1
|
Knopp MM, Jørgensen JR, Hansen LT, Müllertz A. Predicting the pharmacokinetics and food effect of oral drug products using the dynamic gastrointestinal model (DGM). Eur J Pharm Biopharm 2025; 212:114723. [PMID: 40252814 DOI: 10.1016/j.ejpb.2025.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The pharmacokinetics (PK) of oral drug compounds are often significantly altered by food intake and evaluating this effect, as required by regulatory agencies, typically involves costly and time-consuming clinical trials. This study used the Dynamic Gastrointestinal Model (DGM), an advanced in vitro system simulating both biochemical and mechanical aspects of the human upper gastrointestinal tract, to predict plasma concentration-time profiles (PK profiles) and food effect of three immediate release oral drug products. The drug products, containing cinnarizine (CIN), diclofenac potassium (DIC) or paracetamol (PAR), were processed in the DGM mimicking the fasted and fed state clinical protocols and the resulting intestinal drug dissolution profiles were modelled (by convolution) to achieve the predicted PK profiles. The predicted PK profiles in both the fasted and fed state were in accordance with the observations in clinical trials, capturing both the positive food effect for CIN and the negative food effects for DIC and PAR. These findings demonstrate the ability of the DGM to provide insights into the PK performance and food effect of oral drug products.
Collapse
Affiliation(s)
| | | | | | - Anette Müllertz
- Bioneer A/S, Department of Pharmacy, DK-2100 Copenhagen, Denmark; Department of Pharmacy, University of Copenhagen DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Kart U, Raimbekova A, Yegorov S, Hortelano G. Immune Modulation with Oral DNA/RNA Nanoparticles. Pharmaceutics 2025; 17:609. [PMID: 40430900 PMCID: PMC12115334 DOI: 10.3390/pharmaceutics17050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/29/2025] Open
Abstract
The oral delivery of DNA/RNA nanoparticles represents a transformative approach in immunotherapy and vaccine development. These nanoparticles enable targeted immune modulation by delivering genetic material to specific cells in the gut-associated immune system, triggering both mucosal and systemic immune responses. Unlike parenteral administration, the oral route offers a unique immunological environment that supports both tolerance and activation, depending on the formulation design. This review explores the underlying mechanisms of immune modulation by DNA/RNA nanoparticles, their design and delivery strategies, and recent advances in their application. Emphasis is placed on strategies to overcome physiological barriers such as acidic pH, enzymatic degradation, mucus entrapment, and epithelial tight junctions. Special attention is given to the role of gut-associated lymphoid tissue in mediating immune responses and the therapeutic potential of these systems in oral vaccine platforms, food allergies, autoimmune diseases, and chronic inflammation. Despite challenges, recent advances in nanoparticle formulation support the translation of these technologies into clinical applications for both therapeutic immunomodulation and vaccination.
Collapse
Affiliation(s)
| | | | | | - Gonzalo Hortelano
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (U.K.); (A.R.); (S.Y.)
| |
Collapse
|
3
|
Zheng Y, Yang G, Li P, Tian B. Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration. Biomaterials 2025; 322:123385. [PMID: 40367812 DOI: 10.1016/j.biomaterials.2025.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.
Collapse
Affiliation(s)
- Yuze Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangqing Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Jain KMH, Duggal I, Hou HH, Siegel RA. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole. Eur J Pharm Biopharm 2025; 210:114688. [PMID: 40089075 DOI: 10.1016/j.ejpb.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to develop a scheme to predict intestinal and plasma concentration-time profiles of the weakly basic BCS-II drug, dipyridamole (DPD), using an Artificial Gut Simulator (AGS) integrated with a compartment-based disposition model. In vivo data for this study was obtained from previously published literature. A 3-compartment disposition model was developed using the plasma concentration-time profile of DPD following an intravenous bolus dose. The AGS, consisting of a donor cell and a hollow fiber-based absorption module, was tuned to absorb DPD saturated solution at a physiological rate constant, 0.0402 min-1, based on the measured Caco-2 cell monolayer permeability coefficient. The dose dumping technique commonly used during dissolution testing can generate excessively high initial supersaturation and precipitation which is not physiologically relevant. In this study, fractions of DPD dose were added incrementally every 15 min to the AGS donor to simulate an overall first-order gastric emptying process. The concentration absorbed by the hollow fiber receiver media was input into the central compartment of the disposition model. The predicted plasma concentration-time profile matched the human in vivo profile of DPD obtained after oral administration of a 50 mg dose. For 30 and 90 mg oral doses, time profiles of concentration and fraction precipitated in the AGS donor agreed well with human duodenal measurements. This study demonstrates the significance of simulating physiological rate of absorption in vitro to accurately predict the bioavailability of a BCS-II compound.
Collapse
Affiliation(s)
| | - Ishaan Duggal
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Chai M, Wang S, Chen Y, Pei X, Zhen X. Targeted and intelligent nano-drug delivery systems for colorectal cancer treatment. Front Bioeng Biotechnol 2025; 13:1582659. [PMID: 40352359 PMCID: PMC12061940 DOI: 10.3389/fbioe.2025.1582659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Colorectal cancer (CRC) remains a highly heterogeneous malignancy with significant morbidity and mortality worldwide. Despite advancements in surgery, chemotherapy, immunotherapy, and targeted therapy, treatment efficacy is often hampered by drug resistance and systemic toxicity. In recent years, nano-drug delivery systems (NDDS) have emerged as a promising strategy to enhance therapeutic precision, reduce adverse effects, and overcome resistance in CRC treatment. This review discusses the recent advancements in NDDS for CRC treatment, focusing on the optimization of oral drug delivery systems, the development of tumor-specific targeting strategies, and the design of intelligent delivery systems responsive to the tumor microenvironment (TME). Furthermore, we summarize current challenges in NDDS translation and explore future research directions for enhancing their clinical feasibility and therapeutic impact.
Collapse
Affiliation(s)
- Meihong Chai
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Shihua Wang
- School of Medicine, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Yuxin Chen
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xueyan Zhen
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Sarnaik D, Krishnakumar A, Nejati S, Sullivan CR, Cross TWL, Campbell WW, Johnson JS, Rahimi R. A smart capsule with a bacteria- and pH-triggered enteric polymer coating for targeted colonic microbiome sampling. Acta Biomater 2025:S1742-7061(25)00268-5. [PMID: 40263059 DOI: 10.1016/j.actbio.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
The gut microbiome is recognized as a critical factor in advancing precision nutrition and medicine for health and in developing dietary recommendations and targeted therapies for gastrointestinal (GI) health and diseases. However, conventional sampling methods, such as fecal analysis and colonoscopy, often fail to capture microbial information from specific regions of the GI tract or require invasive procedures, thereby limiting accuracy and clinical utility. As a non-invasive alternative, passive sampling capsules have been developed for site-specific microbiome analysis by employing pH-sensitive enteric coatings that delay sampling until the capsule reaches the targeted intestinal region. Although this approach has been successful in the small intestine, colonic sampling remains challenging due to the high interpersonal variability in intestinal pH, which makes it difficult to rely solely on a pH-triggering mechanism. To overcome this challenge, a dual bacterially and pH triggered polymeric enteric coating was created by blending lactulose and N,N-dimethylaminoethyl methacrylate, enabling complete dissolution within the colonic region. Through systematic characterization of multiple polymer blend compositions using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry, an optimized design was identified that provides both suitable physical integrity and rapid (∼2 h) degradation in the presence of colonic bacteria, across a pH range of 5 to 8. The optimized blend was subsequently applied as a double-layer enteric coating on a sampling capsule, enabling the dissolution of the outer layer in the small intestine and complete dissolution of the inner layer in the colon. In-vitro and in-vivo pig model studies were conducted to validate the capsule's sampling performance and to ensure the preservation of the microbial environment. Furthermore, 16S rRNA sequencing revealed a taxonomic similarity between samples collected by the capsule and the colonic microbiome (residing between the ileum and fecal matter). Overall, this technology provides an effective approach to targeted microbial sampling and may pave the way for more comprehensive colonic microbiome analyses and improved diagnostic capabilities for GI diseases. STATEMENT OF SIGNIFICANCE: Precise monitoring of the gut microbiome is vital for understanding health and disease, yet current sampling techniques often lack precision or require invasive procedures. Our work introduces a novel, non-invasive capsule that targets the colon using a dual-trigger polymer system activated by both pH and colonic bacteria. This design enables localized sampling of gut microbiota, overcoming the limitations of fecal analysis, endoscopy, and earlier pH-triggered capsule designs. By capturing microbial communities directly from the colon, our technology provides deeper insights into colonic health and conditions such as inflammatory bowel disease and colorectal cancer. This breakthrough represents a significant advancement in precision nutrition and medicine for human health, and advanced diagnostics and targeted therapies to support dietary guidance, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Devendra Sarnaik
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Caitlyn R Sullivan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Tronel A, Roger-Margueritat M, Plazy C, Biennier S, Craspay A, Mohanty I, Portier SC, Laiola M, Roeselers G, Mathieu N, Hupe M, Dorrestein PC, Alcaraz JP, Martin D, Cinquin P, Silvent AS, Giai J, Proust M, Soranzo T, Buelow E, Gouellec ALE. Profiling the human luminal small intestinal microbiome using a novel ingestible medical device. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.18.25326056. [PMID: 40321269 PMCID: PMC12047917 DOI: 10.1101/2025.04.18.25326056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The invasive nature of sample collection for studying the small intestinal (SI) microbiome often results in its poor characterization. This study evaluated a novel ingestible medical device (MD) for SI luminal sample collection. A monocentric interventional trial (NCT05477069) was conducted on 15 healthy subjects. Metagenomics, metabolomics and culturomics assessed the MD's effectiveness in characterizing the healthy SI microbiome and identifying potential biomarkers. The SI microbiota differed significantly from the fecal microbiota, displaying high inter-individual variability, lower species richness, and reduced alpha diversity. A combined untargeted and semi-targeted LC-MS/MS metabolomics approach identified a distinct SI metabolic footprint, with bile acids and amino acids being the most abundant classes of metabolites. Host and host/microbe-derived bile acids were particularly abundant in SI samples. The application of a fast culturomics approach to two SI samples enabled species-level characterization, resulting in the identification of 90 bacterial species, including five potential novel species. The present study demonstrates the efficacy of our novel sampling MD in enabling comprehensive SI microbiome analysis through an integrative multi-omics approach, allowing the identification of distinct microbiome signatures between SI and fecal samples.
