1
|
Chen L, Xu H, Liu R, Yao Z, Xie Q, Zhang X. Circular RNA Vav3 mediated ALV-J inhibition of autophagy by modulating the gga-miR-375/CIP2A axis and activating AKT. Poult Sci 2025; 104:104923. [PMID: 39987600 PMCID: PMC11904538 DOI: 10.1016/j.psj.2025.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive neoplastic virus, the growth retardation and growth performance of chickens after infection. Circular RNAs (circRNAs) play a crucial role in various types of cancer. In a previous study, we showed that circ-Vav3 was significantly elevated in the tumor livers of avian leukosis-infected chickens. Autophagy is an essential cellular process, and circRNAs have been confirmed to be key players in autophagy regulation. In this study, we demonstrated that overexpression of circ-Vav3 inhibited autophagy. Specifically, circ-Vav3 functions as a sponge for gga-miR-375, resulting in increased expression of CIP2A, which is a target gene of gga-miR-375. CIP2A, in turn, hinders the fusion of autophagosomes with lysosomes, leading to incomplete autophagic flux, consequently, the inhibition of autophagy. Further study confirmed that overexpression of gga-miR-375 inhibits CIP2A expression and promotes autophagy by downregulating p-AKT. Additionally, we treated cells with rapamycin to induce autophagy and then cotransfected them with circ-Vav3 and gga-miR-375. The results demonstrated that cotransfection of circ-Vav3 and gga-miR-375 inhibited cellular autophagy. Moreover, cells cotransfected with circ-Vav3 and gga-miR-375 exhibited further autophagy inhibition after ALV-J infection, suggesting that circ-Vav3 is involved in inhibiting autophagy caused by ALV-J infection through the regulation of gga-miR-375/CIP2A/AKT. In conclusion, our results demonstrated that circ-Vav3 inhibited autophagy through the gga-miR-375/CIP2A/AKT pathway and mediated the suppression of ALV-J-induced autophagy.
Collapse
Affiliation(s)
- Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ziqi Yao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Yang W, Sun J, Guo Q, Wang W, Leng J, Wang L, Song L. LRSAM1 mediated the degradation of intracellular Vibrio through the ubiquitination-autophagy-lysosome pathway in oyster. Cell Commun Signal 2025; 23:110. [PMID: 40001133 PMCID: PMC11863841 DOI: 10.1186/s12964-025-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The leucine rich repeat and sterile alpha motif containing 1 (LRSAM1) as E3 ligase recognizes bacteria and generates a ubiquitin signal to initiate the autophagy process. In the present study, LRSAM1 was identified from the Pacific oyster Crassostrea gigas (designed as CgLRSAM1), which was able to recognize various pathogen-associated molecular patterns and bacteria and directly ubiquitinate Vibrio splendidus. V. splendidus was co-localized with CgLRSAM1 and ubiquitin after invading haemocytes, and the ubiquitinated V. splendidus was then internalized into haemocyte lysosomes by p62-LC3-mediated autophagy. In haemocytes of CgLRSAM1-RNAi oysters, the activation of CgLC3 was enhanced after V. splendidus stimulation. While the co-localization values of V. splendidus with ubiquitin, CgLC3 and lysosomes all decreased significantly after V. splendidus stimulation. These results indicated that CgLRSAM1 functioned as E3 ligase responsible for anti-Vibrio-associated ubiquitination and regulated the degradation of bacteria through the ubiquitination-autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Sotoudeheian M, Mirahmadi SMS, Pirhayati M, Farahmandian N, Azarbad R, Toroudi HP. Targeting SIRT1 by Scopoletin to Inhibit XBB.1.5 COVID-19 Life Cycle. Curr Rev Clin Exp Pharmacol 2025; 20:4-13. [PMID: 38441021 DOI: 10.2174/0127724328281178240225082456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Natural products have historically driven pharmaceutical discovery, but their reliance has diminished with synthetic drugs. Approximately 35% of medicines originate from natural products. Scopoletin, a natural coumarin compound found in herbs, exhibits antioxidant, hepatoprotective, antiviral, and antimicrobial properties through diverse intracellular signaling mechanisms. Furthermore, it also enhances the activity of antioxidants. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes viral pneumonia through cytokine storms and systemic inflammation. Cellular autophagy pathways play a role in coronavirus replication and inflammation. The Silent Information Regulator 1 (SIRT1) pathway, linked to autophagy, protects cells via FOXO3, inhibits apoptosis, and modulates SIRT1 in type-II epithelial cells. SIRT1 activation by adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) enhances the autophagy cascade. This pathway holds therapeutic potential for alveolar and pulmonary diseases and is crucial in lung inflammation. Angiotensin-converting enzyme 2 (ACE-2) activation, inhibited by reduced expression, prevents COVID-19 virus entry into type-II epithelial cells. The coronavirus disease 2019 (COVID-19) virus binds ACE-2 to enter into the host cells, and XBB.1.5 COVID-19 displays high ACE-2-binding affinity. ACE-2 expression in pneumocytes is regulated by signal transducers and activators of transcription-3 (STAT3), which can increase COVID-19 virus replication. SIRT1 regulates STAT3, and the SIRT1/STAT3 pathway is involved in lung diseases. Therapeutic regulation of SIRT1 protects the lungs from inflammation caused by viral-mediated oxidative stress. Scopoletin, as a modulator of the SIRT1 cascade, can regulate autophagy and inhibit the entry and life cycle of XBB.1.5 COVID-19 in host cells.
