysfunction, characterized by increased oxidative stress and inflammation, along with exacerbated hepatic lipid accumulation. Mechanistically, PS-NPs disrupt the hepatic SIRT1-AMPK pathway by suppressing the expression of SIRT1, AMPKα, and PPARα, while enhancing the expression of SREBP-1c, ultimately leading to disordered hepatic lipid metabolism. The sphingolipid and glycerophospholipid metabolic pathways were particularly affected. Additionally, in agreement with transcriptomic analyses, PS-NPs activate the hepatic TLR4/NF-κB pathway. At the same time, exposure to PS-NPs decreases the expression of ZO-1, occludin, and claudin-1, diminishes the relative abundance of beneficial gut bacteria (norank_f_Muribaculaceae, Akkermansia, and norank_f_norank_o_Clostridia_UCG-014), and increases the prevalence of pathogenic gut bacteria (Coriobacteriaceae_UCG-002 and Desulfovibrio), exacerbating liver injury through the gut-liver axis. However, administering DHA-PS (50 mg/kg) effectively alleviated these injuries. CONCLUSION This study was the first to employ multi-omics techniques to elucidate the potential mechanisms underlying hepatotoxicity induced by PS-NPs, thereby supporting the use of DHA-PS as a dietary supplement to mitigate the effects of nanoplastic pollutants.
Collapse
Affiliation(s)
- Yuanlei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316000, China
| | - Rui Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
11
|
Kamel NA, Bashir DW, El-Leithy EMM, Tohamy AF, Rashad MM, Ali GE, El-Saba AAA. "Polyethylene Terephthalate Nanoplastics Caused Hepatotoxicity in Mice Can be Prevented by Betaine: Molecular and Immunohistochemical Insights". J Biochem Mol Toxicol 2024; 38:e70088. [PMID: 39651595 DOI: 10.1002/jbt.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Polyethylene terephthalate nanoplastics (PET-NPs) are one of the most frequently distributed nanoplastics in daily life. Betaine is thought to be a promising hepatoprotective agent. The current investigation focused on whether orally administered PET-NPs caused hepatotoxicity and ameliorative effect of betaine. Forty adult male Swiss albino mice were randomly split into four groups: group I control, group II betaine (1000 mg/kg I/P), group III PET-NPs (200 mg/kg orally), and group IV betaine plus PET-NPs at doses similar to group II& III respectively. After 30 days, blood sample were collected then animals were euthanized and liver specimens were dissected out for biochemical and histopathological examination. PET-NPs induced a significant elevation in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA), as well as an increase in the inflammatory genes a proto-oncogene (c-FOS) and cyclooxygenase 2 (COX2) (p ≤ 0.05), with a substantial decrease in glutathione (GSH) (p ≤ 0.05). Furthermore, on the level of histopathological analysis PET-NPs caused alterations in hepatic tissue architecture as vascular dilatation and congestion with hepatocytes degeneration, bile duct epithelial hyperplasia and inflammatory cell infiltrations While on the level of immunohistochemistry, PET-NPs trigger positive tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-ҠB) expression in comparison to control. Meanwhile, betaine treatment reduced the deleterious effects of PET-NPs. To summarize, PET-NPs may cause hepatotoxicity in mice, with a belief that betaine could mitigate the detrimental impact.
Collapse
Affiliation(s)
- Nehal A Kamel
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M M El-Leithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ghada E Ali
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Aleem A El-Saba
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
13
|
Fan Z, Zhang Y, Fang Y, Zhong H, Wei T, Akhtar H, Zhang J, Yang M, Li Y, Zhou X, Sun Z, Wang J. Polystyrene nanoplastics induce lipophagy via the AMPK/ULK1 pathway and block lipophagic flux leading to lipid accumulation in hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134878. [PMID: 38897115 DOI: 10.1016/j.jhazmat.2024.134878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Micro- and nanoplastic pollution has emerged as a significant global concern due to their extensive presence in the environment and potential adverse effects on human health. Nanoplastics can enter the human circulatory system and accumulate in the liver, disrupting hepatic metabolism and causing hepatotoxicity. However, the precise mechanism remains uncertain. Lipophagy is an alternative mechanism of lipid metabolism involving autophagy. This study aims to explore how polystyrene nanoplastics (PSNPs) influence lipid metabolism in hepatocytes via lipophagy. Initially, it was found that PSNPs were internalized by human hepatocytes, resulting in decreased cell viability. PSNPs were found to induce the accumulation of lipid droplets (LDs), with autophagy inhibition exacerbating this accumulation. Then, PSNPs were proved to activate lipophagy by recruiting LDs into autophagosomes and block the lipophagic flux by impairing lysosomal function, inhibiting LD degradation. Ultimately, PSNPs were shown to activate lipophagy through the AMPK/ULK1 pathway, and knocking down AMPK exacerbated lipid accumulation in hepatocytes. Overall, these results indicated that PSNPs triggered lipophagy via the AMPK/ULK1 pathway and blocked lipophagic flux, leading to lipid accumulation in hepatocytes. Thus, this study identifies a novel mechanism underlying nanoplastic-induced lipid accumulation, providing a foundation for the toxicity study and risk assessments of nanoplastics.
Collapse
Affiliation(s)
- Zhuying Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yukang Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, Shanxi, China
| | - Yuting Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huiyuan Zhong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tingting Wei
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huraira Akhtar
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiahuai Zhang
- Center for Clinical Laboratory, Capital Medical University, Beijing 100069, China
| | - Man Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Du B, Li T, He H, Xu X, Zhang C, Lu X, Wang Y, Cao J, Lu Y, Liu Y, Hu S, Li J, Li L, Shi M. Analysis of Biodistribution and in vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int J Nanomedicine 2024; 19:7617-7630. [PMID: 39081896 PMCID: PMC11288365 DOI: 10.2147/ijn.s466258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Studies have shown that microplastics (MPs) and nanoplastics (NPs) could accumulate in the human body and pose a potential threat to human health. The purpose of this study is to evaluate the biodistribution and toxicity of MPs/NPs with different particle sizes comprehensively and thoroughly. Methods The purpose of this study was to investigate the biodistribution and in vivo toxicity of polystyrene (PS) MPs/NPs with different sizes (50 nm, 100 nm, and 500 nm). The BALB/c mice were given 100 μL of PS50, PS100 and PS500 at the dosage of 1 mg/kg BW or 10 mg/kg BW, respectively, by gavage once a day. After 28 consecutive days of treatment, the biodistribution of differently sized PS MPs/NPs was determined through cryosection fluorescence microscopy and fluorescent microplate reader analysis, and the subsequent effects of differently sized PS MPs/NPs on histopathology, hematology and blood biochemistry were also evaluated. Results The results showed that the three different sizes of PS MPs/NPs were distributed in the organs of mice, mainly in the liver, spleen, and intestine. At the same time, the smaller the particle size, the more they accumulate in the body and more easily penetrate the tissue. During the whole observation period, no abnormal behavior and weight change were observed. The results of H&E staining showed that no severe histopathological abnormalities were observed in the main organs in the low-dose exposure group, while. Exposure of three sizes of PS MPs/NPs could cause some changes in hematological parameters or biochemical parameters related to heart, liver, and kidney function; meanwhile, there were size- and dose-dependencies. Conclusion The biological distribution and toxicity of plastic particles in mice were more obvious with the decrease of particle size and the increase of concentration of plastic particles. Compared with MPs, NPs were easier to enter the tissues and produce changes in liver, kidney, and heart functions. Therefore, more attention should be paid to the toxicity of NPs.