Collapse
Affiliation(s)
- Alexandre Tronel
- Pelican Health, 5 avenue du Grand Sablon, 38700, La Tronche, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Morgane Roger-Margueritat
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Caroline Plazy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Salomé Biennier
- Pelican Health, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Anthony Craspay
- Pelican Health, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stéphanie Cools Portier
- Danone Global Research & Innovation Center, Route départementale 128, 91 190 Gif sur Yvette, France
| | - Manolo Laiola
- Danone Global Research & Innovation Center, Route départementale 128, 91 190 Gif sur Yvette, France
| | - Guus Roeselers
- Danone Global Research & Innovation Center, Route départementale 128, 91 190 Gif sur Yvette, France
| | - Nicolas Mathieu
- Univ. Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes/Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, 38043 Grenoble, France
| | - Marianne Hupe
- Univ. Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes/Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, 38043 Grenoble, France
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Donald Martin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Philippe Cinquin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Anne-Sophie Silvent
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France
| | - Joris Giai
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France
| | - Marion Proust
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France
| | - Thomas Soranzo
- Pelican Health, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Elena Buelow
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Audrey LE Gouellec
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Bonner ER, Tschollar W, Anderson R, Mourabit S. Review Article: Novel Enzyme Therapy Design for Gluten Peptide Digestion Through Exopeptidase Supplementation. Aliment Pharmacol Ther 2025; 61:1123-1139. [PMID: 39955716 PMCID: PMC11908114 DOI: 10.1111/apt.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Dietary peptides are increasingly linked to inflammatory gastrointestinal diseases, exemplified by coeliac disease. Coeliac disease is caused by an acquired immune response to proline- and glutamine-rich gluten peptides, which bottleneck proteolysis and provide substrates for immune recognition. Enzyme therapies aim to eliminate gluten immunogenic peptides as an adjunct to gluten-free diet. AIMS To investigate overlooked aspects of enzyme development given difficulties in translating preclinical efficacy into clinical benefit. METHODS We assessed mode-of-action, target organ and drug delivery in the context of digestive physiology and motility for gluten-digesting enzymes on the market or in development until 1 December 2024. RESULTS Most enzymes were gastric endopeptidases specific for proline or glutamine residues. Gastric enzymes may achieve poor enzyme-substrate exposure due to limited mixing and rapid emptying of water-soluble particles. Moreover, endopeptidases cleave proteins/peptides into shorter peptides but do not systematically cleave protein into absorbable fractions. Natural digestive physiology provides thorough mixing at the intestinal brush border, which produces exopeptidases necessary to fully digest proline-rich peptides. Despite reduced activity in patients with coeliac disease, exopeptidases remain underexplored as therapeutic agents. Given limited substrate scope and end-to-end digestion, exopeptidases are ineffective as single agents, requiring functional combinations. Furthermore, vulnerability to gastric acid requires stabilisation or formulation for rapid enteric release. CONCLUSIONS Enzymes should be stabilised throughout the gastrointestinal tract including the small intestine. Exopeptidases perform a critical function by systematically generating absorbable fractions, warranting future investigation as therapeutic agents. Sensitive and translational biomarkers are needed to better assess enzyme efficacy in real-meal conditions.
Collapse
|
9
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
10
|
Liu HF, Li CY, Liu YH, Yao Q, Li QS, Yu LJ. OxDc-A0: an oral gastro-tolerant oxalate decarboxylase for treating secondary hyperoxaluria. Urolithiasis 2025; 53:47. [PMID: 40044966 DOI: 10.1007/s00240-025-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/18/2025] [Indexed: 05/13/2025]
Abstract
Secondary hyperoxaluria is an acquired oxalate metabolic disorder characterized by increased urinary oxalate excretion. Reducing exogenous oxalate absorption through enzyme therapy represents a promising therapeutic strategy. However, the extremely acidic pH and protease-rich environment of the upper gastrointestinal tract pose major obstacles for the oral administration of protein therapeutics. OxDc-A0, a novel gastro-tolerant recombinant oxalate decarboxylase, can degrade oxalate in the stomach, thereby limiting the oxalate pool in the gastrointestinal tract and reducing oxalate absorption and urinary excretion. This study aimed to investigate the pharmacodynamics, pharmacokinetics, and safety profile of OxDc-A0 to assess its drug likeliness. The pharmacodynamics were evaluated in vitro and in hyperoxaluria beagle dog model induced by a high-oxalate diet. OxDc-A0 exhibited excellent gastric tolerance and significant efficacy in reducing urinary oxalate excretion in the dog model with hyperoxaluria. The safety of OxDc-A0 was evaluated in Sprague-Dawley rats, beagle dogs, and golden hamsters according to the guidelines for preclinical safety studies. No adverse effects were observed on the central nervous, cardiovascular, or respiratory system in rats or dogs treated orally with OxDc-A0 up to 37,500 U/kg. Pharmacokinetic studies showed that OxDc-A0 is non-systemically absorbed and is mainly distributed in the gastrointestinal tract. Toxicological studies showed that OxDc-A0 has excellent tolerance, with a NOAEL of 37,500 U/kg/day in both rats and dogs. The maximum tolerated dose was ≥ 105,000 U/kg in rats and ≥ 87,000 U/kg in dogs. Overall, OxDc-A0 shows great potential as a new drug candidate for treating secondary hyperoxaluria.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Wuhan Kangfude Biotechnology Co., Ltd., Building 06, Biomedical Park, 858 Gaoxin Road, East Lake Hi-Tech Development Zone, Wuhan, 430075, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Chun-Yan Li
- Wuhan Kangfude Biotechnology Co., Ltd., Building 06, Biomedical Park, 858 Gaoxin Road, East Lake Hi-Tech Development Zone, Wuhan, 430075, China
| | - Yan-Hong Liu
- Wuhan Kangfude Biotechnology Co., Ltd., Building 06, Biomedical Park, 858 Gaoxin Road, East Lake Hi-Tech Development Zone, Wuhan, 430075, China
| | - Qi Yao
- Wuhan Kangfude Biotechnology Co., Ltd., Building 06, Biomedical Park, 858 Gaoxin Road, East Lake Hi-Tech Development Zone, Wuhan, 430075, China
| | - Qing-Shan Li
- Wuhan Kangfude Biotechnology Co., Ltd., Building 06, Biomedical Park, 858 Gaoxin Road, East Lake Hi-Tech Development Zone, Wuhan, 430075, China.
