1
|
İnci A, Dökmeci S. Extracellular chaperones in lysosomal storage diseases. Mol Genet Metab 2025; 145:109086. [PMID: 40106871 DOI: 10.1016/j.ymgme.2025.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lysosomal storage disorders (LSDs) are a diverse group of inherited metabolic disorders characterized by the accumulation of undegraded substrates within lysosomes due to defective lysosomal function. Recent research has highlighted the pivotal role of extracellular chaperones in the pathophysiology of LSDs, revealing their crucial involvement in modulating disease progression. These chaperones aid in stabilizing and refolding misfolded lysosomal enzymes, enhancing their proper trafficking and function, which in turn reduces substrate accumulation. Furthermore, extracellular chaperones have emerged as promising biomarkers, with their levels in bodily fluids offering potential for disease diagnosis and monitoring. This review explores the current understanding of extracellular chaperones in the context of LSDs, examining their mechanisms of action, biomarker and therapeutic potential, and future directions in clinical application of LSDs.
Collapse
Affiliation(s)
- Aslı İnci
- Gazi University School of Medicine, Department of Pediatric Metabolism, Ankara, Turkey; Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey.
| | - Serap Dökmeci
- Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey
| |
Collapse
|
2
|
Renata S, Verma N, Peddinti RK. Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125631. [PMID: 39736186 DOI: 10.1016/j.saa.2024.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate. The detection of sialic acid has been done by many tools including surface-enhanced Raman spectroscopy (SERS) which gained incredible attention due to its high selectivity and sensitivity. However, currently, comprehensive reviews of sialic acid detection and imaging as a cancer biomarker using SERS are still lacking. Here, we present the significant breakthroughs in SERS-based detection of sialic acid levels on cells, tissues, and body fluids due to the presence of cancer, different cancer metastasis stages, and in response to the external stimuli. This review covers the SERS substrate and novel SERS strategies, using lectin, boronic acid, metabolic glycan labelling and label-free methods, for sialic acid detection as cancer biomarker. The remaining challenges to detect sialic acid and prospect of future development of SERS for other carbohydrate-based cancer biomarker, for instance fucose, are also discussed.
Collapse
Affiliation(s)
- Septila Renata
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Nitish Verma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Zhu Q, Chaubard JL, Geng D, Shen J, Ban L, Cheung ST, Wei F, Liu Y, Sun H, Calderon A, Dong W, Qin W, Li T, Wen L, Wang PG, Sun S, Yi W, Hsieh-Wilson LC. Chemoenzymatic Labeling, Detection and Profiling of Core Fucosylation in Live Cells. J Am Chem Soc 2024; 146:26408-26415. [PMID: 39279393 DOI: 10.1021/jacs.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Core fucosylation, the attachment of an α-1,6-linked-fucose to the N-glycan core pentasaccharide, is an abundant protein modification that plays critical roles in various biological processes such as cell signaling, B cell development, antibody-dependent cellular cytotoxicity, and oncogenesis. However, the tools currently used to detect core fucosylation suffer from poor specificity, exhibiting cross-reactivity against all types of fucosylation. Herein we report the development of a new chemoenzymatic strategy for the rapid and selective detection of core fucosylated glycans. This approach employs a galactosyltransferase enzyme identified fromCaenorhabditis elegansthat specifically transfers an azido-appended galactose residue onto core fucose via a β-1,4 glycosidic linkage. We demonstrate that the approach exhibits superior specificity toward core fucose on a variety of complex N-glycans. The method enables detection of core fucosylated glycoproteins from complex cell lysates, as well as on live cell surfaces, and it can be integrated into a diagnostic platform to profile protein-specific core fucosylation levels. This chemoenzymatic labeling approach offers a new strategy for the identification of disease biomarkers and will allow researchers to further characterize the fundamental role of this important glycan in normal and disease physiology.