Collapse
Affiliation(s)
| | | | | | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Azarbad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamidreza Pazoki Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Fei S, Xia J, Mehmood N, Wang Y, Feng M, Sun J. Autophagy promotes replication of Bombyx mori Nucleopolyhedrovirus in insect cells. Int J Biol Macromol 2024; 277:134325. [PMID: 39089561 DOI: 10.1016/j.ijbiomac.2024.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BmNPV is a pathogen that infects silkworms exclusively. Although the interaction between BmNPV and the silkworm has been widely noticed and studied, its specific mechanism has still not been elucidated. In this study, we investigated whether BmNPV infection induces the onset of host cell autophagy to enhance viral replication. We observed a significant increase in double- or single-membrane vesicles and an accumulation of enhanced green fluorescent protein eGFP-ATG8 spots in virus-infected cells 72 h after BmNPV infection, accompanied by a conversion of ATG8 to ATG8-PE. In addition, we observed changes in the mitochondrial morphology of BmN cells after BmNPV infection by transmission electron microscopy. By detecting the mitochondrial membrane potential, we found that BmNPV infection resulted in the decrease of mitochondrial membrane potential, and that eGFP-ATG8 was able to co-localise with mitochondria after virus infection of the cells. Moreover, the use of drugs to regulate the occurrence of autophagy affects the replication of cellular BmNPV. Our data demonstrates that BmNPV infection induces host cell autophagy and leads to cellular mitochondrial damage, which in turn may lead to mitochondrial autophagy, and that BmNPV-induced host autophagy promotes its replication in cells. These findings will provide clues for further understanding of host-virus interactions.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nasir Mehmood
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Pagliari C, Quaresma JAS, Dos-Santos WLC, Duarte MIS, Carvalho LV, Penny R, Kanashiro-Galo L, Vasconcelos PFC, Sotto MN. Mechanisms of programmed cell death associated to severe dengue in human renal lesions. Microb Pathog 2024; 194:106794. [PMID: 39025381 DOI: 10.1016/j.micpath.2024.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Dengue virus (DENV) is a global health problem. Severe dengue can manifest with hemorrhage and signs of organ dysfunction, including the kidneys. The innate immune system is an important barrier against arbovirus infection and, specifically in dengue, the cytokines IL1β and IL18 and caspase-1 activation make up a set of host immune strategies. Cell death mechanisms include pyroptosis, necroptosis and autophagy, each with peculiar markers: gasdermin, RIPK3/MLKL, LC3, respectively. In DENV infection, necrosis and apoptosis are involved and, when infecting monocytes and macrophages in vitro, DENV is capable of inducing pyroptosis. Our objective was to explore the presence of markers of necroptosis, pyroptosis and autophagy in renal lesions caused by DENV. MATERIAL AND METHODS twenty specimens of lesions from patients who died due to DENV infection, from the pathology department of Hospital Guilherme Álvaro, Santos, SP, were subjected to histological and immunohistochemical studies. Histological sections were stained with hematoxylin-eosin to evaluate tissue changes or collected for research with antibodies: anti-DENV (Instituto Evandro Chagas-PA), RIPK3 (NBP2-45592), MLKL (ab184718), gasdermin D (#36425), LC3 (14600-AP), caspase 1 (#98033), IL1β (AF201-NA) and IL18 (SC6178). Semi-quantitative analysis was performed on 20 glomeruli and evaluation on tubules and mononuclear cells. This study was approved by the ethics committee of the USP Faculty of Medicine. RESULTS histological analysis demonstrated glomerular congestion, glomerulitis (medium to severe), acute kidney injury and hyalinization of the glomeruli. Viral antigens were visualized on mononuclear cells. LC3 (autophagy) expression ranged from moderate to intense (++/+++) in glomeruli, tubules and mononuclear cells. The expression of gasdermin (pyroptosis) was mild (+) in most cases in the glomeruli and moderate (++) in the tubules. RIPK3 and MLKL (necroptosis) mild in tubules and mononuclear cells (+). The expression of the cytokines IL1β and IL18 and caspase 1 was moderate (++). Statistical analysis showed greater expression of LC3 over the others. CONCLUSIONS Our results contribute to the understanding of the pathogenesis of renal involvement in severe dengue, considering the likely anti-viral mechanism of autophagy. To a lesser extent, pyroptosis is also present, corroborating previous data.
Collapse
Affiliation(s)
- C Pagliari
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - J A S Quaresma
- Instituto Evandro Chagas, PA, Brazil; Departamento de Patologia, Universidade do Estado do Para, PA, Brazil
| | | | - M I S Duarte
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - L V Carvalho
- Serviço de Anatomia Patológica - Hospital Garcia de Orta EPE, ULS Almada, Seixal, Portugal
| | - R Penny
- Hospital Guilherme Álvaro, Serviço de Verificação de Óbito, Santos, SP, Brazil
| | - L Kanashiro-Galo
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - P F C Vasconcelos
- Instituto Evandro Chagas, PA, Brazil; Departamento de Patologia, Universidade do Estado do Para, PA, Brazil
| | - M N Sotto
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
8
|
Krause M, Samolej J, Yakimovich A, Kriston-Vizi J, Huttunen M, Lara-Reyna S, Frickel EM, Mercer J. Vaccinia virus subverts xenophagy through phosphorylation and nuclear targeting of p62. J Cell Biol 2024; 223:e202104129. [PMID: 38709216 PMCID: PMC11076808 DOI: 10.1083/jcb.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.
Collapse
Affiliation(s)
- Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jerzy Samolej
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Moona Huttunen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Aftab S, Nelson E, Hildreth M, Wang X. Silencing RNA-Mediated Knockdown of IFITM3 Enhances Senecavirus A Replication. Pathogens 2024; 13:290. [PMID: 38668245 PMCID: PMC11054092 DOI: 10.3390/pathogens13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Senecavirus A (SVA) is a non-enveloped, positive sense, single-stranded RNA virus that causes vesicular diseases in pigs. Interferon-induced transmembrane 3 (IFITM3) is an interferon-stimulated gene (ISG) that exhibits broad antiviral activity. We investigated the role of IFITM3 in SVA replication. Both viral protein expression and supernatant virus titer were significantly increased when endogenous IFITM3 was knocked down by approximately 80% in human non-smallcell lung carcinoma cell line (NCI-H1299) compared to silencing RNA control. Interestingly, overexpression of exogenous IFITM3 in NCI-H1299 cells also significantly enhanced viral protein expression and virus titer compared to vector control, which was positively correlated with induction of autophagy mediated by IFITM3 overexpression. Overall, our results indicate an antiviral role of endogenous IFITM3 against SVA. The exact molecular mechanisms by which endogenous IFITM3 limits SVA replication remain to be determined in future studies.
Collapse
Affiliation(s)
- Shamiq Aftab
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Michael Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| |
Collapse
|
13
|
Klute S, Sparrer KMJ. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024; 16:500. [PMID: 38675843 PMCID: PMC11054699 DOI: 10.3390/v16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.
Collapse
|
14
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Tyszkiewicz C, Hwang SK, DaSilva JK, Kovi RC, Fader KA, Sirivelu MP, Liu J, Somps C, Cook J, Liu CN, Wang H. Absence of functional deficits in rats following systemic administration of an AAV9 vector despite moderate peripheral nerve and dorsal root ganglia findings: A clinically silent peripheral neuropathy. Neurotoxicology 2024; 101:46-53. [PMID: 38316190 DOI: 10.1016/j.neuro.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.