| | - Long-Jiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
11
|
Scholz KJ, Höhne A, Wittmer A, Häcker G, Hellwig E, Cieplik F, Waidner B, Al-Ahmad A. Co-culture of Helicobacter pylori with oral microorganisms in human saliva. Clin Oral Investig 2025; 29:79. [PMID: 39849235 PMCID: PMC11757641 DOI: 10.1007/s00784-025-06160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE Helicobacter pylori is known for colonizing the gastric mucosa and instigating severe upper gastrointestinal diseases such as gastritis, gastroduodenal ulcers, and gastric cancer. To date, there is no data available on the oral cavity as transmission site, whether H. pylori can survive in the oral cavity or in human saliva. The aim of the study was to investigate the influence of oral microorganisms and human saliva on the survival of H. pylori in human saliva. METHODS H. pylori strains KE, a motile derivate of type strain H. pylori 26695, and H. pylori SS1, a clinical isolate from a gastric biopsy, were grown in human pooled saliva (pooled from 4 healthy human donors, 0.22 μm filter-sterilized) or in BBF (Brucella browth formula; control) either as mono-cultures or in co-culture with Streptococcus mutans, Streptococcus oralis, Actinomyces naeslundii, Lacticaseibacillus casei and Candida dubliniensis. Bacterial survival of H. pylori and the oral microorganisms were investigated using colony forming units (CFU) assay and MALDI-TOF MS at baseline and after 24, 48 and 168 h. RESULTS In saliva, H. pylori KE demonstrated enhanced survival in co-culture with S. mutans, A. naeslundii, and C. dubliniensis, enduring for at least 48 h. In contrast, L. casei and S. oralis inhibited H. pylori KE in saliva. H. pylori KE could not be cultured after 168 h in saliva, neither in mono- nor co-culture. In contrast, H. pylori SS1 in saliva could be cultured after 168 h in co-culture with S. mutans and C. dubliniensis, but not in mono-culture. In BBF, H. pylori KE could be cultured after 168 h with S. mutans, L. casei and C. dubliniensis, and H. pylori SS1 with L. casei and C. dubliniensis, but not with S. mutans. Notably, the co-cultured microorganisms survived at high CFU numbers similar to those of the monocultures. CONCLUSION The study suggests that H. pylori can transiently survive in human saliva and even with presence of certain oral microorganisms. However, it may not be a permanent resident of the oral microbiota. The co-survival with oral microorganisms emphasizes the necessity for studying the role of the oral microbiota in the infectious and transmission cycle of H. pylori.
Collapse
Affiliation(s)
- Konstantin Johannes Scholz
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany.
| | - Annabelle Höhne
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Barbara Waidner
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Biochemistry and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Loke YH, Jayakrishnan A, Mod Razif MRF, Yee KM, Kee PE, Goh BH, Helal Uddin ABM, Lakshminarayanan V, Liew KB. A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Curr Pharm Des 2025; 31:360-376. [PMID: 39390835 DOI: 10.2174/0113816128338560240923073357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Achuth Jayakrishnan
- Department of Microbiology, Hindusthan College of Arts and Science, Coimbatore 641028, Tamil Nadu, India
| | | | - Kar Ming Yee
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Bey Hing Goh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - A B M Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Vijayakumar Lakshminarayanan
- Department of Pharmaceutical Technology, Hindusthan Institute of Technology, Coimbatore 641032, Tamil Nadu, India
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
13
|
Hutkins R, Walter J, Gibson GR, Bedu-Ferrari C, Scott K, Tancredi DJ, Wijeyesekera A, Sanders ME. Classifying compounds as prebiotics - scientific perspectives and recommendations. Nat Rev Gastroenterol Hepatol 2025; 22:54-70. [PMID: 39358591 DOI: 10.1038/s41575-024-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Microbiomes provide key contributions to health and potentially important therapeutic targets. Conceived nearly 30 years ago, the prebiotic concept posits that targeted modulation of host microbial communities through the provision of selectively utilized growth substrates provides an effective approach to improving health. Although the basic tenets of this concept remain the same, it is timely to address certain challenges pertaining to prebiotics, including establishing that prebiotic-induced microbiota modulation causes the health outcome, determining which members within a complex microbial community directly utilize specific substrates in vivo and when those microbial effects sufficiently satisfy selectivity requirements, and clarification of the scientific principles on which the term 'prebiotic' is predicated to inspire proper use. In this Expert Recommendation, we provide a framework for the classification of compounds as prebiotics. We discuss ecological principles by which substrates modulate microbiomes and methodologies useful for characterizing such changes. We then propose statistical approaches that can be used to establish causal links between selective effects on the microbiome and health effects on the host, which can help address existing challenges. We use this information to provide the minimum criteria needed to classify compounds as prebiotics. Furthermore, communications to consumers and regulatory approaches to prebiotics worldwide are discussed.
Collapse
Affiliation(s)
| | | | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Karen Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Daniel J Tancredi
- Department of Pediatrics, University of California at Davis, Sacramento, CA, USA
| | | | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA.
| |
Collapse
|
14
|
Shah DD, Taylor LS. Chemistry and ionization of HPMCAS influences the dissolution and solution-mediated crystallization of posaconazole amorphous solid dispersions. J Pharm Sci 2025; 114:223-233. [PMID: 39243976 DOI: 10.1016/j.xphs.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Hydroxypropyl methyl cellulose acetate succinate (HPMCAS) is one of the polymers of choice in formulating amorphous solid dispersions (ASDs) and helps to sustain high levels of drug supersaturation by delaying drug crystallization. Herein, the impact of HPMCAS chemistry on the solution crystallization kinetics of a fast-crystallizing lipophilic drug, posaconazole (PCZ), from the aqueous bulk phase and the drug-rich phase generated by liquid-liquid phase separation (LLPS), was studied. Three grades of HPMCAS: L, M, and H, which differ in the degree of acetyl and succinoyl substitution (A/S ratio), were compared. The influence of the polymers on the nucleation induction time, and LLPS concentration of PCZ, as well as the size, ζ-potential and composition of the nano-sized drug-rich phase was determined. An increase in the nucleation induction time was observed with an increase in the polymer A/S ratio. A blue shift in the fluorescence emission spectrum of PCZ suggested a greater extent of interaction between PCZ and HPMCAS with an increase in the A/S ratio. More polymer partitioning into the drug-rich phase was also observed with an increase in the A/S ratio, resulting in smaller droplets. A greater extent of ionization of HPMCAS upon increasing the pH from 5.5 to 7.5 decreased the hydrophobicity of the polymer resulting in shorter nucleation induction times. The phase behavior of PCZ in ASD release studies was consistent with these observations, where the shortest duration of supersaturation was observed with the L grade. Although the H grade provided the best inhibition of crystallization, complete release was only observed at higher pH. HPMCAS grade thus influences the kinetics of PCZ crystallization following release from an ASD, as well as the extent of release at physiologically relevant pH conditions. This study provides insights into the role of HPMCAS chemistry and ionization as factors influencing its ability to act as a crystallization inhibitor.
Collapse
Affiliation(s)
- Dishan D Shah
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Integrated Product Development Organization, Dr. Reddy's Laboratories, Bachupally, Hyderabad, Telangana 500090, India
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
15
|
Chrysant SG. Better blood pressure control with the nanoformulation of antihypertensive drugs. Expert Rev Cardiovasc Ther 2024:1-9. [PMID: 39635781 DOI: 10.1080/14779072.2024.2438813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Hypertension is very common and a major risk factor for cardiovascular disease, heart failure, chronic kidney disease, strokes, and death. However, at present only 14% of patients of developing countries have their blood pressure (BP) well controlled. The causes for the failure to control the BP are multiple and one of them could be the formulation of antihypertensive drugs. AREAS COVERED The recent development of nanotechnology by incorporating the drugs into nanoparticles is a new promising field of nanomedicine and preliminary studies have shown this nanoformulation to be more effective in the treatment of hypertension than the existing drug formulations. Another recent development is the nanoformulation of genes used for the treatment of hypertension and cardiovascular diseases. For current information, a Medline search was conducted between 2017 and 2024 and 36 pertinent papers were selected. EXPERT OPINION The nanoformulations of drugs help achieve better drug concentrations, improve drug stability, low solubility, short half life, oral bioavailability, narrow therapeutic index, and poor pharmacokinetic and pharmacodynamic profiles, and decrease the adverse effects of antihypertensive drugs. Also, the nanoformulation of genes for the treatment of hypertension has been shown in preliminary studies to be effective, but more research is needed.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Hoffmann SV, O'Shea JP, Galvin P, Jannin V, Griffin BT. State-of-the-art and future perspectives in ingestible remotely controlled smart capsules for drug delivery: A GENEGUT review. Eur J Pharm Sci 2024; 203:106911. [PMID: 39293502 DOI: 10.1016/j.ejps.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
An emerging concern globally, particularly in developed countries, is the rising prevalence of Inflammatory Bowel Disease (IBD), such as Crohn's disease. Oral delivery technologies that can release the active therapeutic cargo specifically at selected sites of inflammation offer great promise to maximise treatment outcomes and minimise off-target effects. Therapeutic strategies for IBD have expanded in recent years, with an increasing focus on biologic and nucleic acid-based therapies. Reliable site-specific delivery in the gastrointestinal (GI) tract is particularly crucial for these therapeutics to ensure sufficient concentrations in the targeted cells. Ingestible smart capsules hold great potential for precise drug delivery. Despite previous unsuccessful endeavours to commercialise drug delivery smart capsules, the current rise in demand and recent advancements in component development, manufacturing, and miniaturisation have reignited interest in ingestible devices. Consequently, this review analyses the advancements in various mechanical and electrical components associated with ingestible smart drug delivery capsules. These components include modules for device localisation, actuation and retention within the GI tract, signal transmission, drug release, power supply, and payload storage. Challenges and constraints associated with previous capsule design functionality are presented, followed by a critical outlook on future design considerations to ensure efficient and reliable site-specific delivery for the local treatment of GI disorders.