Collapse
Affiliation(s)
- Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jean-Luc Chaubard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Didi Geng
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lan Ban
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sheldon T Cheung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Haofan Sun
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Angie Calderon
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Yuan Z, Lai Z, Zhang Y, Zhang J, Zhou J, Li D, Yu W, Zhou J, Li Z. N-glycosylation of disease-specific haptoglobin for the early screening of diabetic retinopathy. Proteomics Clin Appl 2024; 18:e2300032. [PMID: 38456388 DOI: 10.1002/prca.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Diabetic retinopathy (DR), as one of the microvascular complications of diabetes, is a leading cause of acquired vision loss. Most DR cases are detected in the advanced stage through fundoscopy, making molecular biomarkers urgently needed for early diagnosis of DR. EXPERIMENTAL DESIGN Serum disease-specific haptoglobin-β (Hp-β) chains of 100 patients with type 2 diabetes mellitus (T2DM) and 156 T2DM patients with non-proliferative diabetic retinopathy (NPDR) were separated using polyacrylamide gel electrophoresis. After in-gel digestion and enrichment, the intact N-glycopeptides were detected by mass spectrometry. RESULTS Fucosylation of Hp-β was significantly increased and sialylation of Hp-β was significantly decreased in background DR (BDR, an early-stage DR) patients compared with non-diabetic retinopathy patients (p < 0.05) and yielded area under curves (AUCs) of 0.801 and 0.829 in training and validation groups, respectively, which had an advantage over glycated hemoglobin A1c (AUC ≤ 0.691). Moreover, a significant increase in sialylated Hp-β was found in severe NPDR patients compared with BDR patients and yielded an AUC of 0.828 to distinguish severe NPDR from BDR. CONCLUSION Changes in Hp-β glycosylation are closely related to DR, and may be used for early diagnosis and screening of DR.
Collapse
Affiliation(s)
- Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yixin Zhang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Beijing, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Zertuche-Martínez C, Velázquez-Enríquez JM, González-García K, Santos-Álvarez JC, Romero-Tlalolini MDLÁ, Pina-Canseco S, Pérez-Campos Mayoral L, Muriel P, Villa-Treviño S, Baltiérrez-Hoyos R, Arellanes-Robledo J, Vásquez-Garzón VR. Discovery of candidate biomarkers from plasma-derived extracellular vesicles of patients with cirrhosis and hepatocellular carcinoma: an exploratory proteomic study. Mol Omics 2024; 20:483-495. [PMID: 39011654 DOI: 10.1039/d4mo00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) represent an attractive source of biomarkers due to their biomolecular cargo. The aim of this study was to identify candidate protein biomarkers from plasma-derived EVs of patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Plasma-derived EVs from healthy participants (HP), LC, and HCC patients (eight samples each) were subjected to label-free quantitative proteomic analysis using LC-MS/MS. A total of 248 proteins were identified, and differentially expressed proteins (DEPs) were obtained after pairwise comparison. We found that DEPs mainly involve complement cascade activation, coagulation pathways, cholesterol metabolism, and extracellular matrix components. By choosing a panel of up- and down-regulated proteins involved in cirrhotic and carcinogenesis processes, TGFBI, LGALS3BP, C7, SERPIND1, and APOC3 were found to be relevant for LC patients, while LRG1, TUBA1C, TUBB2B, ACTG1, C9, HP, FGA, FGG, FN1, PLG, APOB and ITIH2 were associated with HCC patients, which could discriminate both diseases. In addition, we identified the top shared proteins in both diseases, which included LCAT, SERPINF2, A2M, CRP, and VWF. Thus, our exploratory proteomic study revealed that these proteins might play an important role in the disease progression and represent a panel of candidate biomarkers for the prognosis and diagnosis of LC and HCC.
Collapse
Affiliation(s)
- Cecilia Zertuche-Martínez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Karina González-García
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | | | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07000, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Rafael Baltiérrez-Hoyos
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico.
| | | | - Verónica Rocío Vásquez-Garzón
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico.