Collapse
Affiliation(s)
- Cheryl Tyszkiewicz
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Seo-Kyoung Hwang
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Jamie K DaSilva
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Ramesh C Kovi
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Kelly A Fader
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Madhu P Sirivelu
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - June Liu
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Chris Somps
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Jon Cook
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Chang-Ning Liu
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Helen Wang
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, Qiao Z, Ma Z, Liu Z, Yang X. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 2024; 213:1. [PMID: 38329596 DOI: 10.1007/s00430-023-00784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
17
|
Li S, Xu B, Luo Y, Luo J, Huang S, Guo X. Autophagy and Apoptosis in Rabies Virus Replication. Cells 2024; 13:183. [PMID: 38247875 PMCID: PMC10814280 DOI: 10.3390/cells13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Rabies virus (RABV) is a single-stranded negative-sense RNA virus belonging to the Rhabdoviridae family and Lyssavirus genus, which is highly neurotropic and can infect almost all warm-blooded animals, including humans. Autophagy and apoptosis are two evolutionarily conserved and genetically regulated processes that maintain cellular and organismal homeostasis, respectively. Autophagy recycles unnecessary or dysfunctional intracellular organelles and molecules in a cell, whereas apoptosis eliminates damaged or unwanted cells in an organism. Studies have shown that RABV can induce both autophagy and apoptosis in target cells. To advance our understanding of pathogenesis of rabies, this paper reviews the molecular mechanisms of autophagy and apoptosis induced by RABV and the effects of the two cellular events on RABV replication.
Collapse
Affiliation(s)
- Saisai Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Y.L.)
| | - Bowen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Y.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Y.L.)
| |
Collapse
|
18
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
19
|
Zhen JB, Wang RB, Zhang YH, Sun F, Lin LH, Li ZX, Han Y, Lu YX. Effects of Trichinella spiralis and its serine protease inhibitors on autophagy of host small intestinal cells. Infect Immun 2023; 91:e0010323. [PMID: 37874164 PMCID: PMC10652968 DOI: 10.1128/iai.00103-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 10/25/2023] Open
Abstract
In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.
Collapse
Affiliation(s)
- Jing-Bo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rui-Biao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu-Heng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Hao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Xin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yi-Xin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Bub T, Hargest V, Tan S, Smith M, Vazquez-Pagan A, Flerlage T, Brigleb P, Meliopoulos V, Lindenbach B, Ramanathan HN, Cortez V, Crawford JC, Schultz-Cherry S. Astrovirus replication is dependent on induction of double-membrane vesicles through a PI3K-dependent, LC3-independent pathway. J Virol 2023; 97:e0102523. [PMID: 37668367 PMCID: PMC10537808 DOI: 10.1128/jvi.01025-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023] Open
Abstract
Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive-strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection leads to an increase in DMV formation through a replication-dependent mechanism that requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K complex lead to significant reduction in DMVs, as well as viral replication. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. IMPORTANCE These studies provide critical new evidence that astrovirus replication requires formation of double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive-sense RNA virus infections.
Collapse
Affiliation(s)
- Theresa Bub
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Integrated Program of Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shaoyuan Tan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ana Vazquez-Pagan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela Brigleb
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale University, New Haven, Connecticut, USA
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale University, New Haven, Connecticut, USA
| | - Valerie Cortez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Yi H, Wang Q, Lu L, Ye R, Xie E, Yu Z, Sun Y, Chen Y, Cai M, Qiu Y, Wu Q, Peng J, Wang H, Zhang G. PSMB4 Degrades the Porcine Reproductive and Respiratory Syndrome Virus Nsp1α Protein via the Autolysosome Pathway and Induces the Production of Type I Interferon. J Virol 2023; 97:e0026423. [PMID: 36943051 PMCID: PMC10134815 DOI: 10.1128/jvi.00264-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.
Collapse
Affiliation(s)
- Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiqing Yu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengkai Cai
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Yingwu Qiu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Bub T, Hargest V, Tan S, Smith M, Vazquez-Pagan A, Flerlage T, Brigleb PH, Meliopoulos V, Lindenbach B, Cortez V, Crawford JC, Schultz-Cherry S. Astrovirus replication is dependent on induction of double membrane vesicles through a PI3K-dependent, LC3-independent pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536492. [PMID: 37090568 PMCID: PMC10120637 DOI: 10.1101/2023.04.11.536492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Human astrovirus is a positive sense, single stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double membrane vesicles (DMVs). Here we show that astrovirus infection leads to an increase in DMV formation, and this process is replication-dependent. Our data suggest that astrovirus infection induces rearrangement of endoplasmic reticulum fragments, which may become the origin for DMV formation. Transcriptional data suggested that formation of DMVs during astrovirus infection requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Inhibition of the PI3K complex leads to significant reduction in viral replication and release from cells. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. Importance These studies provide critical new evidence that astrovirus replication requires formation of double membrane vesicles, which utilize class III PI3K, but not LC3 conjugation autophagy machinery for biogenesis. These results are consistent with replication mechanisms for other positive sense RNA viruses. This suggests that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive sense RNA virus infections.
Collapse
|
23
|
Wang H, Zhang J, Liu H, Wang M, Dong Y, Zhou Y, Wong SM, Xu K, Xu Q. A plant virus hijacks phosphatidylinositol-3,5-bisphosphate to escape autophagic degradation in its insect vector. Autophagy 2023; 19:1128-1143. [PMID: 36093594 PMCID: PMC10012956 DOI: 10.1080/15548627.2022.2116676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Hosts can initiate macroautophagy/autophagy as an antiviral defense response, while viruses have developed multiple ways to evade the host autophagic degradation. However, little is known as to whether viruses can target lipids to subvert autophagic degradation. Here, we show that a low abundant signaling lipid, phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), is required for rice black-streaked dwarf virus (RBSDV) to evade the autophagic degradation in the insect vector Laodelphax striatellus. RBSDV binds to PtdIns(3,5)P2 and elevates its level through its main capsid protein P10, leading to inhibited autophagy and promoted virus propagation. Furthermore, we show that PtdIns(3,5)P2 inhibits the autophagy pathway by preventing the fusion of autophagosomes and lysosomes through activation of Trpml (transient receptor potential cation channel, mucolipin), an effector of PtdIns(3,5)P2. These findings uncover a strategy whereby a plant virus hijacks PtdIns(3,5)P2 via its viral capsid protein to evade autophagic degradation and promote its survival in insects.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianhua Zhang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haoqiu Liu
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- National University of Singapore Research Institute, Suzhou, China
| | - Man Wang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- National University of Singapore Research Institute, Suzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiufang Xu
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
24
|
Chen F, Guo Z, Zhang R, Zhang Z, Hu B, Bai L, Zhao S, Wu Y, Zhang Z, Li Y. Canine distemper virus N protein induces autophagy to facilitate viral replication. BMC Vet Res 2023; 19:60. [PMID: 36922800 PMCID: PMC10015816 DOI: 10.1186/s12917-023-03575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is one of the most contagious and lethal viruses known to the Canidae, with a very broad and expanding host range. Autophagy serves as a fundamental stabilizing response against pathogens, but some viruses have been able to evade or exploit it for their replication. However, the effect of autophagy mechanisms on CDV infection is still unclear. RESULTS In the present study, autophagy was induced in CDV-infected Vero cells as demonstrated by elevated LC3-II levels and aggregation of green fluorescent protein (GFP)-LC3 spots. Furthermore, CDV promoted the complete autophagic process, which could be determined by the degradation of p62, co-localization of LC3 with lysosomes, GFP degradation, and accumulation of LC3-II and p62 due to the lysosomal protease inhibitor E64d. In addition, the use of Rapamycin to promote autophagy promoted CDV replication, and the inhibition of autophagy by Wortmannin, Chloroquine and siRNA-ATG5 inhibited CDV replication, revealing that CDV-induced autophagy facilitated virus replication. We also found that UV-inactivated CDV still induced autophagy, and that nucleocapsid (N) protein was able to induce complete autophagy in an mTOR-dependent manner. CONCLUSIONS This study for the first time revealed that CDV N protein induced complete autophagy to facilitate viral replication.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Zijing Guo
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China
| | - Rui Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, 130112, Jilin, China
| | - Ling Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Yongshu Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China.