Collapse
Affiliation(s)
- Sophia V Hoffmann
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Joseph P O'Shea
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Paul Galvin
- Tyndall National Institute, University College Cork, Cork T12R5CP, Ireland
| | | | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, Ireland.
| |
Collapse
|
17
|
Wang X, Yang Z, Zhang W, Xing L, Luo R, Cao S. Obstacles, research progress, and prospects of oral delivery of bioactive peptides: a comprehensive review. Front Nutr 2024; 11:1496706. [PMID: 39610876 PMCID: PMC11602335 DOI: 10.3389/fnut.2024.1496706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Bioactive peptides hold significant potential for enhancing human health, however, their limited oral bioavailability poses a substantial barrier to their widespread use in the food and pharmaceutical industries. This article reviews the key factors influencing the absorption efficiency of oral bioactive peptides, including issues related to bitter taste perception, challenges in gastrointestinal environmental stability, and limitations in transmembrane transport. Furthermore, it highlights the latest technologies, such as osmotic technology, chemical modification, and advanced delivery systems, and discusses their advantages in enhancing the stability of bioactive peptides and facilitating intestinal absorption. In addition, the application and challenges of common delivery systems such as liposomes, emulsions, polymer nanoparticles, and hydrogels in oral bioactive peptide delivery are also discussed. This paper aims to provide a theoretical foundation for scientific research and practical applications of oral delivery of bioactive peptides, thereby promoting the further development of bioactive peptides in the context of human health.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zeyao Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Songmin Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
18
|
Takahashi Y, Kambayashi A. Physiologically based in vitro - in vivo correlation of modified release oral formulations with non-linear intestinal absorption: A case study using mirabegron. Eur J Pharm Biopharm 2024; 204:114479. [PMID: 39233190 DOI: 10.1016/j.ejpb.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Establishing an in vitro - in vivo correlation (IVIVC) for oral modified release (MR) formulations would make it possible to substitute an in vitro dissolution test for human bioequivalence (BE) studies when changing the formulation or manufacturing methods. However, the number of IVIVC applications and approvals are reportedly low. One of the main reasons for failure to obtain IVIVCs using conventional methodologies may be the lack of consideration of the dissolution and absorption mechanisms of drugs in the physiological environment. In particular, it is difficult to obtain IVIVC using conventional methodologies for drugs with non-linear absorption processes. Therefore, the aim of the present study was to develop a physiologically based biopharmaceutics model (PBBM) that enables Level A IVIVCs for mirabegron MR formulations with non-linear absorption characteristics. Using human pharmacokinetic (PK) data for immediate-release formulations of mirabegron, the luminal drug concentration-dependent membrane permeation coefficient was calculated through curve fitting. The membrane permeation coefficient data were then applied to the human PK data of the MR formulations to estimate the in vivo dissolution rate by curve fitting. It was assumed that in vivo dissolution could be described using a zero-order rate equation. Furthermore, a Levy plot was generated using the estimated in vivo dissolution rate and the in vitro dissolution rate obtained from the literature. Finally, the dissolution rate of the MR formulations from the Levy plot was applied to the PBBM to predict the oral PK of the mirabegron MR formulations. This PB-IVIVC approach successfully generated linear Levy plots with slopes of almost 1.0 for MR formulations with different dose strengths and dissolution rates. The Cmax values of the MR formulations were accurately predicted using this approach, whereas the prediction errors for AUC exceeded the Level A IVIVC criteria. This can be attributed to the incomplete description of colonic absorption in the current PBBM.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Atsushi Kambayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
19
|
Zhang Y, Han M, Guo Q. Understanding of formation, gastrointestinal breakdown, and application of whey protein emulsion gels: Insights from intermolecular interactions. Compr Rev Food Sci Food Saf 2024; 23:e70034. [PMID: 39379312 DOI: 10.1111/1541-4337.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Whey protein emulsion gel is an ideal model food for revealing how the multilength scale food structures affect food digestion, as their structure and mechanical properties can be precisely manipulated by controlling the type and intensity of intermolecular interactions between protein molecules. However, there are still significant understanding gaps among intermolecular interactions, protein aggregation and gelation, emulsion gel formation, gel breakdown in the gastrointestinal tract (GIT), and the practical use of whey protein emulsion gels, which limits their GIT-targeted applications. In this regard, the relationship between the structure and digestion behavior of heat-set whey protein emulsion gels is reviewed and discussed mainly from the following aspects: (1) structural characteristics of whey protein molecules; (2) how different types of intermolecular interactions influence heat-induced aggregation and gelation of whey protein in the aqueous solutions and the oil-in-water emulsions, and the mechanical properties of the final gels; (3) functions of the mouth, the stomach, and the small intestine in processing of solid foods, and how different types of intermolecular interactions influence the breakdown properties of heat-set whey protein emulsion gels in GIT (i.e., their respective role in controlling gel digestion). Finally, the implications of knowledge derived from the formation and gastrointestinal breakdown of heat-set whey protein emulsion gels for developing controlled delivery vehicles, human satiety enhancers, and sensory modifiers are highlighted.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Menghan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
20
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
21
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C, Zhou M. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater 2024; 188:27-47. [PMID: 39265673 DOI: 10.1016/j.actbio.2024.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel disease (IBD) manifests as inflammation in the colon, rectum, and ileum, presenting a global health concern with increasing prevalence. Therefore, effective anti-inflammatory therapy stands as a promising strategy for the prevention and management of IBD. However, conventional nano drug delivery systems (NDDSs) for IBD face many challenges in targeting the intestine, such as physiological and pathological barriers, genetic variants, disease severity, and nutritional status, which often result in nonspecific tissue distribution and uncontrolled drug release. To address these limitations, stimulus-responsive NDDSs have received considerable attention in recent years due to their advantages in providing controlled release and enhanced targeting. This review provides an overview of the pathophysiological mechanisms underlying IBD and summarizes recent advancements in microenvironmental stimulus-responsive nanocarriers for IBD therapy. These carriers utilize physicochemical stimuli such as pH, reactive oxygen species, enzymes, and redox substances to deliver drugs for IBD treatment. Additionally, pivotal challenges in the future development and clinical translation of stimulus-responsive NDDSs are emphasized. By offering insights into the development and optimization of stimulus-responsive drug delivery nanoplatforms, this review aims to facilitate their application in treating IBD. STATEMENT OF SIGNIFICANCE: This review highlights recent advancements in stimulus-responsive nano drug delivery systems (NDDSs) for the treatment of inflammatory bowel disease (IBD). These innovative nanoplatforms respond to specific environmental triggers, such as pH reactive oxygen species, enzymes, and redox substances, to release drugs directly at the inflammation site. By summarizing the latest research, our work underscores the potential of these technologies to improve drug targeting and efficacy, offering new directions for IBD therapy. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective treatments for IBD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiang Long
- Department of Cardiology, Xuyong County People's Hospital, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao Tang
- College of Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Science and Technology Department, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
22
|
Garbutt P, Cyranka M, Michl J, Maejima Y, Vedovato N, Shimomura K, Swietach P, de Wet H. The release of GLP-1 from gut L cells is inhibited by low extracellular pH. Obesity (Silver Spring) 2024; 32:1819-1824. [PMID: 39238194 PMCID: PMC11492159 DOI: 10.1002/oby.24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE The intestinal luminal pH profile varies from stomach to rectum and becomes disrupted in diseases. However, little is known about the pH dependence of incretin hormone secretion, with most in vitro studies having failed to consider this modulatory factor or having used nonphysiological buffer systems. Here, we report the extracellular pH (pHe) dependence of glucagon-like peptide-1 (GLP-1) exocytosis from L cells. METHODS The pHe dependence of GLP-1 release from GLUTag cells and murine ex vivo primary gut cultures was detected by ELISA. GLP-1 release was measured over a range of pHe under a physiological (CO2/HCO3 -) buffering regime and in its absence (HEPES buffer). The relationship between intracellular pH (pHi) and pHe was mapped given that at least some component of pH sensitivity is likely to be intracellular. RESULTS GLP-1 secretion from L cells was pHe-dependent and stimulated under alkaline conditions. In the absence of glucose or extracellular calcium, secretion remained at a pHe-insensitive baseline. pHi followed changes in pHe, but the relationship was offset to more alkaline levels in the absence of CO2/HCO3 - buffer and became shallower if [Cl-] changes that normally accompany [HCO3 -] changes were compensated iso-osmotically with gluconate. CONCLUSIONS GLP-1 secretion is sensitive to pHe and the buffer present. Exploiting this mechanism therapeutically may benefit patients with obesity.