| |
Collapse
|
7
|
Kralova K, Vrtelka O, Fouskova M, Smirnova TA, Michalkova L, Hribek P, Urbanek P, Kuckova S, Setnicka V. Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma. Talanta 2024; 270:125527. [PMID: 38134814 DOI: 10.1016/j.talanta.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Liquid biopsy is a very topical issue in clinical diagnostics research nowadays. In this study, we explored and compared various analytical approaches to blood plasma analysis. Finally, we proposed a comprehensive procedure, which, thanks to the utilization of multiple analytical techniques, allowed the targeting of various biomolecules in blood plasma reflecting diverse biological processes underlying disease development. The potential of such an approach, combining proteomics, metabolomics, and vibrational spectroscopy along with preceding blood plasma fractionation, was demonstrated on blood plasma samples of patients suffering from hepatocellular carcinoma in cirrhotic terrain (n = 20) and control subjects with liver cirrhosis (n = 20) as well as healthy subjects (n = 20). Most of the applied methods allowed the classification of the samples with an accuracy exceeding 80.0 % and therefore have the potential to be used as a stand-alone method in clinical diagnostics. Moreover, a final panel of 48 variables obtained by a combination of the utilized analytical methods enabled the discrimination of the hepatocellular carcinoma samples from cirrhosis with 94.3 % cross-validated accuracy. Thus, this study, although limited by the cohort size, clearly demonstrated the benefit of the multimethod approach in clinical diagnosis.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Marketa Fouskova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tatiana Anatolievna Smirnova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lenka Michalkova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic; Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02, Prague 6, Czech Republic
| | - Petr Hribek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic; Department of Internal Medicine, Faculty of Military Health Sciences in Hradec Kralove, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Petr Urbanek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic
| | - Stepanka Kuckova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Jiang J, Luo Z, Zhang RC, Wang YL, Zhang J, Duan MY, Qiu ZJ, Huang C. Insights into the history and tendency of glycosylation and digestive system tumor: A bibliometric-based visual analysis. World J Gastrointest Oncol 2024; 16:1059-1075. [PMID: 38577469 PMCID: PMC10989360 DOI: 10.4251/wjgo.v16.i3.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Glycosylation, a commonly occurring post-translational modification, is highly expressed in several tumors, specifically in those of the digestive system, and plays a role in various cellular pathophysiological mechanisms. Although the importance and detection methods of glycosylation in digestive system tumors have garnered increasing attention in recent years, bibliometric analysis of this field remains scarce. The present study aims to identify the developmental trends and research hotspots of glycosylation in digestive system tumors. AIM To find and identify the developmental trends and research hotspots of glycosylation in digestive system tumors. METHODS We obtained relevant literature from the Web of Science Core Collection and employed VOSviewer 1.6.19 and CiteSpace (version 6.1.R6) to perform bibliometric analysis. RESULTS A total of 2042 documents spanning from 1978 to the present were analyzed, with the research process divided into three phases: the period of obscurity (1978-1990), continuous development period (1991-2006), and the rapid outbreak period (2007-2023). These documents were authored by researchers from 66 countries or regions, with the United States and China leading in terms of publication output. Reis Celso A had the highest number of publications, while Pinho SS was the most cited author. Co-occurrence analysis revealed the most popular keywords in this field are glycosylation, expression, cancer, colorectal cancer, and pancreatic cancer. Furthermore, the Journal of Proteome Research was the most prolific journal in terms of publications, while the Journal of Biological Chemistry had the most citations. CONCLUSION The bibliometric analysis shows current research focus is primarily on basic research in this field. However, future research should aim to utilize glycosylation as a target for treating tumor patients.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ren-Chao Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yue-Ling Wang
- Jiangnan University Wuxi School of Medicine, Wuxi 214122, Jiangsu Province, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ming-Yu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng-Jun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
9
|
Dickinson A, Joenväärä S, Tohmola T, Renkonen J, Mattila P, Carpén T, Mäkitie A, Silén S. Altered microheterogeneity at several N-glycosylation sites in OPSCC in constant protein expression conditions. FASEB Bioadv 2024; 6:26-39. [PMID: 38223202 PMCID: PMC10782471 DOI: 10.1096/fba.2023-00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Protein glycosylation responds sensitively to disease states. It is implicated in every hallmark of cancer and has recently started to be considered as a hallmark itself. Changes in N-glycosylation microheterogeneity are more dramatic than those of protein expression due to the non-template nature of protein glycosylation. This enables their potential use in serum-based diagnostics. Here, we perform glycopeptidomics on serum from patients with oropharyngeal squamous cell carcinoma (OPSCC), compared to controls and comparing between cancers based on etiology (human papilloma virus- positive or negative). Using MS2, we then targeted glycoforms, significantly different between the groups, to identify their glycopeptide compositions. Simultaneously we investigate the same serum proteins, comparing whether N-glycosylation changes reflect protein-level changes. Significant glycoforms were identified from proteins such as alpha-1-antitrypsin (SERPINA1), haptoglobin, and different immunoglobulins. SERPINA1 had glycovariance at 2 N-glycosylation sites, that were up to 35 times more abundant in even early-stage OPSCCs, despite minimal differences between SERPINA1 protein levels between groups. Some identified glycoforms' fold changes (FCs) were in line with serum protein level FCs, others were less abundant in early-stage cancers but with great variance in higher-stage cancers, such as on immunoglobulin heavy constant gamma 2, despite no change in protein levels. Such findings indicate that glycovariant analysis might be more beneficial than proteomic analysis, which is yet to be fruitful in the search for biomarkers. Highly sensitive glycopeptide changes could potentially be used in the future for cancer screening. Additionally, characterizing the glycopeptide changes in OPSCC is valuable in the search for potential therapeutic targets.