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
PRRSV nonstructural protein 11 degrades swine ISG15 by its endoribonuclease activity to antagonize antiviral immune response. Vet Microbiol 2023; 280:109720. [PMID: 36921497 DOI: 10.1016/j.vetmic.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped positive-stranded RNA virus which causes serious economic losses to pig industry worldwide. Type I IFN induces expression of interferon-stimulated genes 15 (ISG15) to inhibit virus replication. To survive in the host, PRRSV has evolved to antagonize the antiviral response of ISGylation. Previous studies have reported that nonstructural protein 2 of PRRSV inhibits the ISGylation and antiviral function of ISG15 depending on its ovarian tumor (OTU) domain/papain-like protease domain (PLP2). However, whether there are other PRRSV proteins inhibiting ISGylation of cellular proteins is less well understood. In this study, we first found that PRRSV Nsp11 decreased ISGylation of cellular proteins. Meanwhile, the expression level of ISG15 was significantly inhibited by Nsp11. Further mechanistic studies demonstrated that the transcription of ISG15 was reduced by endoribonuclease activity of Nsp11. Finally, we found that the Nsp11-induced degradation of ISG15 was partially relied on autophagy-lysosome system. Taken together, PRRSV Nsp11 antagonizes the antiviral response of ISG15 by its endoribonuclease activity to promote PRRSV replication. Our results reveal a novel mechanism that PRRSV inhibits ISGylation of cellular proteins and impairs host innate immune response.
Collapse
|
26
|
Shi D, Zhou L, Shi H, Zhang J, Zhang J, Zhang L, Liu D, Feng T, Zeng M, Chen J, Zhang X, Xue M, Jing Z, Liu J, Ji Z, He H, Guo L, Wu Y, Ma J, Feng L. Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 2023; 19:e1011201. [PMID: 36888569 PMCID: PMC9994726 DOI: 10.1371/journal.ppat.1011201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.
Collapse
Affiliation(s)
- Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Miaomiao Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Haojie He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| |
Collapse
|
27
|
Shin S, Han D, Cho H, Kim E, Choi K. Non-cytopathic bovine viral diarrhoea virus 2 induces autophagy to enhance its replication. Vet Med Sci 2022; 9:405-416. [PMID: 36533845 PMCID: PMC9856993 DOI: 10.1002/vms3.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bovine viral diarrhoea virus (BVDV) is an important viral pathogen that has an economic impact on the livestock industry worldwide. Autophagy is one of the earliest cell-autonomous defence mechanisms against microbial invasion, and many types of viruses can induce autophagy by infecting host cells. OBJECTIVES The aim of this study was to identify the role of autophagy in the pathogenesis of non-cytopathic (ncp) BVDV2 infection. METHODS Madin-Darby bovine kidney (MDBK) cells were treated with ncp BVDV2, rapamycin, or 3-methyladenine (MA) and ncp BVDV2 and then incubated at 37°C for 24 h. Cells were harvested, and the effects of autophagy were determined by transmission electron microscopy (TEM), confocal laser microscopy, western blotting and qRT-PCR. Apoptotic analysis was also performed using western blotting and flow cytometry. RESULTS In ncp BVDV2-infected MDBK cells, more autophagosomes were observed by TEM, and the number of microtubule-associated protein 1 light chain 3B (LC3B) with green fluorescent protein puncta was also increased. The ncp BVDV2-infected cells showed significantly enhanced conversion of LC3-I to LC3-II, as well as upregulation of autophagy-related proteins, including ATG5 and Beclin 1, and substantial degradation of p62/SQSTM1. These results are similar to those induced by rapamycin, an autophagy inducer. E2 protein expression, which is associated with viral replication, increased over time in ncp BVDV2-infected cells. Inhibition of autophagy by 3-MA in ncp BVDV2-infected MDBK cells downregulated the expressions of LC3-II, ATG5 and Beclin 1 and prevented the degradation of p62/SQSTM1. Moreover, the expressions of phosphorylated Akt and procaspase-3 were significantly increased in ncp BVDV2-infected cells. In addition, the mRNA level of protein kinase R (PKR) was significantly reduced in ncp BVDV2-infected cells. CONCLUSIONS Our results demonstrate that ncp BVDV2 infection induced autophagy in MDBK cells via anti-apoptosis and PKR suppression. Therefore, autophagy may play a role in establishing persistent infection caused by ncp BVDV.
Collapse
Affiliation(s)
- Seung‐Uk Shin
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Du‐Gyeong Han
- Korea National Institute of HealthCheongjuChungcheongbuk‐doSouth Korea
| | - Hyung‐Chul Cho
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Eun‐Mi Kim
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Kyoung‐Seong Choi
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| |
Collapse
|
28
|
Feng Y, Pan Z, Wang Z, Lei Z, Yang S, Zhao H, Wang X, Yu Y, Han Q, Zhang J. MERS-CoV nsp1 regulates autophagic flux via mTOR signaling and dysfunctional lysosomes. Emerg Microbes Infect 2022; 11:2529-2543. [PMID: 36153658 PMCID: PMC9621213 DOI: 10.1080/22221751.2022.2128434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autophagy, a cellular surveillance mechanism, plays an important role in combating invading pathogens. However, viruses have evolved various strategies to disrupt autophagy and even hijack it for replication and release. Here, we demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV) non-structural protein 1(nsp1) induces autophagy but inhibits autophagic activity. MERS-CoV nsp1 expression increased ROS and reduced ATP levels in cells, which activated AMPK and inhibited the mTOR signalling pathway, resulting in autophagy induction. Meanwhile, as an endonuclease, MERS-CoV nsp1 downregulated the mRNA of lysosome-related genes that were enriched in nsp1-located granules, which diminished lysosomal biogenesis and acidification, and inhibited autophagic flux. Importantly, MERS-CoV nsp1-induced autophagy can lead to cell death in vitro and in vivo. These findings clarify the mechanism by which MERS-CoV nsp1-mediated autophagy regulation, providing new insights for the prevention and treatment of the coronavirus.