Collapse
Affiliation(s)
- Philippa Garbutt
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Malgorzata Cyranka
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Johanna Michl
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological MedicineFukushima Medical University School of MedicineFukushimaJapan
| | - Natascia Vedovato
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological MedicineFukushima Medical University School of MedicineFukushimaJapan
| | - Pawel Swietach
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Heidi de Wet
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Tottey J, Etienne-Mesmin L, Chalançon S, Sausset A, Denis S, Mazal C, Blavignac C, Sallé G, Laurent F, Blanquet-Diot S, Lacroix-Lamandé S. Exploring the impact of digestive physicochemical parameters of adults and infants on the pathophysiology of Cryptosporidium parvum using the dynamic TIM-1 gastrointestinal model. Gut Pathog 2024; 16:55. [PMID: 39354600 PMCID: PMC11443851 DOI: 10.1186/s13099-024-00648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known. In this study, we analysed for the first time the impact of digestive physicochemical parameters on C. parvum infection in a human and age-dependent context using a dynamic in vitro gastrointestinal model. RESULTS Our results showed that the parasite excystation, releasing sporozoites from oocysts, occurs in the duodenum compartment after one hour of digestion in both child (from 6 months to 2 years) and adult experimental conditions. In the child small intestine, slightly less sporozoites were released from excystation compared to adult, however they exhibited a higher luciferase activity, suggesting a better physiological state. Sporozoites collected from the child jejunum compartment also showed a higher ability to invade human intestinal epithelial cells compared to the adult condition. Global analysis of the parasite transcriptome through RNA-sequencing demonstrated a more pronounced modulation in ileal effluents compared to gastric ones, albeit showing less susceptibility to age-related digestive condition. Further analysis of gene expression and enriched pathways showed that oocysts are highly active in protein synthesis in the stomach compartment, whereas sporozoites released in the ileum showed downregulation of glycolysis as well as strong modulation of genes potentially related to gliding motility and secreted effectors. CONCLUSIONS Digestion in a sophisticated in vitro gastrointestinal model revealed that invasive sporozoite stages are released in the small intestine, and are highly abundant and active in the ileum compartment, supporting reported C. parvum tissue tropism. Our comparative analysis suggests that physicochemical parameters encountered in the child digestive environment can influence the amount, physiological state and possibly invasiveness of sporozoites released in the small intestine, thus potentially contributing to the higher susceptibility of young individuals to cryptosporidiosis.
Collapse
Affiliation(s)
- Julie Tottey
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France.
| | - Lucie Etienne-Mesmin
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sandrine Chalançon
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Alix Sausset
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Sylvain Denis
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Carine Mazal
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont- Ferrand, France
| | - Guillaume Sallé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Fabrice Laurent
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sonia Lacroix-Lamandé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| |
Collapse
|
24
|
Maurya R, Vikal A, Patel P, Narang RK, Kurmi BD. "Enhancing Oral Drug Absorption: Overcoming Physiological and Pharmaceutical Barriers for Improved Bioavailability". AAPS PharmSciTech 2024; 25:228. [PMID: 39354282 DOI: 10.1208/s12249-024-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
The oral route stands out as the most commonly used method for drug administration, prized for its non-invasive nature, patient compliance, and easy administration. Several elements influence the absorption of oral medications, including their solubility, permeability across mucosal membranes, and stability within the gastrointestinal (GI) environment. Research has delved into comprehending physicochemical, biochemical, metabolic, and biological obstacles that impact the bioavailability of a drug. To improve oral drug absorption, several pharmaceutical technologies and delivery methods have been studied, including cyclodextrins, micelles, nanocarriers, and lipid-based carriers. This review examines both traditional and innovative drug delivery methods, as well as the physiological and pharmacological barriers influencing medication bioavailability when taken orally. Additionally, it describes the challenges and advancements in developing formulations suitable for oral use.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- ISF College of Pharmacy and Research, Rattian Road, Moga, 142048, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
25
|
Alvebratt C, Karlén F, Åhlén M, Edueng K, Dubbelboer I, Bergström CAS. Benefits of combining supersaturating and solubilizing formulations - Is two better than one? Int J Pharm 2024; 663:124437. [PMID: 39002818 DOI: 10.1016/j.ijpharm.2024.124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
A variety of enabling formulations has been developed to address poor oral drug absorption caused by insufficient dissolution in the gastrointestinal tract. As the in vivo performance of these formulations is a result of a complex interplay between dissolution, digestion and permeation, development of suitable in vitro assays that captures these phenomena are called for. The enabling-absorption (ENA) device, consisting of a donor and receiver chamber separated by a semipermeable membrane, has successfully been used to study the performance of lipid-based formulations. In this work, the ENA device was prepared with two different setups (a Caco-2 cell monolayer and an artificial lipid membrane) to study the performance of a lipid-based formulation (LBF), an amorphous solid dispersion (ASD) and the potential benefit of combining the two formulation strategies. An in vivo pharmacokinetic study in rats was performed to evaluate the in vitro-in vivo correlation. In the ENA, high drug concentrations in the donor chamber did not translate to a high mass transfer, which was particularly evident for the ASD as compared to the LBF. The solubility of the polymer used in the ASD was strongly affected by pH-shifts in vitro, and the ph_dependence resulted in poor in vivo performance of the formulation. The dissolution was however increased in vitro when the ASD was combined with a blank lipid-based formulation. This beneficial effect was also observed in vivo, where the drug exposure of the ASD increased significantly when the ASD was co-administered with the blank LBF. To conclude, the in vitro model managed to capture solubility limitations and strategies to overcome these for one of the formulations studied. The correlation between the in vivo exposure of the drug exposure and AUC in the ENA was good for the non pH-sensitive formulations. The deconvoluted pharmacokinetic data indicated that the receiver chamber was a better predictor for the in vivo performance of the drug, however both chambers provided valuable insights to the observed outcome in vivo. This shows that the advanced in vitro setting used herein successfully could explain absorption differences of highly complex formulations.
Collapse
Affiliation(s)
- Caroline Alvebratt
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Filip Karlén
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Uppsala SE-75121, Sweden.
| | - Khadijah Edueng
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden
| | - Ilse Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, P.O. Box 591, Uppsala University, Uppsala SE-751 24, Sweden.
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| |
Collapse
|
26
|
Steigert S, Brouwers J, Verbeke K, Vanuytsel T, Augustijns P. Characterization of luminal contents from the fasted human proximal colon. Eur J Pharm Sci 2024; 200:106821. [PMID: 38823599 DOI: 10.1016/j.ejps.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
To treat colonic diseases more effectively, improved therapies are urgently needed. In this respect, delivering drugs locally to the colon is a key strategy to achieve higher local drug concentrations while minimizing systemic side effects. Understanding the luminal environment is crucial to efficiently develop such targeted therapies and to predict drug disposition in the colon. In this clinical study, we collected colonic contents from an undisturbed fasted proximal colon via colonoscopy and characterized their composition with regard to drug disposition. Colonic pH, osmolality, protein content, bile salts, lipids, phospholipids and short-chain fatty acids were investigated in 10 healthy volunteers (8 male and 2 female, age 19-25). The unique environment of the proximal colon was reflected in the composition of the sampled luminal fluids and the effect of the microbiota could be observed on the pH (median 6.55), the composition of bile salts (majority deconjugated and secondary), and the abundance of short-chain fatty acids. At the same time, an increase in phospholipid concentration, osmolality and total protein content compared to reported ileal values was seen, likely resulting from desiccation. Lipids could only be found in low quantities and mainly in the form of cholesterol and free fatty acids, showing almost complete digestion and absorption by the time luminal contents reach the colon. All characteristics also displayed the considerable intersubject variability found in different regions of the gastrointestinal tract. This study contributes to an improved understanding of the luminal conditions in the proximal colon and facilitates the development of new predictive tools to study colonic drug absorption.