Collapse
Affiliation(s)
- Amy Dickinson
- Department of Otorhinolaryngology—Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman InstituteUniversity of HelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman InstituteUniversity of HelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| | - Jutta Renkonen
- Transplantation Laboratory, Haartman InstituteUniversity of HelsinkiFinland
| | - Petri Mattila
- Department of Otorhinolaryngology—Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Timo Carpén
- Department of Otorhinolaryngology—Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of PathologyUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and TechnologyKarolinska Institutet and Karolinska HospitalStockholmSweden
| | - Suvi Silén
- Department of Otorhinolaryngology—Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
10
|
Lou YC, Tu CF, Chou CC, Yeh HH, Chien CY, Sadotra S, Chen C, Yang RB, Hsu CH. Structural insights into the role of N-terminal integrity in PhoSL for core-fucosylated N-glycan recognition. Int J Biol Macromol 2024; 255:128309. [PMID: 37995778 DOI: 10.1016/j.ijbiomac.2023.128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Chi Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sushant Sadotra
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
11
|
Morishita K, Kondo J, Sakon D, Hayashibara A, Tamura I, Shimizu K, Takamatsu S, Murata K, Kamada Y, Miyoshi E. Prohaptoglobin is a possible prognostic biomarker for colorectal cancer. Biochem Biophys Res Commun 2023; 672:72-80. [PMID: 37343317 DOI: 10.1016/j.bbrc.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Fucosylated haptoglobin is a novel glycan biomarker for colorectal and other cancers, while the significance of its precursor, prohaptoglobin (proHp), remains to be elucidated. In this study, we investigated whether proHp can be a colorectal cancer (CRC) biomarker and the biological functions of proHp in CRC using 10-7G, a monoclonal antibody recently developed in our laboratory. MATERIALS AND METHODS Serum proHp level in 74 patients with CRC was semi-quantified by western blotting, and 5-year recurrence-free survival and overall survival were analyzed for groups stratified by proHp status (high vs. low). We also performed immunohistochemical analyses of 17 CRC tissue sections using 10-7G mAb. The biological functions of proHp were evaluated by overexpressing proHp in CRC cell lines. RESULTS Serum proHp correlated with the clinical stage and poorer prognosis of CRC. In the primary CRC sections, immune cells were stained positive for 10-7G in ∼50% of the cases. Overexpression of proHp in HCT116 human CRC cells induced epithelial-mesenchymal transition-like changes and promoted cell migration in CRC cells. CONCLUSION We provide evidence for the first time that proHp has potential as a prognostic biomarker for CRC and demonstrated specific biological activities of proHp.
Collapse
Affiliation(s)
- Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Sakon
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ayumu Hayashibara
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikumi Tamura
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Kayoko Shimizu
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohei Murata
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Asuka T, Kamada Y, Morishita K, Fukuoka T, Takamatsu S, Kondo J, Watanabe M, Sakai N, Hayakawa K, Miyoshi E. Twin research shows glycan changes are more susceptible to environmental factors than their carrier glycoproteins. Glycoconj J 2023; 40:191-198. [PMID: 36787035 DOI: 10.1007/s10719-023-10099-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 01/02/2023] [Indexed: 02/15/2023]
Abstract
Changes in protein glycosylation are clinically used as biomarkers. In the present study, we employed a twin cohort to investigate the contributions of genetic and environmental factors to glycan modifications of glycoproteins. Mac-2 binding protein (Mac-2 bp), haptoglobin (Hp), and their glycosylated forms are liver fibrosis and cancer biomarkers. Sera from 107 twin pairs without clinical information were used as a training cohort for the Mac-2 bp and Mac-2 bp glycosylation isomer (M2BPGi) assay. As a validation cohort, 22 twin pairs were enrolled in the study. For each twin pair, one twin was diagnosed with liver or pancreatic disease. For the training cohort, the correlation ratios of serum Mac-2 bp and M2BPGi levels in twin sera with random sequences were 0.30 and 0.018, respectively. The correlation ratios between twin pairs in the validation cohort for serum Mac-2 bp and M2BPGi levels were 0.75 and 0.35, respectively. In contrast, correlation ratios of serum Hp and fucosylated haptoglobin (Fuc-Hp) levels between twin sera with liver and pancreatic disease were 0.49 and 0.16, respectively. Although serum protein levels of glycoproteins are susceptible to genetic factors, characteristic glycan changes of these glycoproteins are more susceptible to environmental factors, including liver and pancreatic disease.