Collapse
Affiliation(s)
- Yujie Feng
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhihui Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengyang Lei
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Songge Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
29
|
Omasta B, Tomaskova J. Cellular Lipids-Hijacked Victims of Viruses. Viruses 2022; 14:1896. [PMID: 36146703 PMCID: PMC9501026 DOI: 10.3390/v14091896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the millions of years-long co-evolution with their hosts, viruses have evolved plenty of mechanisms through which they are able to escape cellular anti-viral defenses and utilize cellular pathways and organelles for replication and production of infectious virions. In recent years, it has become clear that lipids play an important role during viral replication. Viruses use cellular lipids in a variety of ways throughout their life cycle. They not only physically interact with cellular membranes but also alter cellular lipid metabolic pathways and lipid composition to create an optimal replication environment. This review focuses on examples of how different viruses exploit cellular lipids in different cellular compartments during their life cycles.
Collapse
Affiliation(s)
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
30
|
Dai Y, Li Y, Lin G, Zhang J, Jiang N, Liu W, Meng Y, Zhou Y, Fan Y. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line. FISH & SHELLFISH IMMUNOLOGY 2022; 127:681-689. [PMID: 35738488 DOI: 10.1016/j.fsi.2022.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A novel GCRV strain isolated from healthy grass carp was named as grass carp reovirus - HH196 (GCRV-HH196), and its infection mechanism remains unclear. In this study, the grass carp ovary cell line (GCO cells) was used to investigate the cell death involved in GCRV-HH196 infection. The results showed that DNA damage, cells volume reduction and cytoplasm shrinkage happened during GCRV-HH196 infection. The mRNA expression levels of pro-apoptotic genes were up-regulated during infection. Two initiators of apoptosis, caspase 8 and caspase 9, and the executioner of apoptosis, caspase 3, were all significantly activated in GCRV-HH196-infected cells. Flow cytometry analysis showed that the number of apoptotic cells in infected cells was significantly higher than that in control cells as the infection progress. Meanwhile, autophagy was also involved in the regulation of GCRV - HH196 infection. We observed that LC3 puncta existed in cytoplasm in GCRV-HH196-infected cells. Furthermore, the protein level of LC3-Ⅱ and Beclin-1 increased, while that of p-Akt decreased in GCRV-HH196-infected cells. These results demonstrated that GCRV-HH196 may regulate apoptosis and autophagy for the virus proliferation and spread, which set a foundation for further research on the interaction between GCRV-HH196 and host.
Collapse
Affiliation(s)
- Yanlin Dai
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yuding Fan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
31
|
Chen X, Zhang W, Hu Z, Cui K, Yi M, Jia K. Sea perch (Lateolabrax japonicus) autophagy related gene 5 promotes RGNNV infection via inhibiting RLRs-interferon signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 127:910-917. [PMID: 35863535 DOI: 10.1016/j.fsi.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Autophagy-related gene 5 (Atg5), an essential component of autophagy machinery, is associated with innate immune responses. Here, the Atg5 of sea perch (Lateolabrax japonicus) (LjAtg5) was cloned and its role in regulating autophagy and interferon (IFN) response during red-spotted grouper nervous necrosis virus (RGNNV) infection was investigated. The LjAtg5 cDNA encoded a polypeptide of 275 amino acids with an APG5 domain, and had the closet genetic relationship with Micropterus salmoides Atg5. Autophagic detection showed LjAtg5 was conserved in inducing cell autophagy. Spatial expression analysis revealed LjAtg5 had a higher expression level in liver, brain, and kidney tissues of RGNNV-infected sea perch compared with the control group. In RGNNV-infected LJB cells, overexpression of LjAtg5 significantly increased the mRNA and protein levels of capsid protein, whereas knockdown of LjAtg5 led to the opposite effect, indicating LjAtg5 played a pro-viral role during RGNNV infection. Furthermore, dual luciferase reporter assay revealed LjAtg5 significantly suppressed the activation of sea perch type I IFN promoter in vitro, and overexpression of LjAtg5 strongly weaken the expression of genes related to the RIG-I-like receptors (RLRs) signaling pathway and IFN stimulated genes. These results suggested LjAtg5 promoted RGNNV infection by negatively regulating RLRs-IFN signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Zhe Hu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Kuopeng Cui
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
32
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Park JY, Ryu J, Hong EJ, Shin HJ. Porcine Epidemic Diarrhea Virus Infection Induces Autophagosome Formation but Inhibits Autolysosome Formation during Replication. Viruses 2022; 14:1050. [PMID: 35632790 PMCID: PMC9142955 DOI: 10.3390/v14051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we investigated the correlation between the mechanism involved in porcine epidemic diarrhea virus (PEDV) replication and autophagic flux. In this study, we found that as PEDV replicated, production of LC3-II was significantly induced up to 24 h post-infection (hpi). Interestingly, although there was significant production of LC3-II, greater p62 accumulation was simultaneously found. Pretreatment with rapamycin significantly induced PEDV replication, but autolysosome formation was reduced. These results were confirmed by the evaluation of ATG5/ATG12 and LAMP1/LAMP2. Taken together, we conclude that PEDV infection induces autophagosome formation but inhibits autolysosome formation during replication.
Collapse
Affiliation(s)
- Jae-Yeon Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea; (J.-Y.P.); (E.-J.H.)
| | - Jihoon Ryu
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea;
| | - Eui-Ju Hong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea; (J.-Y.P.); (E.-J.H.)
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea;
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea; (J.-Y.P.); (E.-J.H.)