Collapse
Affiliation(s)
- Sebastian Steigert
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Gastroenterology and Hepatology, University Hospitals Leuven campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Timmermans S, Wallaeys C, Garcia-Gonzalez N, Pollaris L, Saeys Y, Libert C. Identification and Characterization of Multiple Paneth Cell Types in the Mouse Small Intestine. Cells 2024; 13:1435. [PMID: 39273007 PMCID: PMC11394207 DOI: 10.3390/cells13171435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The small intestinal crypts harbor secretory Paneth cells (PCs) which express bactericidal peptides that are crucial for maintaining intestinal homeostasis. Considering the diverse environmental conditions throughout the course of the small intestine, multiple subtypes of PCs are expected to exist. We applied single-cell RNA-sequencing of PCs combined with deep bulk RNA-sequencing on PC populations of different small intestinal locations and discovered several expression-based PC clusters. Some of these are discrete and resemble tuft cell-like PCs, goblet cell (GC)-like PCs, PCs expressing stem cell markers, and atypical PCs. Other clusters are less discrete but appear to be derived from different locations along the intestinal tract and have environment-dictated functions such as food digestion and antimicrobial peptide production. A comprehensive spatial analysis using Resolve Bioscience was conducted, leading to the identification of different PC's transcriptomic identities along the different compartments of the intestine, but not between PCs in the crypts themselves.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lotte Pollaris
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
28
|
Rosenbaum C, Gerds N, Hack L, Weitschies W. Scalability of API-Loaded Multifilament Yarn Production by Hot-Melt Extrusion and Evaluation of Fiber-Based Dosage Forms. Pharmaceutics 2024; 16:1103. [PMID: 39204448 PMCID: PMC11360357 DOI: 10.3390/pharmaceutics16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based technologies are widely used in various industries, but their use in pharmaceuticals remains limited. While melt extrusion is a standard method for producing medical fibers such as sutures, it is rarely used for pharmaceutical fiber-based dosage forms. The EsoCap system is a notable exception, using a melt-extruded water-soluble filament as the drug release trigger mechanism. The challenge of producing drug-loaded fibers, particularly due to the use of spinning oils, and the processing of the fibers are addressed in this work using other approaches. The aim of this study was to develop processes for the production and processing of pharmaceutical fibers for targeted drug delivery. Fibers loaded with polyvinyl alcohol and fluorescein sodium as a model drug were successfully prepared by a continuous melt extrusion process and directly spun. These fibers exhibited uniform surface smoothness and consistent tensile strength. In addition, the fibers were further processed into tubular dosage forms using a modified knitting machine and demonstrated rapid drug release in a flow cell.
Collapse
Affiliation(s)
- Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | | | | | | |
Collapse
|
29
|
Romański M, Staniszewska M, Dobosz J, Myslitska D, Paszkowska J, Kołodziej B, Romanova S, Banach G, Garbacz G, Sarcevica I, Huh Y, Purohit V, McAllister M, Wong SM, Danielak D. More Than a Gut Feeling─A Combination of Physiologically Driven Dissolution and Pharmacokinetic Modeling as a Tool for Understanding Human Gastric Motility. Mol Pharm 2024; 21:3824-3837. [PMID: 38958668 PMCID: PMC11345944 DOI: 10.1021/acs.molpharmaceut.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.
Collapse
Affiliation(s)
- Michał Romański
- Department
of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | | | - Justyna Dobosz
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Daria Myslitska
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | | | | | | | - Grzegorz Banach
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Grzegorz Garbacz
- Physiolution
Polska, 74 Piłsudskiego
St., 50-020 Wrocław, Poland
| | - Inese Sarcevica
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Yeamin Huh
- Worldwide
Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Vivek Purohit
- Worldwide
Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Mark McAllister
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Suet M. Wong
- Worldwide
Research and Development, Pfizer R&D
UK Ltd., Sandwich, CT13 9NJ, U.K.
| | - Dorota Danielak
- Department
of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|
30
|
Felicijan T, Rakoše I, Prislan M, Locatelli I, Bogataj M, Trontelj J. Application of a Novel Dissolution Medium with Lipids for In Vitro Simulation of the Postprandial Gastric Content. Pharmaceutics 2024; 16:1040. [PMID: 39204385 PMCID: PMC11359312 DOI: 10.3390/pharmaceutics16081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Food can change various physiological parameters along the gastrointestinal tract, potentially impacting postprandial drug absorption. It is thus important to consider different in vivo conditions during in vitro studies. Therefore, a novel dissolution medium simulating variable postprandial pH values and lipid concentrations was developed and used in this study. Additionally, by establishing and validating a suitable analytical method, the effects of these parameters on the dissolution of a model drug, cinnarizine, and on its distribution between the lipid and aqueous phases of the medium were studied. Both parameters, pH value and lipid concentration, were shown to influence cinnarizine behavior in the in vitro dissolution studies. The amount of dissolved drug decreased with increasing pH due to cinnarizine's decreasing solubility. At pH values 5 and 7, the higher concentration of lipids in the medium increased drug dissolution, and most of the dissolved drug was distributed in the lipid phase. In all media with a lower pH of 3, dissolution was fast and complete, with a significant amount of drug distributed in the lipid phase. These results are in accordance with the in vivo observed positive food effect on cinnarizine bioavailability described in the literature. The developed medium, with its ability to easily adjust the pH level and lipid concentration, thus offers a promising tool for assessing the effect of co-ingested food on the dissolution kinetics of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | | | - Marija Bogataj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.F.); (I.R.); (M.P.); (I.L.); (J.T.)
| | | |
Collapse
|
31
|
Senkina J, Knapp S. Incorporation of an Isohexide Subunit into the Endochin-like Quinolone Scaffold. Molecules 2024; 29:3615. [PMID: 39125020 PMCID: PMC11314205 DOI: 10.3390/molecules29153615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In order to improve the drug-likeness qualities, the antimalarial endochin-like quinolone (ELQ) scaffold has been modified by replacing the 4-(trifluoromethoxy)phenyl portion with an isoidide unit that is further adjustable by varying the distal O-substituents. As expected, the water solubilities of the new analogs are greatly improved, and the melting points are lower. However, the antimalarial potency of the new analogs is reduced to EC50 > 1 millimolar, a result ascribable to the hydrophilic nature of the new substitution.
Collapse
Affiliation(s)
| | - Spencer Knapp
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
32
|
Han Y, Spicer J, Huang Y, Bunt C, Liu M, Wen J. Advancements in oral insulin: A century of research and the emergence of targeted nanoparticle strategies. EUR J LIPID SCI TECH 2024; 126. [DOI: 10.1002/ejlt.202300271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/03/2025]
Abstract
AbstractWith the growing prevalence of diabetes, there is an urgent demand for a user‐friendly treatment option that minimizes side effects related to the use of subcutaneous injections. Scientists have dedicated over a century to developing an oral dosage form of insulin that can be administrated orally. The oral route of administration is the most desirable route for regularly dosed drugs in terms of safety and patient compliance. However, oral delivery of insulin remains a formidable challenge due to its intrinsically limited ability to cross the intestinal epithelium membrane and susceptibility to enzymatic degradation. This article reviews oral insulin research over the past decade, with a particular focus on surface modifications of nanoparticles (NPs). Various strategies involving controlling surface charges, utilizing protective proteins, and targeting specific receptors with ligands have been explored. Notably, surface modifications of the NPs for targeting specific intestinal receptors have shown promise in enhancing insulin oral absorption and bioavailability. Advanced technologies such as oral microneedles and gene therapy have also been developed, but their safety requires further assessment. Despite encouraging preclinical results across numerous strategies, the current clinical evidence is less optimistic. In summary, the present findings highlight the substantial journey that still lies ahead before achieving successful oral delivery of insulin.Practical Applications: This review provides a summary of recent progress in oral insulin delivery, particularly highlighting surface‐modified functional nanoparticles serving as an effective drug delivery system, which offers valuable information to the researchers. Due to the limited effectiveness of oral protein drugs caused by biological barriers, innovative technologies and drug delivery systems have been developed to overcome these obstacles and achieve therapeutic goals. This review concluded that surface modifications to nanoparticles can improve insulin stability and permeability, thereby enhancing oral bioavailability. It could assist researchers in developing more effective and patient‐friendly oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Han
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Julie Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Auckland New Zealand
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery, West China School of Pharmacy, Sichuan University Chengdu China
| | - Craig Bunt
- The Department of Food Science University of Otago Dunedin New Zealand
| | - Mengyang Liu
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Jingyuan Wen
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Auckland New Zealand
| |
Collapse
|
33
|
Liu Z, Zhou Y, Wang H, Liu C, Wang L. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus. Int J Food Microbiol 2024; 417:110691. [PMID: 38631283 DOI: 10.1016/j.ijfoodmicro.2024.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Yi Zhou
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Chengchu Liu
- University of Maryland Sea Grant Extension Program, UMES Center for Food Science and Technology, Princess Anne, MD, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
34
|
Felicijan T, Bogataj M. Forecasting the effect of water gastric emptying patterns on model drug release in an in vitro glass-bead flow-through system. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:269-287. [PMID: 38815199 DOI: 10.2478/acph-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 06/01/2024]
Abstract
Oral solid dosage forms are most frequently administered with a glass of water which empties from the stomach relatively fast, but with a certain variability in its emptying kinetics. The purpose of this study was thus to simulate different individual water gastric emptying (GE) patterns in an in vitro glass-bead flow-through dissolution system. Further, the effect of GE on the dissolution of model drugs from immediate-release tablets was assessed by determining the amount of dissolved drug in the samples pumped out of the stomach compartment. Additionally, different HCl solutions were used as dissolution media to assess the effect of the variability of pH of the gastric fluid on the dissolution of three model drugs: paracetamol, diclofenac sodium, and dipyridamole. The difference in fast and slow GE kinetics resulted in different dissolution profiles of paracetamol in all studied media. For diclofenac sodium and dipyridamole tablets, the effect of GE kinetics was well observed only in media, where the solubility was not a limiting factor. Therefore, GE kinetics of co-ingested water influences the drug release from immediate-release tablets, however, in certain cases, other parameters influencing drug dissolution can partly or fully hinder the expression of this effect.
