1
|
Erdem Koc G, Gokcimen A, Sahin F. The Effect of Boric Acid and Sodium Pentaborate Pentahydrate-Treated Foreskin Derived Mesenchymal Stem Cells on Liver Fibrosis. Biol Trace Elem Res 2023; 201:4834-4849. [PMID: 36735212 DOI: 10.1007/s12011-023-03565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Liver fibrosis is a worldwide public health problem due to its life-threatening complications, including portal hypertension, liver failure, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis is the net result of a complex excessive accumulation of extracellular matrix (ECM). Activation of hepatic stellate cells (HSCs) are the cause of deposition of ECM and are commonly recognized as a key step in liver fibrosis. The aim of this study was to investigate the effect of foreskin-derived mesenchymal stem cells treated with boron compounds on liver fibrosis. Rats were injected intraperitoneally with thioacetamide (TAA) at a dose of 150 mg/kg except sham and control groups' rats. Thioacetamide (TAA), foreskin-derived mesenchymal stem cells (TAA + FSDMSC), FSDMSC treated with boric acid (TAA + FSDMSC + BA), FSDMSC treated with sodium pentaborate pentahydrate (TAA + FSDMSC + NaB), control and sham groups were studied. Boron compound treated foreskin-derived mesenchymal stem cells were injected into the tail vein, and evaluations were conducted after 4 weeks and liver tissues were obtained for structural, immunohistochemical, and western blot studies and blood samples were taken for biochemical analysis. FSDMSC (BA) alleviates TAA-induced rats liver fibrosis, and BA showed a positive effect on foreskin-derived mesenchymal stem cells viability. After using BA-treated mesenchymal stem cells, we observed that there was regression in the fibrotic areas at TAA-induced liver fibrosis. The result demonstrates that the contribution of TAA + FSDMSC and TAA + FSDMSC (NaB) at the level of structure is not effective in regression of fibrosis in TAA-generated liver fibrosis. We concluded that FSDMSC treated with BA may be a factor in the regression of fibrosis.
Collapse
Affiliation(s)
- Guluna Erdem Koc
- Department of Histology and Embryology, School of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Alpaslan Gokcimen
- Department of Histology and Embryology, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
2
|
Li X, Shi S, Yang Y, Lou Y, Chen S, Guo Y, Qi X, Wang Y, Liu Z, Cheng Y. The anticardiac fibrosis of total alkaloids of Plumula nelumbinis by regulating circulating lipidomic profile: In vivo study. J Food Biochem 2022; 46:e14194. [PMID: 35502470 DOI: 10.1111/jfbc.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Plumula nelumbinis has great medicinal potential as a herbal tea and traditional drug in China. This study was aimed to evaluate the anticardiac fibrosis of the total alkaloids of P. nelumbinis (TAP). TAP at 50 mg/kg/day significantly ameliorated isoproterenol-induced cardiac fibrosis in mice (p < .05). The circulating lipidomics study revealed that TAP improved the lipid metabolism dysfunction in cardiac fibrosis. Meanwhile, TAP suppressed the lipid accumulation, decreased MDA level (p < .01) in heart, and increased FFA level (p < .01). Furthermore, integrating lipidomics, chemical profiles and pharmacology network analysis found that AMPK and PI3K/Akt signaling pathways were the potential targeted pathway by TAP to regulate lipid metabolism dysfunction including glycerophospholipid metabolism. Above all, TAP provided a potential anticardiac fibrosis effect partly through regulation of lipid profiles. PRACTICAL APPLICATIONS: The total alkaloids of Plumula nelumbinis (TAP) suppressed ISO-induced cardiac fibrosis in mice. Network pharmacology analysis and experiments revealed that TAP-regulated AMPK and PI3K/Akt signaling pathway to improve lipid metabolism disorder in cardiac fibrosis. This study provides evidence to the therapeutic potential of TAP in the treatment of ISO-induced cardiac fibrosis and could be a drug candidate for prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xuping Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuotao Shi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Lou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sixuan Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yixin Guo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Zou S, Ge Y, Chen X, Li J, Yang X, Wang H, Gao X, Chang YX. Simultaneous Determination of Five Alkaloids by HPLC-MS/MS Combined With Micro-SPE in Rat Plasma and Its Application to Pharmacokinetics After Oral Administration of Lotus Leaf Extract. Front Pharmacol 2019; 10:1252. [PMID: 31695616 PMCID: PMC6817585 DOI: 10.3389/fphar.2019.01252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
An environment-friendly and efficient method for simultaneous determination of five alkaloids (nunciferine, O-nornuciferin, liriodenine, armepavine, and pronuciferine) in rat plasma was established by HPLC-MS/MS associated with micro-solid phase extraction (micro-SPE). The plasma sample was pretreated by using micro-SPE columns filled with polymer materials PEP-2 and eluted by little organic solvent (400 µl acetonitrile). The five alkaloids were separated with acetonitrile and 0.1% formic acid aqueous solution on Eclipse plus C18 column. The mode of positive electrospray ionization was used to measure the analytes in multiple-reaction monitoring (MRM). The determination coefficients (R2) of the five alkaloids were greater than 0.99. The lower limit of quantification (LLOQ) of O-nornuciferin, liriodenine, and armepavine was 0.5 ng·ml−1, and that of nunciferine and pronuciferine was 1 ng·ml−1. The validated method was effectively used for the pharmacokinetics of the five orally administrated alkaloids of lotus leaf extract in rat plasma.
Collapse
Affiliation(s)
- Shuhan Zou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Ge
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuanhao Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Latief U, Ahmad R. Herbal remedies for liver fibrosis: A review on the mode of action of fifty herbs. J Tradit Complement Med 2017; 8:352-360. [PMID: 29992106 PMCID: PMC6035307 DOI: 10.1016/j.jtcme.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a dynamic pathological condition which can be slowed down in its initial phases. Without proper clinical management of fibrosis, progressive liver damage may lead to cirrhosis and ultimately to liver failure or primary liver cancer, which are irreversible conditions. Therefore, in order to cure fibrotic damage to liver, its early stages should be the centre of attention. In this context, some supplements and ‘complementary and alternative medicine (CAM)’ deserve specific mention, because of their already recognized natural way of healing and long lasting curative effects. Moreover, CAM display negligible side effects and hence it is gaining worldwide importance in clinical practices. In particular, herbal medicines are now replacing synthetic pharmaceuticals and looked upon as the sources of novel bioactive substances. To develop satisfactory herbal combinations for treating liver fibrosis, phytoproducts need to be systematically evaluated for their potency as anti-fibrotic, anti-hepatotoxic and antioxidant agents. More importantly, the identified herb/agent should have the remarkable tendency to stimulate hepatocytes regeneration. The present review is a systematic account of at least fifty medicinal herbs and their products which in experimental models have demonstrated antifibrotic activity and thus, most likely candidates to offer therapeutic protection to liver. Nevertheless, much additional work is still needed to explore molecular pathways to discover potential applications of these medicines so as to open up new vistas in biomedical research.
Collapse
|
5
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
6
|
Liu YW, Huang YT. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells. PLoS One 2014; 9:e103229. [PMID: 25076488 PMCID: PMC4116159 DOI: 10.1371/journal.pone.0103229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 06/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA) is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation. Materials and Methods The cell line of rat hepatic stellate cells (HSC-T6) was stimulated with lipopolysaccharide (LPS) (100 ng/ml). Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM), then induced by LPS (100 ng/ml). NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38). Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells. Results All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells. Conclusion Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.
Collapse
Affiliation(s)
- Ya-Wei Liu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsau Huang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- * E-mail:
| |
Collapse
|