Collapse
Affiliation(s)
- Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xun Xu
- Experimental Animal Center, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Shanshan Hu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| |
Collapse
|
15
|
Zhang J, Du J, Liu D, Zhuo J, Chu L, Li Y, Gao L, Xu M, Chen W, Huang W, Xie L, Chen J, Meng X, Zou F, Cai S, Dong H. Polystyrene microplastics induce pulmonary fibrosis by promoting alveolar epithelial cell ferroptosis through cGAS/STING signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116357. [PMID: 38677073 DOI: 10.1016/j.ecoenv.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.
Collapse
Affiliation(s)
- Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqun Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Ganzhou people's Hospital, Ganzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wufeng Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Domenech J, Villacorta A, Ferrer JF, Llorens-Chiralt R, Marcos R, Hernández A, Catalán J. In vitro cell-transforming potential of secondary polyethylene terephthalate and polylactic acid nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134030. [PMID: 38493621 DOI: 10.1016/j.jhazmat.2024.134030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Continuous exposure to plastic pollutants may have serious consequences on human health. However, most toxicity assessments focus on non-environmentally relevant particles and rarely investigate long-term effects such as cancer induction. The present study assessed the carcinogenic potential of two secondary nanoplastics: polyethylene terephthalate (PET) particles generated from plastic bottles, and a biodegradable polylactic acid material, as respective examples of environmentally existing particles and new bioplastics. Pristine polystyrene nanoplastics were also included for comparison. A broad concentration range (6.25-200 μg/mL) of each nanoplastic was tested in both the initiation and promotion conditions of the regulatory assessment-accepted in vitro Bhas 42 cell transformation assay. Parallel cultures allowed confirmation of the efficient cellular internalisation of the three nanoplastics. Cell growth was enhanced by polystyrene in the initiation assay, and by PET in both conditions. Moreover, the number of transformed foci was significantly increased only by the highest PET concentration in the promotion assay, which also showed dose-dependency, indicating that nano PET can act as a non-genotoxic tumour promotor. Together, these findings support the carcinogenic risk assessment of nanoplastics and raise concerns regarding whether real-life co-exposure of PET nanoplastics and other environmental pollutants may result in synergistic transformation capacities.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Aliro Villacorta
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | | | | | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
17
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
18
|
Zang H, Zhao C, Cai R, Wu H, Wei L, Zhou C, Chai J, Teng X, Liu T. Vital role of oxidative stress in tadpole liver damage caused by polystyrene nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116331. [PMID: 38640801 DOI: 10.1016/j.ecoenv.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Polystyrene nanoparticles are emerging as contaminants in freshwater environments, posing potential risks to amphibians exposed to extended periods of water contamination. Using tadpoles as a model, this study aimed to evaluate the toxicity of PS NPs. Pyrolysis-gas chromatography-tandem mass spectrometry (Py-GCMS) analysis revealed a concentration-dependent increase in polystyrene nanoparticles (PS NPs) levels in tadpoles with escalating exposure concentrations. Following exposure to 100 nm fluorescent microspheres, fluorescence was observed in the intestines and gills, peaking at 48 hours. Histopathological analysis identified degenerative necrosis and inflammation in the liver, along with atrophic necrosis of glomeruli and tubules in the kidneys. These results indicate a discernible impact of PS NPs on antioxidant levels, including reduced superoxide dismutase and catalase activities, elevated glutathione content, and increased malondialdehyde levels. Electron microscopy observations revealed the infiltration of PS NPs into Kupffer's cells and hepatocytes, leading to visible lesions such as nuclear condensation and mitochondrial disruption. The primary objective of this research was to elucidate the adverse effects of prolonged PS NPs exposure on amphibians.
Collapse
Affiliation(s)
- Hao Zang
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Cenxi Zhao
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Runqiu Cai
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Haiyan Wu
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Liutao Wei
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Chaoyu Zhou
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China
| | - Jie Chai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xuepeng Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
19
|
Zhao J, Adiele N, Gomes D, Malovichko M, Conklin DJ, Ekuban A, Luo J, Gripshover T, Watson WH, Banerjee M, Smith ML, Rouchka EC, Xu R, Zhang X, Gondim DD, Cave MC, O’Toole TE. Obesogenic polystyrene microplastic exposures disrupt the gut-liver-adipose axis. Toxicol Sci 2024; 198:210-220. [PMID: 38291899 PMCID: PMC10964747 DOI: 10.1093/toxsci/kfae013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.
Collapse
Affiliation(s)
- Jingjing Zhao
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
| | - Ngozi Adiele
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Daniel Gomes
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Marina Malovichko
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Abigail Ekuban
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Tyler Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Walter H Watson
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Mayukh Banerjee
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Melissa L Smith
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, USA
| | - Raobo Xu
- Department of Chemistry, School of Arts and Sciences, University of Louisville, Louisville, Kentucky 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, USA
| | - Xiang Zhang
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, USA
- Division of Analytic Chemistry, Department of Chemistry, School of Arts and Sciences, University of Louisville, Louisville, Kentucky 40292, USA
- The Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Dibson D Gondim
- Department of Pathology and Laboratory, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Matthew C Cave
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Timothy E O’Toole
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
20
|
Zhang L, Wan B, Zheng J, Chen L, Xuan Y, Zhang R, Chen Z, Hu C, Zhang Y, Yan C. Polystyrene nanoplastics inhibit beige fat function and exacerbate metabolic disorder in high-fat diet-fed mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170700. [PMID: 38331288 DOI: 10.1016/j.scitotenv.2024.170700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Global health concerns about micro- and nanoplastics are increasing. The newly discovered beige adipocytes play a vital role in energy homeostasis through their high thermogenic capacity upon activation. However, the effects of micro- and nanoplastics on beige adipocytes have not yet been studied. We investigated whether the effects of oral exposure to polystyrene nanoparticles (PS-NPs) on systemic metabolic performance can be induced by disrupting beige adipocyte function, and the potential mechanism. In the present study, C57BL/6J male mice were fed a high-fat diet (HFD) with or without PS-NPs exposure for 12 weeks to investigate the differences in metabolic performance. We also isolated stromal vascular fraction from C57BL/6J male mice to differentiate and prepare primary beige adipocyte cultures. Primary beige adipocytes were treated with PS-NPs on the sixth day of differentiation. The results showed that oral intake of PS-NPs exacerbated metabolic disorders of mice under HFD, including suppressed energy expenditure, increased fat mass and liver steatosis, decreased insulin sensitivity, disrupted glucose homeostasis, and decreased cold-tolerance capability compared with the control group. Intriguingly, we observed that, after a 12-week exposure, PS-NPs accumulated in the inguinal white adipose tissue (iWAT), a fat depot rich in beige adipocytes, further suppressing thermogenic gene programs, particularly the level of uncoupling protein 1 (UCP1), a master regulator in the browning process of beige adipocytes. These effects ultimately led to decreased energy expenditure and subsequent disorders of glucolipid metabolism. Mechanistically, we revealed that PS-NPs disrupt mitochondrial function and induce oxidative damage and inflammation in beige adipocytes to inhibit their function. These negative metabolic effects of PS-NPs were ameliorated by antioxidant supplementation. Our study is the first to demonstrate that PS-NPs exposure exacerbates metabolic disorder in HFD-fed mice by disrupting beige adipocyte function.