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 13434, Korea;
| |
Collapse
|
34
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
35
|
Tehrani AS, Mirakabad FST, Abdollahifar MA, Mollazadehghomi S, Darabi S, Forozesh M, Rezaei-Tavirani M, Mahmoudiasl GR, Ahrabi B, Azimzadeh Z, Abbaszadeh HA. Severe Acute Respiratory Syndrome Coronavirus 2 Induces Hepatocyte Cell Death, Active Autophagosome Formation and Caspase 3 Up-Regulation in Postmortem Cases: Stereological and Molecular Study. TOHOKU J EXP MED 2022; 256:309-319. [PMID: 35321977 DOI: 10.1620/tjem.2022.j007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Atefeh Shirazi Tehrani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences.,Hearing disorders research center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences
| | | | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences.,Hearing disorders research center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences
| | | | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences
| | | | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Para medicine, Shahid Beheshti University of Medical Sciences
| | | | - Behnaz Ahrabi
- Department of Biology and Anatomy, Shahid Beheshti University of Medical Sciences
| | - Zahra Azimzadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences.,Hearing disorders research center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences.,Department of Biology and Anatomy, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
36
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. [Autophagy modulation by viruses: An important role in tumor progression]. Med Sci (Paris) 2022; 38:159-167. [PMID: 35179470 DOI: 10.1051/medsci/2022010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autophagy is an important process for cellular homeostasis at critical steps of development or in response to environmental stress. In the context of cancers, autophagy has a significant impact on tumor occurrence and tumor cell growth. On the one hand, autophagy limits the transformation of precancerous cells into cancer cells at an early stage. However, on the other hand, it promotes cell survival, cell proliferation, metastasis and resistance to anti-tumor therapies in more advanced tumors. Autophagy can be induced by a variety of extracellular and intracellular stimulus. Viral infections have often been associated with a modulation of autophagy, with variable impacts on viral replication and on the survival of infected cells depending on the model studied. In a tumor context, the modulation of autophagy induced by the viral infection of tumor cells seems to have a significant impact on tumor progression. The aim of this review article is to present recent findings regarding the consequences of autophagy disturbance by viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Sophie Sibéril
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Marco Alifano
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Département de chirurgie thoracique, Hôpital Cochin, 24 rue du Faubourg Saint-Jacques, AP-HP, 75014 Paris, France
| | - Isabelle Cremer
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Pierre-Emmanuel Joubert
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| |
Collapse
|
37
|
Belyaeva E, Kharwar RK, Ulasov IV, Karlina I, Timashev P, Mohammadinejad R, Acharya A. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 2022; 477:593-604. [PMID: 34854022 DOI: 10.1007/s11010-021-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Autophagy is the process of recycling and utilization of degraded organelles and macromolecules in the cell compartments formed during the fusion of autophagosomes with lysosomes. During autophagy induction the healthy and tumor cells adapt themselves to harsh conditions such as cellular stress or insufficient supply of nutrients in the cell environment to maintain their homeostasis. Autophagy is currently seen as a form of programmed cell death along with apoptosis and necroptosis. In recent years multiple studies have considered the autophagy as a potential mechanism of anticancer therapy in malignant glioma. Although, subsequent steps in autophagy development are known and well-described, on molecular level the mechanism of autophagosome initiation and maturation using autophagy-related proteins is under investigation. This article reviews current state about the mechanism of autophagy, its molecular pathways and the most recent studies on roles of autophagy-related proteins and their isoforms in glioma progression and its treatment.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, UP, India
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Petr Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119991
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin st., Moscow, Russian Federation, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbind Acharya
- Tumor Immunology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
38
|
Sinha M, Chakraborty U, Kool A, Chakravarti M, Das S, Ghosh S, Thakur L, Khuranna A, Nayak D, Basu B, Kar S, Ray R, Das S. In-vitro antiviral action of Eupatorium perfoliatum against dengue virus infection: Modulation of mTOR signaling and autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114627. [PMID: 34509603 DOI: 10.1016/j.jep.2021.114627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue virus (DENV) is a re-emerging mosquito-borne flavivirus that has recently engendered large epidemics around the world. Consequently antivirals with effective anti-DENV therapeutic activity are urgently required. In the 18th century, Europeans, as well as native inhabitants of North America, were known to adapt the medicinal property of the common perennial plant Eupatorium perfoliatum L. to treat fever and infections. Previous studies have shown that Eupatorium perfoliatum L. possesses anti-inflammatory, anti-oxidative, anti-plasmodial, anti-bacterial and antiviral activities. However, to the best of our knowledge, no anti-DENV activity of E. perfoliatum L. has been investigated at the molecular level so far. AIM OF STUDY Here, for the first time we have attempted to study the action of E. perfoliatum extract and its few bioactive components i.e., quercetin, caffeic acid and eupafolin against wild primary clinical isolate of DENV-2 infection in an in vitro model. MATERIALS AND METHODS The presence of the bioactive components in the E. perfoliatum extract, were analyzed by HPLC- DAD. Then, CC50 as well as IC50 values of the extract and its bioactive components were measured against DENV in HepG2 cell line. After that, the antiviral activity was studied by Time of addition assay using qRT-PCR. Further, the downstream signalling action of E. perfoliatum extract, was studied by Human phosphorylation MAPK antibody array, followed by immunofluorescence microscopy. Moreover, a molecular docking analysis was done to study the binding affinity of bioactive components of E. perfoliatum extract with TIM-1 transmembrane receptor protein, which is known for viral internalization. RESULT We found that E. perfoliatum extract has marked antiviral activity during pre-treatment against DENV infection in HepG2 cell line. The extract also significantly reduced the DENV induced autophagy in HepG2 cell line as detected by LC3 II localization. The presence of different bioactive compounds in E. perfoliatum extract were confirmed by HPLC-DAD. In the bioactive components, in parallel to earlier studies, quercetin showed the most significant preventive action against DENV infection. Further, in molecular docking analysis also, quercetin showed the strongest binding affinity towards DENV membrane receptor TIM-1 protein. CONCLUSION Our findings suggests that E. perfoliatum extract has significant potential to be an anti-DENV therapeutic agent. Moreover, among the bioactive components, quercetin may have a prophylaxis role in executing the antiviral activity of E. perfoliatum extract against DENV infection.
Collapse
Affiliation(s)
- Moonmoon Sinha
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India; Department of Virology, Dr. Anjali Chatterjee Regional Research Institute, Kolkata-700035, India; Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata-700020, India.
| | - Urmita Chakraborty
- Department of Virology, Dr. Anjali Chatterjee Regional Research Institute, Kolkata-700035, India.
| | - Anirban Kool
- Department of Virology, Dr. Anjali Chatterjee Regional Research Institute, Kolkata-700035, India.
| | - Mousumi Chakravarti
- Department of Virology, Dr. Anjali Chatterjee Regional Research Institute, Kolkata-700035, India.
| | - Souvik Das
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata-700026, India.
| | - Sandip Ghosh
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata-700026, India.
| | - Lovnish Thakur
- School of Biosciences, Apeejay Stya University, Gurugram, Haryana-122103, India.
| | - Anil Khuranna
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, Janakpuri, New Delhi-111058, India.
| | - Debadatta Nayak
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, Janakpuri, New Delhi-111058, India.