Collapse
Affiliation(s)
- Tjaša Felicijan
- 1University of Ljubljana, Faculty of Pharmacy Department of Biopharmaceutics and Pharmacokinetics 1000 Ljubljana, Slovenia
| | - Marija Bogataj
- 1University of Ljubljana, Faculty of Pharmacy Department of Biopharmaceutics and Pharmacokinetics 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
36
|
Staniszewska M, Myslitska D, Romański M, Polak S, Garbacz G, Dobosz J, Smoleński M, Paszkowska J, Danielak D. In Vitro Simulation of the Fasted Gastric Conditions and Their Variability to Elucidate Contrasting Properties of the Marketed Dabigatran Etexilate Pellet-Filled Capsules and Loose Pellets. Mol Pharm 2024; 21:2456-2472. [PMID: 38568423 DOI: 10.1021/acs.molpharmaceut.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Variability of the gastrointestinal tract is rarely reflected in in vitro test protocols but often turns out to be crucial for the oral dosage form performance. In this study, we present a generation method of dissolution profiles accounting for the variability of fasted gastric conditions. The workflow featured 20 biopredictive tests within the physiological variability. The experimental array was constructed with the use of the design of experiments, based on three parameters: gastric pH and timings of the intragastric stress event and gastric emptying. Then, the resulting dissolution profiles served as a training data set for the dissolution process modeling with the machine learning algorithms. This allowed us to generate individual dissolution profiles under a customizable gastric pH and motility patterns. For the first time ever, we used the method to successfully elucidate dissolution properties of two dosage forms: pellet-filled capsules and bare pellets of the marketed dabigatran etexilate product Pradaxa. We showed that the dissolution of capsules was triggered by mechanical stresses and thus was characterized by higher variability and a longer dissolution onset than observed for pellets. Hence, we proved the applicability of the method for the in vitro and in silico characterization of immediate-release dosage forms and, potentially, for the improvement of in vitro-in vivo extrapolation.
Collapse
Affiliation(s)
| | - Daria Myslitska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | - Sebastian Polak
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Grzegorz Garbacz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Justyna Dobosz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Michał Smoleński
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | | | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|
37
|
Huang D, Wang Y, Xu C, Zou M, Ming Y, Luo F, Xu Z, Miao Y, Wang N, Lin Z, Weng Z. Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota. Int J Biol Macromol 2024; 266:131107. [PMID: 38527677 DOI: 10.1016/j.ijbiomac.2024.131107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenlan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yangcan Ming
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Na Wang
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
38
|
Seco A, Pereira AR, Camuenho A, Oliveira J, Dias R, Brás N, Basílio N, Parola AJ, Lima JC, de Freitas V, Pina F. Comparing the Chemistry of Malvidin-3- O-glucoside and Malvidin-3,5- O-diglucoside Networks: A Holistic Approach to the Acidic and Basic Paradigms with Implications in Biological Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7497-7510. [PMID: 38520401 PMCID: PMC10995998 DOI: 10.1021/acs.jafc.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The kinetics, thermodynamics, and degradation of malvidin mono- and diglucosides were studied following a holistic approach by extending to the basic medium. In acidic conditions, the reversible kinetics of the flavylium cation toward the equilibrium is controlled by the hydration and cis-trans isomerization steps, while in the basic medium, the OH- nucleophilic addition to the anionic quinoidal bases is the slowest step. There is a pH range (transition pHs), between the acidic and basic paradigms, that includes physiological pH (7.4), where degradation reactions occur faster, preventing the system from reaching the equilibrium. The transition pH of the diglucoside is narrower, and in contrast with the monoglucoside, there is no evidence for the formation of colored oligomers among the degradation products. Noteworthy, OH- addition in position 4 to form B42-, a kinetic product that decreases the overall equilibration rate, was observed only for the diglucoside.
Collapse
Affiliation(s)
- André Seco
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Pereira
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Ambrósio Camuenho
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Joana Oliveira
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Ricardo Dias
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Natércia
F. Brás
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - A. Jorge Parola
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João C. Lima
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor de Freitas
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
39
|
van Trijp MPH, Rios-Morales M, Witteman B, Abegaz F, Gerding A, An R, Koehorst M, Evers B, van Dongen KCV, Zoetendal EG, Schols H, Afman LA, Reijngoud DJ, Bakker BM, Hooiveld GJ. Intraintestinal fermentation of fructo- and galacto-oligosaccharides and the fate of short-chain fatty acids in humans. iScience 2024; 27:109208. [PMID: 38420581 PMCID: PMC10901090 DOI: 10.1016/j.isci.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon. We studied the fate of SCFA as substrates for glucose and lipid metabolism by the host after infusion of 13C-SCFA. In the human distal ileum, no fermentation of FOS:GOS, nor SCFA production, or bacterial cross-feeding was observed. The relative composition of intestinal microbiota changed rapidly during the test day, which demonstrates the relevance of postprandial intestinal sampling to track acute responses of the microbial community toward interventions. SCFA were vividly taken up and metabolized by the host as shown by incorporation of 13C in various host metabolites.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
- Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede 6716 RP, the Netherlands
| | - Fentaw Abegaz
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Statistics and Probability Unit, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ran An
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Martijn Koehorst
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Bernard Evers
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Katja C V van Dongen
- Division of Toxicology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, the Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
40
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, Scharer CD, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. Infect Immun 2024; 92:e0046123. [PMID: 38345371 PMCID: PMC10929453 DOI: 10.1128/iai.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Yang S, Hu Z, Wu P, Kirk T, Chen XD. In vitro release and bioaccessibility of oral solid preparations in a dynamic gastrointestinal system simulating fasted and fed states: A case study of metformin hydrochloride tablets. Int J Pharm 2024; 652:123869. [PMID: 38296171 DOI: 10.1016/j.ijpharm.2024.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Food and formulation characteristics are crucial factors affecting the gastrointestinal release and absorption kinetics of oral solid preparations. In the present study, the dynamic continuous release and bioaccessibility of metformin hydrochloride immediate-release (IR) and sustained-release (SR) tablets were investigated in the dynamic human stomach-intestine (DHSI-IV) system simulating fasted and fed states in healthy adults. Both tablet formulations (particularly IR tablet) exhibited a postponed release in the fed state compared to the fasted state. Correspondingly, the bioaccessible fraction of metformin from IR tablets in the presence of high-fat meal was significantly reduced to 76.2 % of the fasted state. However, the in vitro bioaccessibility was less impaired by food for SR tablets with a fed/fasted ratio of 95.5 %. A convolution-based approach was used to convert in vitro bioaccessibility results to plasma concentration data. The predicted plasma concentration curve showed good agreement with human data in terms of pharmacokinetic (PK) parameters. In the fasted state, the predicted Cmax, Tmax and AUC0-24h of IR tablets were 943.9 ± 25.7 ng/mL, 2.0 ± 0.4 h and 7090.7 ± 112.0 ng.h/mL, respectively, mirroring values observed in healthy subjects. Overall, the DHSI-IV system has demonstrated potential to assess and predict the impact of meal intake on the in vivo release and absorption behaviors of oral solid preparations.