Collapse
Affiliation(s)
- Tatsuya Asuka
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Fukuoka
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Science, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norio Sakai
- Laboratory of Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuo Hayakawa
- Division of Health Science, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
13
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
14
|
Choi H, Ju S, Kang K, Seo MH, Kim JM, Miyoshi E, Yeo MK, Park SY. Terminal fucosylation of haptoglobin in cancer-derived exosomes during cholangiocarcinoma progression. Front Oncol 2023; 13:1183442. [PMID: 37168374 PMCID: PMC10165115 DOI: 10.3389/fonc.2023.1183442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a silent tumor with a high mortality rate due to the difficulty of early diagnosis and prediction of recurrence even after timely surgery. Serologic cancer biomarkers have been used in clinical practice, but their low specificity and sensitivity have been problematic. In this study, we aimed to identify CCA-specific glycan epitopes that can be used for diagnosis and to elucidate the mechanisms by which glycosylation is altered with tumor progression. Methods The serum of patients with various cancers was fractioned into membrane-bound and soluble components using serial ultracentrifugation. Lectin blotting was conducted to evaluate glycosylation. Proteins having altered glycosylation were identified using proteomic analysis and further confirmed using immunoblotting analysis. We performed HPLC, gene analysis, real-time cargo tracking, and immunohistochemistry to determine the origin of CCA glycosylation and its underlying mechanisms. Extracellular vesicles (EV) were isolated from the sera of 62 patients with CCA at different clinical stages and inflammatory conditions and used for glycan analysis to assess their clinical significance. Results The results reveal that glycosylation patterns between soluble and membrane-bound fractions differ significantly even when obtained from the same donor. Notably, glycans with α1-3/4 fucose and β1-6GlcNAc branched structures increase specifically in membrane-bound fractions of CCA. Mechanically, it is primarily due to β-haptoglobin (β-Hp) originating from CCA expressing fucosyltransferase-3/4 (FUT 3/4) and N-acetylglucosaminyltransferase-V (MGAT5). Newly synthesized β-Hp is loaded into EVs in early endosomes via a KFERQ-like motif and then secreted from CCA cells to induce tumor progression. In contrast, β-Hp expressed by hepatocytes is secreted in a soluble form that does not affect CCA progression. Moreover, evaluation of EV glycosylation in CCA patients shows that fucosylation level of EV-Hp gradually increases with tumor progression and decreases markedly when the tumors are eliminated by surgery. Conclusion This study suggests that terminal fucosylation of Hp in cancer-derived exosomes can be a novel glycan marker for diagnosis and prognosis of CCA. These findings highlight the potential of glycan analysis in different fractions of serum for biomarker discover for other diseases. Further research is needed to understand the role of fucosylated EVs on CCA progression.