Collapse
Affiliation(s)
- Lina Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiangfei Zheng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
21
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
22
|
Ge Y, Yang S, Zhang T, Gong S, Wan X, Zhu Y, Fang Y, Hu C, Yang F, Yin L, Pu Y, Chen Z, Liang G. Ferroptosis participated in inhaled polystyrene nanoplastics-induced liver injury and fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170342. [PMID: 38278228 DOI: 10.1016/j.scitotenv.2024.170342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
The emerging contaminant nanoplastics (NPs) have received considerable attention. Due to their tiny size and unique colloidal properties, NPs could more easily enter the body and cross biological barriers with inhalation exposure. While NPs-induced hepatotoxicity has been reported, the hepatic impact of inhaled NPs was still unknown. To close this gap, a 40 nm polystyrene NPs (PS-NPs) inhalation exposure mice model was developed to explore the hepatotoxicity during acute (1 week), subacute (4 weeks), and subchronic period (12 weeks), with four exposure doses (0, 16, 40, and 100 μg/day). Results showed that inhaled PS-NPs caused a remarkable increase of ALT, AST, and ALP with a decrease of CHE, indicating liver dysfunction. Various histological abnormalities and significantly higher levels of inflammation in a dose- and time-dependent manner were observed. Moreover, after 4 weeks and 12 weeks of exposure, Masson staining and upregulated expression of TGF-β, α-SMA, and Col1a1 identified that inhaled PS-NPs exposure triggered the progression of liver fibrosis with the exposure time prolonged. From the mechanistic perspective, transcriptome analysis revealed that ferroptosis was involved in PS-NPs-induced liver hepatotoxicity, and key features of ferroptosis were detected, including persistent oxidative stress, iron overload, increased LPO, mitochondria damage, and the expression changes of GPX4, TFRC, and Ferritin. And in vitro and in vivo recovery tests showed that ferroptosis inhibitor Fer-1 treatment alleviated liver injury and fibrosis. The above results confirmed the critical role of ferroptosis in PS-NPs-induced hepatotoxicity. Furthermore, to better conclude our findings and understand the mechanistic causality within it, an adverse outcome pathway (AOP) framework was established. In total, this present study conducted the first experimental assessment of inhalation exposure to PS-NPs on the liver, identified that continuous inhaled PS-NPs could cause liver injury and fibrosis, and PS-NPs- ferroptosis provided a novel mechanistic explanation.
Collapse
Affiliation(s)
- Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Saisai Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yifei Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
23
|
Chiang CC, Yeh H, Shiu RF, Chin WC, Yen TH. Impact of microplastics and nanoplastics on liver health: Current understanding and future research directions. World J Gastroenterol 2024; 30:1011-1017. [PMID: 38577182 PMCID: PMC10989496 DOI: 10.3748/wjg.v30.i9.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ruei-Feng Shiu
- Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chun Chin
- Department of Materials Science and Engineering, University of California Merced, Merced, CA 95343, United States
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
24
|
Wei J, Liu J, Wang H, Wen K, Ni X, Lin Y, Huang J, You X, Lei Z, Li J, Shen H, Lin Y. Nanoplastic propels diet-induced NAFL to NASH via ER-mitochondrial tether-controlled redox switch. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133142. [PMID: 38061129 DOI: 10.1016/j.jhazmat.2023.133142] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is multifactorial that lifestyle, genetic, and environmental factors contribute to its onset and progression, thereby posing a challenge for therapeutic intervention. Nanoplastic (NP) is emerged as a novel environmental metabolism disruptor but the etiopathogenesis remains largely unknown. In this study, C57BL/6 J mice were fed with normal chow diet (NCD) and high-fat diet (HFD) containing 70 nm polystyrene microspheres (NP). We found that dietary-derived NP adsorbed proteins and agglomerated during the in vivo transportation, enabling diet-induced hepatic steatosis to NASH. Mechanistically, NP promoted liver steatosis by upregulating Fatp2. Furthermore, NP stabilized the Ip3r1, and facilitated ER-mitochondria contacts (MAMs) assembly in the hepatocytes, resulting in mitochondrial Ca2+ overload and redox imbalance. The redox-sensitive Nrf2 was decreased in the liver of NP-exposed mice, which positively regulated miR26a via direct binding to its promoter region [-970 bp to -847 bp and -318 bp to -176 bp]. NP decreased miR26a simultaneously upregulated 10 genes involved in MAMs formation, lipid uptake, inflammation, and fibrosis. Moreover, miR26a inhibition elevated MAMs-tether Vdac1, which promoted the nucleus translocation of NF-κB P65 and Keap1 and functionally inactivated Nrf2, leading to a vicious cycle. Hepatocyte-specific overexpressing miR26a effectively restored ER-mitochondria miscommunication and ameliorated NASH phenotype in NP-exposed and Keap1-overexpressed mice on HFD. The hepatic MAM-tethers/Nrf2/miR26a feedback loop is an essential metabolic switch from simple steatosis to NASH and a promising therapeutic target for oxidative stress-associated liver damage and NASH.
Collapse
Affiliation(s)
- Jie Wei
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jintao Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Huan Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Kai Wen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Xiuye Ni
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Yilong Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingru Huang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiang You
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhao Lei
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Juan Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| | - Yi Lin
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| |
Collapse
|
25
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Li Z, Zheng Y, Maimaiti Z, Fu J, Yang F, Li ZY, Shi Y, Hao LB, Chen JY, Xu C. Identification and analysis of microplastics in human lower limb joints. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132640. [PMID: 37813027 DOI: 10.1016/j.jhazmat.2023.132640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Microplastics (MPs) have been detected in various human tissues, including the liver, placenta, and blood. However, studies about MPs in the human locomotor system are limited. This study evaluated the presence of MPs in the synovium of 45 patients undergoing hip or knee arthroplasty using micro-Fourier transform infrared spectroscopy, scanning electron microscopy, and Raman microscopy and investigated their association with clinical indicators and local cellular responses. A total of 343 MPs of nine common types were identified, with a mean abundance of 5.24 ± 2.07 particles/g and ranging from 1.16 to 10.77 particles/g. Although there was no clear correlation between MP abundance and demographics, MP abundance was higher in hip samples than in knee samples. In addition, a potential association was observed between MP abundance and specific clinical diagnoses. Transcriptomic analysis revealed that a three-fold increase in MP abundance corresponded to enhanced local cellular stress responses, particularly heat shock protein reactions. Our findings demonstrate the presence of MPs in human joints and suggest that further studies are needed to explore the intricate associations between MPs and anatomical location, clinical diagnosis, and local cellular responses.