Collapse
Affiliation(s)
- Shilei Yang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Tim Kirk
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
43
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
44
|
Holzem FL, Petrig Schaffland J, Brandl M, Bauer-Brandl A, Stillhart C. Using molecularly dissolved drug concentrations in PBBMs improves the prediction of oral absorption from supersaturating formulations. Eur J Pharm Sci 2024; 194:106703. [PMID: 38224722 DOI: 10.1016/j.ejps.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Predicting the absorption of drugs from enabling formulations is still challenging due to the limited capabilities of standard physiologically based biopharmaceutics models (PBBMs) to capture complex absorption processes. Amongst others, it is often assumed that both, molecularly and apparently dissolved drug in the gastrointestinal lumen are prone to absorption. A recently introduced method for measuring concentrations of molecularly dissolved drug in a dynamic in vitro dissolution setup using microdialysis has opened new opportunities to test this hypothesis and refine mechanistic PBBM approaches. In the present study, we compared results of PBBMs that used either molecularly or apparently dissolved concentrations in the simulated gastrointestinal lumen as input parameters. The in vitro dissolution data from three supersaturating formulations of Posaconazole (PCZ) were used as model input. The modeling outcome was verified using PCZ concentration vs. time profiles measured in human intestinal aspirates and in the blood plasma. When using apparently dissolved drug concentrations (i.e., the sum of colloid-associated and molecularly dissolved drug) the simulated systemic plasma exposures were overpredicted, most pronouncedly with the ASD-based tablet. However, if the concentrations of molecularly dissolved drug were used as input values, the PBBM resulted in accurate prediction of systemic exposures for all three PCZ formulations. The present study impressively demonstrated the value of considering molecularly dissolved drug concentrations as input value for PBBMs of supersaturating drug formulations.
Collapse
Affiliation(s)
- Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Jeannine Petrig Schaffland
- Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| |
Collapse
|
45
|
Liu Y, Van Horn AM, Pham MTN, Dinh BNN, Chen R, Raphael SDR, Paulino A, Thaker K, Somadder A, Frost DJ, Menke CC, Slimak ZC, Slonczewski JL. Fitness trade-offs of multidrug efflux pumps in Escherichia coli K-12 in acid or base, and with aromatic phytochemicals. Appl Environ Microbiol 2024; 90:e0209623. [PMID: 38289137 PMCID: PMC10880634 DOI: 10.1128/aem.02096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Rachel Chen
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Kavya Thaker
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rabeh ME, Vora LK, Moore JV, Bayan MF, McCoy CP, Wylie MP. Dual stimuli-responsive delivery system for self-regulated colon-targeted delivery of poorly water-soluble drugs. BIOMATERIALS ADVANCES 2024; 157:213735. [PMID: 38154402 DOI: 10.1016/j.bioadv.2023.213735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Inflammatory bowel disease (IBD) are chronic inflammatory conditions which cause significant patient morbidity. Local drug delivery to the colon can improve treatment efficacy and reduce side effects associated with IBD treatment. Smart drug delivery systems are designed to regulate the release of therapeutic agents at the desired site of action. pH-responsive drug carriers have been previously utilised for improved oral drug delivery beyond stomach harsh conditions. Additionally, the colon possesses a diverse microbiome secreting bioactive molecules e.g., enzymes, that can be exploited for targeted drug delivery. We herein synthesised and characterised a 2-hydroxyethyl methacrylate and methacrylic acid copolymer, crosslinked with an azobenzyl crosslinker, that displayed pH- and enzyme-responsive properties. The swelling and drug release from hydrogel were analysed in pH 1.2, 6.5 and 7.4 buffers, and in the presence of rat caecal matter using metronidazole and mesalamine as model BCS Class I and IV drugs, respectively. Swelling studies displayed pH-responsive swelling behaviour, where swelling was maximum at pH 7.4 and minimum at pH 1.2 (69 % versus 32 %). Consequently, drug release was limited in gastric and small intestinal conditions but increased significantly when exposed to colonic conditions containing caecal matter. This system displays promising capacity for achieving colon-targeted drug delivery with enhanced dissolution of poorly water-soluble drugs for local treatment of IBD and other colon-targeted therapies.
Collapse
Affiliation(s)
- Mohmmad E Rabeh
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohammad F Bayan
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; Faculty of Pharmacy, Philadelphia University, P.O Box 1, Amman 19392, Jordan
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
47
|
Doi K, Mitani A, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidases from intestinal Barnesiella intestinihominis that hydrolyze multi-branched complex-type N-glycans. J Biosci Bioeng 2024; 137:101-107. [PMID: 38142217 DOI: 10.1016/j.jbiosc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze N-linked glycans. Many ENGases have been characterized, but few have been identified with hydrolytic activity towards multi-branched complex-type N-glycans. In this study, three candidate ENGases were identified from Barnesiella intestinihominis based on database searches and phylogenetic analysis. A domain search identified the N x E motif in all three candidates, suggesting that they were members of glycosyl hydrolase family 85 (GH85). The three candidate ENGases, named Endo-BIN1, Endo-BIN2, and Endo-BIN3, were expressed in Escherichia coli cells, and their hydrolytic activity towards N-glycans and glycoproteins was measured by high performance liquid chromatography analysis and SDS-PAGE analysis. All ENGases showed hydrolytic activity towards glycoproteins, but only Endo-BIN2 and Endo-BIN3 showed hydrolytic activity towards pyridylaminated N-glycans. The optimum pH of Endo-BIN1, Endo-BIN2, and End-BIN3 was pH 6.5, 4.0, and 7.0, respectively. We measured substrate specificities of Endo-BIN2 and Endo-BIN3 towards pyridylaminated N-glycans, and found that the two Endo-BIN enzymes showed similar substrate specificity, preferring bi-antennary complex-type N-glycans with galactose or α2,6-linked sialic acid residues at the non-reducing ends. Endo-BIN2 and Endo-BIN3 were also able to hydrolyze multi-branched complex-type N-glycans. SDS-PAGE analysis revealed that all Endo-BIN enzymes were capable of releasing complex-type N-glycans from glycoproteins such as rituximab, transferrin, and fetuin. We expect that B. intestinihominis possesses ENGases to facilitate the utilization of complex-type N-glycans from host cells. These findings will have applications in N-glycan remodeling of glycoproteins and the development of pharmaceuticals.
Collapse
Affiliation(s)
- Kanako Doi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
48
|
Konstanti P, Ligthart K, Fryganas C, Constantinos P, Smidt H, de Vos WM, Belzer C. Physiology of γ-aminobutyric acid production by Akkermansia muciniphila. Appl Environ Microbiol 2024; 90:e0112123. [PMID: 38088552 PMCID: PMC10807452 DOI: 10.1128/aem.01121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024] Open
Abstract
Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kate Ligthart
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Christos Fryganas
- Food Quality and Design, Wageningen University & Research, Wageningen, the Netherlands
| | - Patinios Constantinos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
49
|
Nicze M, Borówka M, Dec A, Niemiec A, Bułdak Ł, Okopień B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int J Mol Sci 2024; 25:815. [PMID: 38255888 PMCID: PMC10815890 DOI: 10.3390/ijms25020815] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Drugs based on peptides and proteins (PPs) have been widely used in medicine, beginning with insulin therapy in patients with diabetes mellitus over a century ago. Although the oral route of drug administration is the preferred one by the vast majority of patients and improves compliance, medications of this kind due to their specific chemical structure are typically delivered parenterally, which ensures optimal bioavailability. In order to overcome issues connected with oral absorption of PPs such as their instability depending on digestive enzymes and pH changes in the gastrointestinal (GI) system on the one hand, but also their limited permeability across physiological barriers (mucus and epithelium) on the other hand, scientists have been strenuously searching for novel delivery methods enabling peptide and protein drugs (PPDs) to be administered enterally. These include utilization of different nanoparticles, transport channels, substances enhancing permeation, chemical modifications, hydrogels, microneedles, microemulsion, proteolytic enzyme inhibitors, and cell-penetrating peptides, all of which are extensively discussed in this review. Furthermore, this article highlights oral PP therapeutics both previously used in therapy and currently available on the medical market.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | |
Collapse
|
50
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|