Collapse
Affiliation(s)
- Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Moon-Hyeong Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- *Correspondence: Min-Kyung Yeo, ; Seung-Yeol Park,
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
- *Correspondence: Min-Kyung Yeo, ; Seung-Yeol Park,
| |
Collapse
|
15
|
Fucosylated haptoglobin is a novel predictive marker of hepatocellular carcinoma after hepatitis C virus elimination in patients with advanced liver fibrosis. PLoS One 2022; 17:e0279416. [PMID: 36542633 PMCID: PMC9770342 DOI: 10.1371/journal.pone.0279416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with advanced fibrosis are at risk for developing hepatocellular carcinoma (HCC) even after hepatitis C virus (HCV) elimination. We previously reported that serum fucosylated haptoglobin (Fuc-Hp) levels increase as the disease progresses from chronic hepatitis to cirrhosis and then HCC. However, it remains unclear whether serum Fuc-Hp levels can stratify the risk of HCC occurrence after a sustained virological response (SVR) is achieved with direct-acting antivirals (DAAs) in patients with advanced liver fibrosis. METHODS Among 3,550 patients with chronic hepatitis C treated with DAAs at Osaka University Hospital and related hospitals, the stored sera of 140 patients who were diagnosed with F3 or F4 by liver biopsy before DAA treatment, achieved SVR, and had no history of HCC were available at both baseline and the end of treatment (EOT). We measured the Fuc-Hp levels in these samples. RESULTS The median serum levels of Fuc-Hp at EOT were significantly lower than those at baseline. During the 54.4-month follow-up period, 16 of 140 patients developed HCC. Multivariate Cox proportional hazards analysis revealed that high Fuc-Hp at EOT, high body mass index (BMI), and low albumin at EOT were independent risk factors for HCC occurrence. Patients with all three factors-high Fuc-Hp, high BMI, and low albumin-had a higher incidence of HCC than patients without these factors. CONCLUSIONS High serum Fuc-Hp levels at EOT were an independent risk factor for HCC occurrence after SVR. Combined with BMI and albumin, Fuc-Hp can stratify the risk of HCC occurrence among those with advanced fibrosis.
Collapse
|
16
|
Kondo J, Sakata N, Morishita K, Hayashibara A, Sakon D, Takamatsu S, Asakura N, Suzuki T, Miyoshi E. Transcription factor SP1 regulates haptoglobin fucosylation via induction of GDP-fucose transporter 1 in the hepatoma cell line HepG2. Biochem Biophys Rep 2022; 32:101372. [PMID: 36313594 PMCID: PMC9615130 DOI: 10.1016/j.bbrep.2022.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Fucosylation is involved in cancer and inflammation, and several fucosylated proteins, such as AFP-L3 for hepatocellular carcinoma, are used as cancer biomarkers. We previously reported an increase in serum fucosylated haptoglobin (Fuc-Hp) as a biomarker for several cancers, including pancreatic and colon cancer and hepatocellular carcinoma. The regulation of fucosylated protein production is a complex cellular process involving various fucosylation regulatory genes. In this report, we investigated the molecular mechanisms regulating Fuc-Hp production in cytokine-treated hepatoma cells using a partial least squares (PLS) regression model. We found that SLC35C1, which encodes GDP-fucose transporter 1 (GFT1), is the most responsible factor for Fuc-Hp production among various fucosylation regulatory genes. Furthermore, the transcription factor SP1 was essential in regulating SLC35C1 expression. We also found that an SP1 inhibitor was able to suppress Fuc-Hp production without affecting total Hp levels. Taken together, Fuc-Hp production was regulated by SP1 via induction of GFT1 in the hepatoma cell line HepG2.
PLS analysis identified SLC35C1 as a critical gene to promote Hp fucosylation. SP1 regulates Fuc-Hp production via inducing SLC35C1. SP1 inhibition decreases Fuc-Hp production in HepG2 cells.
Collapse
Affiliation(s)
- Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Natsumi Sakata
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ayumu Hayashibara
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Sakon
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nobuhiko Asakura
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan,Corresponding author. Department of Molecular Biochemistry & Clinical Investigation, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Rabus JM, Guan S, Schultz LM, Abutokaikah MT, Maître P, Bythell BJ. Protonated α- N-Acetyl Galactose Glycopeptide Dissociation Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1745-1752. [PMID: 36018613 DOI: 10.1021/jasms.2c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We recently provided mass spectrometric, H/D labeling, and computational evidence of pyranose to furanose N-acetylated ion isomerization reactions that occurred prior to glycosidic bond cleavage in both O- and N-linked glycosylated amino acid model systems (Guan et al. Phys. Chem. Chem. Phys., 2021, 23, 23256-23266). These reactions occurred irrespective of the glycosidic linkage stereochemistry (α or β) and the N-acetylated hexose structure (GlcNAc or GalNAc). In the present article, we test the generality of the preceding findings by examining threonyl α-GalNAc-glycosylated peptides. We utilize computational chemistry to compare the various dissociation and isomerization pathways accessible with collisional activation. We then interrogate the structure(s) of the resulting charged glycan and peptide fragments with infrared "action" spectroscopy. Isomerization of the original pyranose, the protonated glycopeptide [AT(GalNAc)A+H]+, is predicted to be facile compared to direct dissociation, as is the glycosidic bond cleavage of the newly formed furanose form, i.e., furanose oxazolinium ion structures are predicted to predominate. IR action spectra for the m/z 204, C8H14N1O5+, glycan fragment population support this prediction. The IR action spectra of the complementary m/z 262 peptide fragment were assigned as a mixture of the lowest-energy structures of [ATA+H]+ consistent with the literature. If general, the change to a furanose m/z 204 product ion structure fundamentally alters the ion population available for MS3 dissociation and glycopeptide sequence identification.