Collapse
Affiliation(s)
- Zhuo Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China; Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yifan Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zulipikaer Maimaiti
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, People's Republic of China; Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, People's Republic of China
| | - Jun Fu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, People's Republic of China
| | - Fan Yang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China; Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Zhi-Yuan Li
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yanli Shi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Li-Bo Hao
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, People's Republic of China
| | - Ji-Ying Chen
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China; Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, People's Republic of China.
| | - Chi Xu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, People's Republic of China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, People's Republic of China.
| |
Collapse
|
27
|
Rao G, Qiao B, Zhong G, Li T, Su Q, Wu S, Tang Z, Hu L. Arsenic and polystyrene-nano plastics co-exposure induced testicular toxicity: Triggers oxidative stress and promotes apoptosis and inflammation in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:264-276. [PMID: 37705229 DOI: 10.1002/tox.23970] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Co-existing of polystyrene-nano plastics (PSNPs) and arsenic (As) in the environment caused a horrendous risk to human health. However, the potential mechanism of PSNPs and As combination induced testicular toxicity in mammals has not been elucidated. Therefore, we first explore the testicular toxicity and the potential mechanism in male Kunming mice exposed to As or/and PSNPs. Results revealed that compared to the As or PSNPs group, the combined group showed more significant testicular toxicity. Specifically, As and PSNPs combination induced irregular spermatozoa array and blood-testis barrier disruption. Simultaneously, As and PSNPs co-exposure also exacerbated oxidative stress, including increasing the MDA content, and down-regulating expression of Nrf-2, HO-1, SOD-1, and Trx. PSNPs and As combination also triggered testicular apoptosis, containing changes in apoptotic factors (P53, Bax, Bcl-2, Cytc, Caspase-8, Caspase-9, and Caspase-3). Furthermore, co-exposed to As and PSNPs aggravated inflammatory damage characterized by targeted phosphorylation of NF-κB and degradation of I-κB. In summary, our results strongly confirmed As + PSNPs co-exposure induced the synergistic toxicity of testis through excessive oxidative stress, apoptosis, and inflammation, which could offer a new sight into the mechanism of environmental pollutants co-exposure induced male reproductive toxicity.
Collapse
Affiliation(s)
- Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Ge Y, Yang S, Zhang T, Wan X, Zhu Y, Yang F, Yin L, Pu Y, Liang G. The hepatotoxicity assessment of micro/nanoplastics: A preliminary study to apply the adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165659. [PMID: 37517720 DOI: 10.1016/j.scitotenv.2023.165659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plastic pollution has become a significant global problem over the years, leading to the continuous decomposition and accumulation of micro/nanoplastics (MNPLs) in the environment. As a result, human exposure to these MNPLs is inevitable. The liver, in particular, is highly susceptible to potential MNPL toxicity. In this study, we systematically reviewed the current literature on MNPLs-induced hepatotoxicity and collected data on toxic events occurring at different biological levels. Then, to better understand the cause-mechanism causality, we developed an Adverse Outcome Pathway (AOP) framework for MNPLs-induced hepatotoxicity. The AOP framework provided insights into the mechanism of MNPL-induced hepatotoxicity and highlighted potential health risks such as liver dysfunction and inflammation, metabolism disorders and liver fibrosis. Moreover, we discussed the potential application of emerging toxicological models in the hepatotoxicity study. Liver organoids and liver-on-chips, which can simulate the structure and function of the liver in vitro, offer a promising alternative platform for toxicity testing and risk assessment. We proposed combining the AOP framework with these emerging toxicological models to improve our understanding of the hepatotoxic effects of MNPLs. Overall, this study performed a preliminary exploration of novel toxicological methodologies to assess the hepatotoxicity of MNPLs, providing a deeper understanding of environmental toxicology.
Collapse
Affiliation(s)
- Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
29
|
Zhang JB, Li MT, Lin SZ, Cheng YQ, Fan JG, Chen YW. Therapeutic Effect of Prolyl Endopeptidase Inhibitor in High-fat Diet-induced Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1035-1049. [PMID: 37577240 PMCID: PMC10412699 DOI: 10.14218/jcth.2022.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND AND AIMS Prolyl endopeptidase (PREP) is a serine endopeptidase that participates in many pathological processes including inflammation, oxidative stress, and autophagy. Our previous studies found that PREP knockout exhibited multiple benefits in high-fat diet (HFD) or methionine choline-deficient diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD). However, cumulative studies have suggested that PREP performs complex functions during disease development. Therefore, further understanding the role of PREP in MAFLD development is the foundation of PREP intervention. METHODS In this study, an HFD-induced MAFLD model at different time points (4, 8, 12, and 16 weeks) was used to explore dynamic changes in the PREP proline-glycine-proline (PGP)/N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) system. To explore its potential value in MAFLD treatment, saline, or the PREP inhibitor, KYP-2047, was administered to HFD-induced MAFLD mice from the 10th to 16th weeks. RESULTS PREP activity and expression were increased in HFD-mice compared with control mice from the 12th week onwards, and increased PREP mainly resulted in the activation of the matrix metalloproteinase 8/9 (MMP8/9)-PREP-PGP axis rather than the thymosin β4-meprin α/PREP-AcSDKP axis. In addition, KYP-2047 reduced HFD-induced liver injury and oxidative stress, improved lipid metabolism through the suppression of lipogenic genes and the induction of β-oxidation-related genes, and attenuated hepatic inflammation by decreasing MMP8/9 and PGP. Moreover, KYP2047 restored HFD-induced impaired autophagy and this was verified in HepG2 cells. CONCLUSIONS These findings suggest that increased PREP activity/expression during MAFLD development might be a key factor in the transition from simple steatosis to steatohepatitis, and KYP-2047 might possess therapeutic potential for MAFLD treatment.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Qing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Djouina M, Waxin C, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Oral exposure to polyethylene microplastics induces inflammatory and metabolic changes and promotes fibrosis in mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115417. [PMID: 37651791 DOI: 10.1016/j.ecoenv.2023.115417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Accumulating evidence shows widespread contamination of water sources and food with microplastics. Although the liver is one of the main sites of bioaccumulation within the human body, it is still unclear whether microplastics produce damaging effects. In particular, the hepatic consequences of ingesting polyethylene (PE) microplastics in mammals are unknown. In this study, female mice were fed with food contaminated with 36 and 116 µm diameter PE microbeads at a dosage of 100 µg/g of food for 6 and 9 weeks. Mice were exposed to each type of microbead, or co-exposed to the 2 types of microbeads. Mouse liver showed altered levels of genes involved in uptake, synthesis, and β-oxidation of fatty acids. Ingestion of PE microbeads disturbed the detoxification response, promoted oxidative imbalance, increased inflammatory foci and cytokine expression, and enhanced proliferation in liver. Since relative expression of the hepatic stellate cell marker Pdgfa and collagen deposition were increased following PE exposure, we assessed the effect of PE ingestion in a mouse model of CCl4-induced fibrosis and showed that PE dietary exposure exacerbated liver fibrogenesis. These findings provide the first demonstration of the adverse hepatic effects of PE ingestion in mammals and highlight the need for further health risk assessment in humans.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
31
|
Huang J, Sun X, Wang Y, Su J, Li G, Wang X, Yang Y, Zhang Y, Li B, Zhang G, Li J, Du J, Nanjundappa RH, Umeshappa CS, Shao K. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115447. [PMID: 37690176 DOI: 10.1016/j.ecoenv.2023.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm). We found that ultra-small NPs (20 nm) induced the highest cytotoxicity in mouse and human liver cell lines, causing oxidative stress and mitochondrial membrane potential loss on AML-12 cells. Unexpectedly in vivo, after long-term oral exposure to PS-NPs (75 mg/kg), medium NPs (200 nm) and large NPs (500 nm) induced significant hepatotoxicity, evidenced by increased oxidative stress, liver dysfunction, and lipid metabolism disorders. Most importantly, medium or large NPs generated local immunotoxic effects via recruiting and activating more numbers of neutrophils and monocytes in the liver or intestine, which potentially resulted in increased proinflammatory cytokine secretion and the tissue damage. The discrepancy in in vitro-in vivo toxic results might be attributed to the different properties of biodistribution and tissue accumulation of different sized NPs in vivo. Our study provides new insights regarding the hepatotoxicity and immunotoxicity of NPs on human and livestock health, warranting us to take immense measures to prevent these NPs-associated health damage.