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata-700026, India.
| | - Subhabrata Kar
- School of Biosciences, Apeejay Stya University, Gurugram, Haryana-122103, India.
| | - Raja Ray
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India; Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata-700020, India.
| | - Satadal Das
- Department of Virology, Dr. Anjali Chatterjee Regional Research Institute, Kolkata-700035, India.
| |
Collapse
|
39
|
Tavčar Verdev P, Potokar M, Korva M, Resman Rus K, Kolenc M, Avšič Županc T, Zorec R, Jorgačevski J. In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cell Mol Life Sci 2022; 79:566. [PMID: 36283999 PMCID: PMC9596533 DOI: 10.1007/s00018-022-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.
Collapse
Affiliation(s)
- Petra Tavčar Verdev
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Miša Korva
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
40
|
Akkoc Y, Gozuacik D. Autophagy and Hepatic Tumor Microenvironment Associated Dormancy. J Gastrointest Cancer 2021; 52:1277-1293. [PMID: 34921672 DOI: 10.1007/s12029-021-00774-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
The goal of successful cancer treatment is targeting the eradication of cancer cells. Although surgical removal of the primary tumors and several rounds of chemo- and radiotherapy reduce the disease burden, in some cases, asymptomatic dormant cancer cells may still exist in the body. Dormant cells arise from the disseminated tumor cells (DTCs) from the primary lesion. DTCs escape from immune system and cancer therapy and reside at the secondary organ without showing no sign of proliferation. However, under some conditions. dormant cells can be re-activated and enter a proliferative state even after decades. As a stress response mechanism, autophagy may help the adaptation of DTCs at this futile foreign microenvironment and may control the survival and re-activation of dormant cells. Studies indicate that hepatic microenvironment serves a favorable condition for cancer cell dormancy. Although, no direct study was pointing out the role of autophagy in liver-assisted dormancy, involvement of autophagy in both liver microenvironment, health, and disease conditions has been indicated. Therefore, in this review article, we will summarize cancer dormancy and discuss the role and importance of autophagy and hepatic microenvironment in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.
| | - Devrim Gozuacik
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.,Koç University School of Medicine, Istanbul, 34010, Turkey
| |
Collapse
|
41
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. Autophagy Modulation by Viral Infections Influences Tumor Development. Front Oncol 2021; 11:743780. [PMID: 34745965 PMCID: PMC8569469 DOI: 10.3389/fonc.2021.743780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Sophie Sibéril
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Marco Alifano
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Thoracic Surgery, Hospital Cochin Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Pierre-Emmanuel Joubert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| |
Collapse
|
42
|
Chen TY, Smartt CT. Activation of the autophagy pathway decreases dengue virus infection in Aedes aegypti cells. Parasit Vectors 2021; 14:551. [PMID: 34702321 PMCID: PMC8549150 DOI: 10.1186/s13071-021-05066-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Mosquito-borne dengue virus (DENV) causes major disease worldwide, impacting 50–100 million people every year, and is spread by the major mosquito vector Aedes aegypti. Understanding mosquito physiology, including antiviral mechanisms, and developing new control strategies have become an important step towards the elimination of DENV disease. In the study reported here, we focused on autophagy, a pathway suggested as having a positive influence on virus replication in humans, as a potential antiviral target in the mosquito. Methods To understand the role played by autophagy in Ae. aegypti, we examined the activation of this pathway in Aag-2 cells, an Ae. aegypti-derived cell line, infected with DENV. Rapamycin and 3-methyladenine, two small molecules that have been shown to affect the function of the autophagy pathway, were used to activate or suppress, respectively, the autophagy pathway. Results At 1-day post-DENV infection in Aag-2 cells, transcript levels of both the microtubule-associated protein light chain 3-phosphatidylethanolamine conjugate (LC3-II) and autophagy-related protein 1 (ATG1) increased. Rapamycin treatment activated the autophagy pathway as early as 1-h post-treatment, and the virus titer had decreased in the Aag-2 cells at 2 days post-infection; in contrast, the 3-methyladenine treatment did not significantly affect the DENV titer. Treatment with these small molecules also impacted the ATG12 transcript levels in DENV-infected cells. Conclusions Our studies revealed that activation of the autophagy pathway through rapamycin treatment altered DENV infection in the mosquito cells, suggesting that this pathway could be a possible antiviral mechanism in the mosquito system. Here we provide fundamental information needed to proceed with future experiments and to improve our understanding of the mosquito’s immune response against DENV. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05066-w.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL, USA
| | - Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL, USA.
| |
Collapse
|
43
|
Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:fuab016. [PMID: 33765123 PMCID: PMC8498563 DOI: 10.1093/femsre/fuab016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
44
|
Ghzaiel I, Sassi K, Zarrouk A, Nury T, Ksila M, Leoni V, Bouhaouala-Zahar B, Hammami S, Hammami M, Mackrill JJ, Samadi M, Ghrairi T, Vejux A, Lizard G. 7-Ketocholesterol: Effects on viral infections and hypothetical contribution in COVID-19. J Steroid Biochem Mol Biol 2021; 212:105939. [PMID: 34118414 PMCID: PMC8188774 DOI: 10.1016/j.jsbmb.2021.105939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.
Collapse
Affiliation(s)
- Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khouloud Sassi
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, 1007 Tunis, Tunisia.
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse, Faculty of Medicine, Sousse, Tunisia.
| | - Thomas Nury
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis & University of Tunis El Manar, 1002 Tunis, Tunisia.
| | - Sonia Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| |
Collapse
|
45
|
Mudaliar P, Pradeep P, Abraham R, Sreekumar E. Targeting cap-dependent translation to inhibit Chikungunya virus replication: selectivity of p38 MAPK inhibitors to virus-infected cells due to autophagy-mediated down regulation of phospho-ERK. J Gen Virol 2021; 102. [PMID: 34328830 DOI: 10.1099/jgv.0.001629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The 5' capped, message-sense RNA genome of Chikungunya virus (CHIKV) utilizes the host cell machinery for translation. Translation is regulated by eIF2 alpha at the initiation phase and by eIF4F at cap recognition. Translational suppression by eIF2 alpha phosphorylation occurs as an early event in many alphavirus infections. We observe that in CHIKV-infected HEK293 cells, this occurs as a late event, by which time the viral replication has reached an exponential phase, implying its minimal role in virus restriction. The regulation by eIF4F is mediated through the PI3K-Akt-mTOR, p38 MAPK and RAS-RAF-MEK-ERK pathways. A kinetic analysis revealed that CHIKV infection did not modulate AKT phosphorylation, but caused a significant reduction in p38 MAPK phosphorylation. It caused degradation of phospho-ERK 1/2 by increased autophagy, leaving the PI3K-Akt-mTOR and p38 MAPK pathways for pharmacological targeting. mTOR inhibition resulted in moderate reduction in viral titre, but had no effect on CHIKV E2 protein expression, indicating a minimal role of the mTOR complex in virus replication. Inhibition of p38 MAPK using SB202190 caused a significant reduction in viral titre and CHIKV E2 and nsP3 protein expression. Furthermore, inhibiting the two pathways together did not offer any synergism, indicating that inhibiting the p38 MAPK pathway alone is sufficient to cause restriction of CHIKV replication. Meanwhile, in uninfected cells the fully functional RAS-RAF-MEK-ERK pathway can circumvent the effect of p38 MAPK inhibition on cap-dependent translation. Thus, our results show that host-directed antiviral strategies targeting cellular p38 MAPK are worth exploring against Chikungunya as they could be selective against CHIKV-infected cells with minimal effects on uninfected host cells.