Collapse
Affiliation(s)
- Jiahao Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbo Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuning Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bangjian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing Du
- Liaoning Ocean and Fisheries Science Research Institute, 50# Heishijiao Road, Shahekou District, Dalian 116023, China
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
32
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Ding R, Ma Y, Li T, Sun M, Sun Z, Duan J. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163144. [PMID: 37003332 DOI: 10.1016/j.scitotenv.2023.163144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
With the massive manufacture and use of plastics, plastic pollution-related environmental impacts have raised great concern in recent years. As byproducts of plastic fragmentation and degradation, microplastics (MPs) and nanoplastics (NPs) have been identified as novel pollutants that posed a threat to the ecosystem and humans. Since MPs/NPs could be transported via the food chain and retained in the water, the digestive system should be one of the major targets of MPs/NPs-related toxicity. Although considerable evidence has supported the digestive toxicity of MPs/NPs, the proposed mechanisms remained ambiguous due to the variety of study types, models, and endpoints. This review provided a mechanism-based perspective on MPs/NPs-induced digestive effects by adopting the adverse outcome pathway framework as a promising tool. The overproduction of reactive oxygen species was identified as the molecular initiating event in MPs/NPs-mediated injury to the digestive system. A series of detrimental effects including oxidative stress, apoptosis, inflammation, dysbiosis, and metabolic disorders were summarized as key events. Finally, the occurrence of these effects eventually led to an adverse outcome, suggesting a possible increase in the incidence of digestive morbidity and mortality.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
34
|
Hu Z, Zhao Y, Jiang J, Li W, Su G, Li L, Ran J. Exosome-derived miR-142-5p from liver stem cells improves the progression of liver fibrosis by regulating macrophage polarization through CTSB. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37209404 DOI: 10.1002/tox.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND This study aims to explore the effect of liver stem cells (LSCs)-derived exosomes and the miR-142a-5p carried by them on the process of fibrosis by regulating macrophages polarization. METHODS In this study, CCL4 was used to establish liver fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB) and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect liver fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and liver fibrosis model were constructed to verify the expression of miR-142a-5p and ctsb. RESULTS Immunofluorescence of LSCs markers CK-18, epithelial cell adhesion molecule (EpCam), and AFP showed that these markers were up-regulated in LSCs. In addition, we evaluated the ability of LSCs to excrete EVs by labeling LSCs-EVs with PKH67. We found that CCL4 and EVs were simultaneously treated at 50 and 100 μg doses, and both doses of EVs could reduce the degree of liver fibrosis in mice. We tested markers of M1 or M2 macrophage polarization and found that EVs reduced M1 marker expression and promoted M2 marker expression. Further, ELISA was used to detect the secreted factors related to M1 and M2 in tissue lysates, which also verified the above views. Further analysis showed that the expression of miR-142a-5p increased significantly with the increase of EVs treatment concentration and time. Further, in vitro and in vivo LSCs-EVs regulate macrophage polarization through miR-142a-5p/ctsb pathway and affect the process of liver fibrosis. CONCLUSION Our data suggest that EVs-derived miR-142-5p from LSCs improves the progression of liver fibrosis by regulating macrophage polarization through ctsb.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingpeng Zhao
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Jiang
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wang Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gang Su
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming, China
| |
Collapse
|
35
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
36
|
Hu Z, Chen G, Yan C, Li Z, Wu T, Li L, Zhang S. Autophagy affects hepatic fibrosis progression by regulating macrophage polarization and exosome secretion. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186334 DOI: 10.1002/tox.23795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND In this study, the role of autophagy in hepatic fibrosis and its effects on macrophage polarization and exosomes (EVs) were verified by establishing hepatic fibrosis model and co-culture model, providing evidence for treatment. METHODS In this study, CCL4 was used to establish hepatic fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB), and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect hepatic fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and hepatic fibrosis model were constructed to verify the expression of miR-423-5p. RESULTS Hepatic fibrosis model showed that CCL4 promoted early autophagy increase but inhibited autophagy flux in liver. mRFP-GFP-LC3 detection showed that both LPS group and Baf group inhibited autophagy flux. This inhibitory effect was reversed by Rap combination therapy. The M1/M2 markers of macrophage polarization were further tested, and it was found that LPS and Baf could promote M1 polarization and inhibit M2 polarization. Rap processing reverses this phenomenon. These data suggest that autophagy can regulate the polarization process of liver macrophages. WB and NTA showed that LPS induced EVs generation. In addition, LPS-induced EVs could promote HSC proliferation, cell cycle, migration, and the expression of fibrosis markers. Macrophage-EVs could affect the fibrosis process of stellate cells through the secretion of miR-423a-5p expression. The hepatic fibrosis model was further established to verify the regulation of autophagy and EVs on the fibrosis process. CONCLUSION This study was showed that autophagy could regulate fibrosis by promoting HSC activation by regulating macrophage polarization and exosome secretion.
Collapse
Affiliation(s)
- Zongqiang Hu
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Gang Chen
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuntao Yan
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiqiang Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Wu
- Department of Infectious Diseases, First People's Hospital of Kunming City, Kunming, China
- Department of Infectious Diseases, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shengning Zhang
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
37
|
Missawi O, Jeddou IB, Venditti M, Zitouni N, Zaouali MA, Abdennebi HB, Messaoudi I, Reiter RJ, Minucci S, Banni M. Environmental microplastic accumulation exacerbates liver ischemia-reperfusion injury in rat: Protective effects of melatonin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160155. [PMID: 36436653 DOI: 10.1016/j.scitotenv.2022.160155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Ischemia-reperfusion (IR) injury is an inevitable complication of liver transplantation and partial hepatectomy. Although the hazards of environmental microplastics (EMPs) have been well explored, data underlying their impact on IR-induced hepatotoxicity and how to alleviate these damages remain largely undefined. In this study, the involvement of melatonin (MT) in modulating EMPs toxicity in the liver undergoing ischemia-reperfusion injury was investigated. Male Wistar rats were exposed to MPs for 7 days and then subjected to 1 h of partial warm ischemia (70 %) followed by 24 h of reperfusion. We analyzed some parameters as the oxidative stress, the stability of cytoskeleton as well as inflammation, and autophagy. Our data suggested that EMPs elicited liver injury in ischemic animals. Data revealed several histological alterations caused by EMP and IRI, including cellular disorientation, cell necrosis, and microvacuolar steatosis, as well as inflammatory cell infiltration. EMPs increased blood transaminase (AST and ALT) and oxidative stress levels in the ischemic liver. In addition, RT-qPCR, immunofluorescence, and western blot analyses highlighted an increased expression of α-tubulin, IL-18, NFkB, and LC3. However, the ability of MT to reduce MPs and IRI toxicity was consistent with a significant decrease in the evaluated markers. The combined data not only document that melatonin is an effective agent to protect against hepatic IRI but also reduces cellular dysfunction caused by EMPs.
Collapse
Affiliation(s)
- Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Mohamed Amin Zaouali
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Imed Messaoudi
- LR11ES41, Higher Institute of Biotechnology, Monastir University, 5000 Monastir, Tunisia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.
| |
Collapse
|
38
|
Domenech J, Annangi B, Marcos R, Hernández A, Catalán J. Insights into the potential carcinogenicity of micro- and nano-plastics. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108453. [PMID: 36739075 DOI: 10.1016/j.mrrev.2023.108453] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
There is a growing concern regarding the potential health effects that continuous exposure to environmental micro- and nano-plastics (MNPLs) may cause on humans. Due to their persistent nature, MNPLs may accumulate in different organs and tissues and may induce in the long term the development of cancer. The present study aimed to review the existing literature on the carcinogenic potential of MNPLs. As studies directly assessing carcinogenicity were expected to be scarce, studies dealing with indirect outcomes associated with the carcinogenic process were considered in the literature search. Of the 126 studies screened, 19 satisfied the inclusion criteria. Besides, 7 additional cross-referenced articles, identified through a careful reading of the previously selected papers, also met the inclusion criteria and, consequently, were included in the review. Most of the selected studies were performed using in vitro models whereas about 40% of the studies were done in rodents, although none of them included a 2-year carcinogenicity assay. Most of the reviewed studies pointed out the potential of MNPLs to induce inflammation and genotoxicity, the latter being recognized as a strong predictor of carcinogenicity. These, along with other important findings such as the MNPLs' ability to accumulate into cells and tissues, or their capacity to induce fibrosis, may suggest an association between MNPLs exposures and the carcinogenic potential. Nevertheless, the limited number of available studies precludes reaching clear conclusions. Therefore, this review also provides several recommendations to cover the current knowledge gaps and address the future evaluation of the MNPLs' carcinogenic risk.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
39
|
Jeon MS, Kim JW, Han YB, Jeong MH, Kim HR, Sik Kim H, Park YJ, Chung KH. Polystyrene microplastic particles induce autophagic cell death in BEAS-2B human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:359-367. [PMID: 36485005 DOI: 10.1002/tox.23705] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
The detection of high levels of microplastics in indoor and outdoor air has increased concerns regarding its toxic effects on the respiratory system. They are not easily degradable and can be deposited deep in the lungs. Although several studies have reported inhalation toxicities of microplastics, they are still controversial due to a lack of evidence. Herein, we evaluated the inhalation toxicities of three differently charged polystyrene microplastics (PS-MPs), the most abundant microplastics in the air. Cytotoxicity and ROS generation were evaluated using WST-1 and DCF-DA assays, respectively. To evaluate the toxic effects on the lung, inflammatory responses were analyzed after repeated exposure to the PS-MPs through intratracheal instillation. To explore the mechanism of toxicity, autophagy and ER stress-associated proteins were analyzed. Only the positively charged PS-MPs (NH2 -PS-MPs) showed cytotoxicity and increased ROS generation in BEAS-2B cells. Similarly, only NH2 -PS-MPs significantly increased the expression and secretion of the pro-inflammatory cytokine IL-β in the animal experiments. The expression of ER stress proteins indicated that NH2 -PS-MPs increased ER stress via PERK-EIF2α and ATF4-CHOP pathways. Moreover, accumulation of NH2 -PS-MPs in lysosomes and deformity of the nucleus were observed in BEAS-2B cells with autophagy induction. Taken together, our results demonstrated that NH2 -PS-MPs induced autophagic cell death in bronchial epithelial cells, leading to inflammatory responses in the lungs. These results suggest that repeated inhalation of microplastics can result in inflammatory responses in the lung through cellular damage of lung epithelial cells, and that inhalation microplastics should be monitored to reduce inhalation health risks.
Collapse
Affiliation(s)
- Mi Seon Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
40
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
41
|
Tan J, Wang YF, Dai ZH, Yin HZ, Mu CY, Wang SJ, Yang F. Roles of RNA m6A modification in nonalcoholic fatty liver disease. Hepatol Commun 2023; 7:e0046. [PMID: 38345896 PMCID: PMC9988276 DOI: 10.1097/hc9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2024] Open
Abstract
NAFLD is a series of liver disorders, and it has become the most prevalent hepatic disease to date. However, there are no approved and effective pharmaceuticals for NAFLD owing to a poor understanding of its pathological mechanisms. While emerging studies have demonstrated that m6A modification is highly associated with NAFLD. In this review, we summarize the general profile of NAFLD and m6A modification, and the role of m6A regulators including erasers, writers, and readers in NAFLD. Finally, we also highlight the clinical significance of m6A in NAFLD.