Collapse
Affiliation(s)
- Prashant Mudaliar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram 695014, Kerala, India.,Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram 695014, Kerala, India.,Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Rachy Abraham
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
46
|
Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G, Gomez AC, Cheng MH, Schurdak ME, Liu B, Chan SY, Arumugaswami V, Stern AM, Taylor DL, Arditi M, Bahar I. A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection. Mol Syst Biol 2021; 17:e10239. [PMID: 34339582 PMCID: PMC8328275 DOI: 10.15252/msb.202110239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Qingya Shi
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Fen Pei
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Andreas Vogt
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Rebecca A Porritt
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Angela C Gomez
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Mary Hongying Cheng
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Mark E Schurdak
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Bing Liu
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of CardiologyDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Andrew M Stern
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - D Lansing Taylor
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Moshe Arditi
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Ivet Bahar
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| |
Collapse
|
47
|
Liu Y, Tang Q, Rao Z, Fang Y, Jiang X, Liu W, Luan F, Zeng N. Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antiviral Res 2021; 193:105143. [PMID: 34303748 DOI: 10.1016/j.antiviral.2021.105143] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cepharanthine (CEP), a naturally occurring isoquinoline alkaloid extracted from the genus CEP of the Tetrandrine family, was reported to possess many biological activities such as anti-inflammatory, antitumor, antiviral, and immune-enhancing effects. Nevertheless, the underlying mechanisms of CEP against herpes simplex virus type 1 (HSV-1) are still elusive. In this study, we explored the anti-HSV effects and mechanisms of CEP in vitro. The results showed that CEP possessed a strong inhibitory effect against HSV-1 infection with the TC50 of 5.4 μg/mL, the IC50 of 0.835 μg/mL, and the TI of 6.47. Most importantly, CEP could promote the phosphorylation of STING, TBK1, and P62 and the expression of LC3II without induction of interferon by directly targeting the STING/TBK1/P62 signaling pathways. Electron microscopy showed that autophagy induced by CEP could degrade viral particles and cellular components. RT-PCR results revealed that a sharp reduction of large numbers of virus gene transcription in 16 h after CEP treatment. Furthermore, CEP also reduced the HSV-1 gB and gC transcription. In conclusion, one of the effects of CEP was to promote interferon-independent autophagy through STING mediated signaling.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yang Fang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xinni Jiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Wenjun Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
48
|
Altulea D, Maassen S, Baranov MV, van den Bogaart G. What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology. J Mol Cell Biol 2021; 13:175-184. [PMID: 33693723 PMCID: PMC7989365 DOI: 10.1093/jmcb/mjab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since chloroquine (CQ) and hydroxychloroquine (HCQ) can inhibit the invasion and proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured cells, the repurposing of these antimalarial drugs was considered a promising strategy for treatment and prevention of coronavirus disease (COVID-19). However, despite promising preliminary findings, many clinical trials showed neither significant therapeutic nor prophylactic benefits of CQ and HCQ against COVID-19. Here, we aim to answer the question of why these drugs are not effective against the disease by examining the cellular working mechanisms of CQ and HCQ in prevention of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Dania Altulea
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - G van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
49
|
Teo QW, van Leur SW, Sanyal S. Escaping the Lion's Den: redirecting autophagy for unconventional release and spread of viruses. FEBS J 2021; 288:3913-3927. [PMID: 33044763 DOI: 10.1111/febs.15590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
Autophagy is an evolutionarily conserved process, designed to maintain cellular homeostasis during a range of internal and external stimuli. Conventionally, autophagy is known for coordinated degradation and recycling of intracellular components and removal of cytosolic pathogens. More recently, several lines of evidence have indicated an unconventional, nondegradative role of autophagy for secretion of cargo that lacks a signal peptide. This process referred to as secretory autophagy has also been implicated in the infection cycle of several virus species. This review focuses on the current evidence available on the nondegradative features of autophagy, emphasizing its potential role and unresolved questions in the release and spread of (-) and (+) RNA viruses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong
| | - Sophie Wilhelmina van Leur
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
50
|
Transient blockade of TBK1/IKKε allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus G-pseudotyped lentiviral vectors. Cytotherapy 2021; 23:787-792. [PMID: 34119434 DOI: 10.1016/j.jcyt.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Vesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors (LVs) are widely used to reliably generate genetically modified, clinical-grade T-cell products. However, the results of genetically modifying natural killer (NK) cells with VSV-G LVs have been variable. The authors explored whether inhibition of the IKK-related protein kinases TBK1 and IKKε, key signaling molecules of the endosomal TLR4 pathway, which is activated by VSV-G, would enable the reliable transduction of NK cells by VSV-G LVs. METHODS The authors activated NK cells from peripheral blood mononuclear cells using standard procedures and transduced them with VSV-G LVs encoding a marker gene (yellow fluorescent protein [YFP]) or functional genes (chimeric antigen receptors [CARs], co-stimulatory molecules) in the presence of three TBK1/IKKε inhibitors (MRT67307, BX-795, amlexanox). NK cell transduction was evaluated by flow cytometry and/or western blot and the functionality of expressed CARs was evaluated in vitro. RESULTS Blocking TBK1/IKKε during transduction of NK cells enabled their efficient transduction by VSV-G LVs as judged by YFPexpression of 40-50%, with half maximal effective concentrations of 1.1 µM (MRT67307), 5 µM (BX-795) and 24.8 µM (amlexanox). Focusing on MRT67307, the authors successfully generated NK cells expressing CD19-CARs or HER2-CARs with an inducible co-stimulatory molecule. CAR NK cells exhibited increased cytolytic activity and ability to produce cytokines in comparison to untreated controls, confirming CAR functionality. CONCLUSIONS The authors demonstrate that inhibition of TBK1/IKKε enables the reliable generation of genetically modified NK cells using VSV-G LVs. The authors' protocol can be readily adapted to generate clinical-grade NK cells and thus has the potential to facilitate the clinical evaluation of genetically modified NK cell-based therapeutics in the future.
Collapse
|