Collapse
Affiliation(s)
- Jian Tan
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yue-fan Wang
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Zhi-hui Dai
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Hao-zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Chen-yang Mu
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Si-jie Wang
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| |
Collapse
|
42
|
Guimarães ATB, Freitas ÍN, Mubarak NM, Rahman MM, Rodrigues FP, Rodrigues ASDL, Barceló D, Islam ARMT, Malafaia G. Exposure to polystyrene nanoplastics induces an anxiolytic-like effect, changes in antipredator defensive response, and DNA damage in Swiss mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130004. [PMID: 36152541 DOI: 10.1016/j.jhazmat.2022.130004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Although the in vivo toxicity of nanoplastics (NPs) has already been reported in different model systems, their effects on mammalian behavior are poorly understood. Thus, we aimed to evaluate whether exposure to polystyrene (PS) NPs (diameter: 23.03 ± 0.266 nm) alters the behavior (locomotor, anxiety-like and antipredator) of male Swiss mice, induces brain antioxidant activity, and erythrocyte DNA damage. For this, the animals were exposed to NPs for 20 days at different doses (6.5 ng/kg and 6500 ng/kg). Initially, we did not observe any effect of pollutants on the locomotor activity of the animals (inferred via open field test and Basso mouse scale for locomotion). However, we noticed an anxiolytic-like behavior (in the open field test) and alterations in the antipredatory defensive response of mice exposed to PS NPs, when confronted with their predator potential (snake, Pantherophis guttatus). Furthermore, such changes were associated with suppressing brain antioxidant activity, inferred by lower DPPH radical scavenging activity, reduced total glutathione content, as well as the translocation and accumulation of NPs in the brain of the animals. In addition, we noted that the treatments induced DNA damage, evaluated via a single-cell gel electrophoresis assay (comet assay) applied to circulating erythrocytes of the animals. However, we did not observe a dose-response effect for all biomarkers evaluated and the estimated accumulation of PS NPs in the brain. The values of the integrated biomarker response index and the results of the principal component analysis (PCA) and the hierarchical clustering analysis confirmed the similarity between the responses of animals exposed to different doses of PS NPs. Therefore, our study sheds light on how PS NPs can impact mammals and reinforce the ecotoxicological risk associated with the dispersion of these pollutants in natural environments and their uptake by mammals.
Collapse
Affiliation(s)
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | | | | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034, Barcelona, Spain
| | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
43
|
Dong X, Liu X, Hou Q, Wang Z. From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158686. [PMID: 36099943 DOI: 10.1016/j.scitotenv.2022.158686] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastic (NPs) pollution is a global concern due to the massive use of plastic products. Although there have been many studies on the treatments of animals with MPs/NPs, there are few systematic summaries of MPs/NPs translocation and hazards in animals. This review comprehensively summarizes the pathways by which animals are exposed to MPs/NPs in the environment, in particular, to summarize in detail their translocation and hazards in vivo. Studies have shown that MPs/NPs enter the animals' body through water, food, breath and even skin, enter the blood circulation through the lungs and digestive tract, and eventually accumulate in various tissues. After a summary of the studies, we found a high correlation between the tissue accumulation of MPs/NPs and their particle size, with 4-20 μm MPs appearing to be more prone to accumulate in tissues. These MPs/NPs accumulated in animal tissues may be transferred to humans through the food chain. Thus, we summarized the studies on the accumulation of MPs/NPs in livestock and poultry products, showing that MPs/NPs in livestock and poultry products gradually increased with the complexity of processing and packaging processes. There are few reports related to direct contamination of livestock products by MPs/NPs, we hope that this review will bring together the growing body of evidence that MPs/NPs can directly harm human health through the food chain.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, PR China
| | - Qiuling Hou
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
44
|
Prado Y, Aravena C, Aravena D, Eltit F, Gatica S, Riedel CA, Simon F. Small Plastics, Big Inflammatory Problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:101-127. [PMID: 37093424 DOI: 10.1007/978-3-031-26163-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The immune system is the first defense against potentially dangerous chemicals, infections, and damaged cells. Interactions between immune cells and inflammatory mediators increase the coordinated activation of cross-talking signaling pathways, resulting in an acute response necessary to restore homeostasis but potentially detrimental if uncontrolled and prolonged. Plastic production exceeds million tons per year, becoming a global concern due to the stability of its constituent polymers, low density, which allows them to spread easily, and small size, which prevents proper removal by wastewater treatment plants, promoting environmental accumulation and increasing health threats. The interaction between plastic particles and the immune system is still being investigated, owing to growing evidence of increased risk not only for dietary intake due to its presence in food packaging, drinking water, and even fruits and vegetables, but also to emerging evidence of new intake pathways such as respiratory and cutaneous. We discuss in depth the impact of small plastic particles on the immune response across the body, with a focus on the nervous system and peripheral organs and tissues such as the gastrointestinal, respiratory, lymphatic, cardiovascular, and reproductive systems, as well as the involvement in increased susceptibility to worsening concomitant diseases and future perspectives in the exploration of potential therapeutics.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
45
|
Lu H, Yin K, Su H, Wang D, Zhang Y, Hou L, Li JB, Wang Y, Xing M. Polystyrene microplastics induce autophagy and apoptosis in birds lungs via PTEN/PI3K/AKT/mTOR. ENVIRONMENTAL TOXICOLOGY 2023; 38:78-89. [PMID: 36205374 DOI: 10.1002/tox.23663] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) seriously pollute and potentially threaten human health. Birds are sentinels of environmental pollutants, which respond quickly to contamination events and reveal current environmental exposure. Therefore, birds are good bioindicators for monitoring environmental pollutants. However, the mechanism of lung injury in birds and the role of the PTEN/PI3K/AKT axis are unknown. In this study, broilers treated with different polystyrene microplastics (PS-MPs) (0, 1, 10, and 100 mg/L) were exposed to drinking water for 6 weeks to analyze the effect of PS-MPs on lung injury of broilers. The results showed that with the increase of PS-MPs concentration, malonaldehyde (MDA) content increased, and catalase (CAT) and glutathione (GSH) activity decreased, further leading to oxidative stress. PS-MPs caused the PI3K/Akt/mTOR pathway to be inhibited by phosphorylation, and autophagy accelerated formation (LC3) and degradation (p62), causing autophagy. In PS-MPs exposed lung tissues, the expression of Bax/Bcl-2 and Caspase family increased, and MAPK signaling pathways (p38, ERK, and JNK) showed an increase in phosphorylation level, thus leading to cell apoptosis. Our research showed that PS-MPs could activate the antioxidant system. The antioxidant system unbalance-regulated Caspase family, and PTEN/PI3K/AKT pathways initiated apoptosis and autophagy, which in turn led to lung tissue damage in chickens. These results are of great significance to the toxicological study of PS-MPs and the protection of the ecosystem.
Collapse
Affiliation(s)
- Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Jun Bo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
46
|
Auguet T, Bertran L, Barrientos-Riosalido A, Fabregat B, Villar B, Aguilar C, Sabench F. Are Ingested or Inhaled Microplastics Involved in Nonalcoholic Fatty Liver Disease? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013495. [PMID: 36294076 PMCID: PMC9602632 DOI: 10.3390/ijerph192013495] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 05/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the predominant cause of chronic liver injury; however, the mechanisms underlying its progression have not been fully elucidated. Pathophysiological studies have stated that NAFLD is significantly influenced by dietary and environmental factors that could participate in the development of NAFLD through different mechanisms. Currently, "plastic pollution" is one of the most challenging environmental problems worldwide since several plastics have potential toxic or endocrine disputing properties. Specifically, the intake of microplastics (MPs) and nanoplastics (NPs) in water or diet and/or the inhalation from suspended particles is well established, and these particles have been found in human samples. Laboratory animals exposed to MPs develop inflammation, immunological responses, endocrine disruptions, and alterations in lipid and energy metabolism, among other disorders. MPs additives also demonstrated adverse reactions. There is evidence that MPs and their additives are potential "obesogens" and could participate in NAFLD pathogenesis by modifying gut microbiota composition or even worsen liver fibrosis. Although human exposure to MPs seems clear, their relationship with NAFLD requires further study, since its prevention could be a possible personalized therapeutic strategy. Adequate mitigation strategies worldwide, reducing environmental pollution and human exposure levels of MPs, could reduce the risk of NAFLD.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Blanca Fabregat
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Beatriz Villar
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| |
Collapse
|
47
|
Shiu HT, Pan X, Liu Q, Long K, Cheng KKY, Ko BCB, Fang JKH, Zhu Y. Dietary exposure to polystyrene nanoplastics impairs fasting-induced lipolysis in adipose tissue from high-fat diet fed mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129698. [PMID: 35952428 DOI: 10.1016/j.jhazmat.2022.129698] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The health concerns of microplastics (MPs) and nanoplastics (NPs) surge, but the key indicators to evaluate the adverse risks of MPs/NPs are elusive. Recently, MPs/Ps were found to disturb glucose and lipid metabolism in rodents, suggesting that MPs/NPs may play a role in obesity progression. In this study, we firstly demonstrated that the distribution of fluorescent polystyrene nanoplastics (nPS, 60 nm) white adipose tissue (WAT) of mice. Furthermore, nPS could traffic across adipocytes in vitro and reduced lipolysis under β-adrenergic stimulation in adipocytes in vitro and ex vivo. Consistently, chronic oral exposure to nPS at the dietary exposure relevant concentrations (3 and 223 μg/kg body weight) impaired fasting-induced lipid mobilization in obese mice and subsequently contributed to larger adipocyte size in the subcutaneous WAT. In addition, the chronic exposure of nPS induced macrophage infiltration in the small intestine and increased lipid accumulation in the liver, accelerating the disruption of systemic metabolism. Collectively, our findings highlight the potential obesogenic role of nPS via diminishing lipid mobilization in WAT of obese mice and suggest that lipolysis relevant parameters may be used for evaluating the adverse effect of MPs/NPs in clinics.
Collapse
Affiliation(s)
- Ho Ting Shiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Regions
| | - Xiaohan Pan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Qing Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - KeKao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Kenneth King Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Ben Chi-Bun Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Yuyan Zhu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions.
| |
Collapse
|
48
|
Yin J, Ju Y, Qian H, Wang J, Miao X, Zhu Y, Zhou L, Ye L. Nanoplastics and Microplastics May Be Damaging Our Livers. TOXICS 2022; 10:toxics10100586. [PMID: 36287866 PMCID: PMC9610555 DOI: 10.3390/toxics10100586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/01/2023]
Abstract
Plastics in the environment can be degraded and even broken into pieces under the action of natural factors, and the degraded products with a particle size of less than 5 mm are called microplastics (MPs). MPs exist in a variety of environmental media that come into contact with the human body. It can enter the body through environmental media and food chains. At present, there are many studies investigating the damage of MPs to marine organisms and mammals. The liver is the largest metabolizing organ and plays an important role in the metabolism of MPs in the body. However, there is no available systematic review on the toxic effects of MPs on the liver. This paper summarizes the adverse effects and mechanisms of MPs on the liver, by searching the literature and highlighting the studies that have been published to date, and provides a scenario for the liver toxicity caused by MPs.
Collapse
Affiliation(s)
- Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ye Ju
- School of Public Health, Jilin University, Changchun 130021, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
49
|
Tang X, Fan X, Xu T, He Y, Chi Q, Li Z, Li S. Polystyrene nanoplastics exacerbated lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. ENVIRONMENTAL TOXICOLOGY 2022; 37:2552-2565. [PMID: 35833596 DOI: 10.1002/tox.23618] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Plastics are novel environmental pollutants with potential threats to the ecosystem. At least 5.25 trillion plastic particles in the environment, of which nanoplastics are <100 nm in diameter. Polystyrene nanoplastics (PS-NPs) exposure damaged the spleen's immune function. Lipopolysaccharide (LPS) induced other toxicants to damage cells and organs, triggering inflammation. However, the mechanism of PS-NPs aggravated LPS-induced spleen injury remains unclear. In this study, the PS-NPs or/and LPS mice exposure model was replicated by intraperitoneal injection of PS-NPs or/and LPS, and PS-NPs or/and LPS were exposed to RAW264.7 cells. The histopathological and ultrastructural changes of the mice spleen were observed by H&E staining and transmission electron microscope. Western Blot, qRT-PCR, and fluorescent probes staining were used to detect reactive oxygen species (ROS), oxidative stress indicators, inflammatory factors, and necroptosis-related indicators in mice spleen and RAW264.7 cells. The results showed that PS-NPs or LPS induced oxidative stress, activated the MAPK pathway, and eventually caused necroptosis and inflammation in mice spleen and RAW264.7 cells. Compared with the single treatment group, the changes in PS-NPs + LPS group were more obvious. Furthermore, ROS inhibitor N-Acetyl-L-cysteine (NAC) significantly inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway caused by co-treatment of PS-NPs and LPS, reducing necroptosis and inflammation. The results demonstrated that PS-NPs promoted LPS-induced spleen necroptosis and inflammation in mice through the ROS/MAPK pathway. This study increases the data on the damage of PS-NPs to the organism and expands the research ideas and clues.
Collapse
Affiliation(s)
- Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
50
|
Basini G, Bussolati S, Andriani L, Grolli S, Bertini S, Iemmi T, Menozzi A, Quintavalla F, Ramoni R, Serventi P, Grasselli F. The effects of nanoplastics on adipose stromal cells from swine tissues. Domest Anim Endocrinol 2022; 81:106747. [PMID: 35728298 DOI: 10.1016/j.domaniend.2022.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Plastic is one of the main sources of marine and terrestrial pollution. This material can fragment into micro- (<-5 mm) and nanoplastics (NPs) (<100 nm) following degradation. Animals are exposed to these particles by ingesting contaminated food, respiration or filtration, and transdermally. In organisms, NPs can cross biological membranes, and cause oxidative stress, cell damage, apoptosis, and endocrine interference. We previously demonstrated that polystyrene - NPs interfered with ovarian cell functions. Since reproduction involves a high energy expenditure and a crucial role is played by adipose tissue, the aim of the present study was to evaluate the effects of NPs on primary adipose stromal cells (ASCs) isolated from swine adipose tissues. In particular, the effects on cell viability, proliferation, metabolic activity, inflammatory process mediators and oxidative stress markers were assessed. The obtained results did not reveal a significant variation in cell proliferation, metabolic activity was increased (P < 0.01) but only at the lowest concentration, while viability showed a significant decrease after prolonged exposure to NPs (P < 0.01). TNF-α was increased (P < 0.05), while PAI-1 was inhibited (P < 0.001). Redox status was significantly modified; in particular, the production of O2-, H2O2 and NO was stimulated (P < 0.05), the non-enzymatic antioxidant power was reduced (P < 0.05) while catalase activity was significantly (P < 0.01) increased.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - P Serventi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|