Collapse
Affiliation(s)
- Jordan M Rabus
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Lauren M Schultz
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - Maha T Abutokaikah
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Philippe Maître
- Institut de Chimie Physique, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
18
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Taniguchi N, Okawa Y, Maeda K, Kanto N, Johnson EL, Harada Y. N-glycan branching enzymes involved in cancer, Alzheimer's disease and COPD and future perspectives. Biochem Biophys Res Commun 2022; 633:68-71. [DOI: 10.1016/j.bbrc.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
|
20
|
Liu QW, Ruan HJ, Chao WX, Li MX, Jiao YL, Ward DG, Gao SG, Qi YJ. N-linked glycoproteomic profiling in esophageal squamous cell carcinoma. World J Gastroenterol 2022; 28:3869-3885. [PMID: 36157541 PMCID: PMC9367225 DOI: 10.3748/wjg.v28.i29.3869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mass spectrometry-based proteomics and glycomics reveal post-translational modifications providing significant biological insights beyond the scope of genomic sequencing.
AIM To characterize the N-linked glycoproteomic profile in esophageal squamous cell carcinoma (ESCC) via two complementary approaches.
METHODS Using tandem multilectin affinity chromatography for enrichment of N-linked glycoproteins, we performed N-linked glycoproteomic profiling in ESCC tissues by two-dimensional gel electrophoresis (2-DE)-based and isobaric tags for relative and absolute quantification (iTRAQ) labeling-based mass spectrometry quantitation in parallel, followed by validation of candidate glycoprotein biomarkers by Western blot.
RESULTS 2-DE-based and iTRAQ labeling-based quantitation identified 24 and 402 differentially expressed N-linked glycoproteins, respectively, with 15 in common, demonstrating the outperformance of iTRAQ labeling-based quantitation over 2-DE and complementarity of these two approaches. Proteomaps showed the distinct compositions of functional categories between proteins and glycoproteins with differential expression associated with ESCC. Western blot analysis validated the up-regulation of total procathepsin D and high-mannose procathepsin D, and the down-regulation of total haptoglobin, high-mannose clusterin, and GlcNAc/sialic acid-containing fraction of 14-3-3ζ in ESCC tissues. The serum levels of glycosylated fractions of clusterin, proline-arginine-rich end leucine-rich repeat protein, and haptoglobin in patients with ESCC were remarkably higher than those in healthy controls.
CONCLUSION Our study provides insights into the aberrant N-linked glycoproteome associated with ESCC, which will be a valuable resource for future investigations.
Collapse
Affiliation(s)
- Qi-Wei Liu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Hao-Jie Ruan
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Wei-Xia Chao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Meng-Xiang Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Ye-Lin Jiao
- Department of Pathology, The First People’s Hospital of Luo Yang, Luoyang 471000, Henan Province, China
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Yi-Jun Qi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| |
Collapse
|
21
|
Characterization of core fucosylation via sequential enzymatic treatments of intact glycopeptides and mass spectrometry analysis. Nat Commun 2022; 13:3910. [PMID: 35798744 PMCID: PMC9262967 DOI: 10.1038/s41467-022-31472-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/16/2022] [Indexed: 01/14/2023] Open
Abstract
Core fucosylation of N-linked glycoproteins has been linked to the functions of glycoproteins in physiological and pathological processes. However, quantitative characterization of core fucosylation remains challenging due to the complexity and heterogeneity of N-linked glycosylation. Here we report a mass spectrometry-based method that employs sequential treatment of intact glycopeptides with enzymes (STAGE) to analyze site-specific core fucosylation of glycoproteins. The STAGE method utilizes Endo F3 followed by PNGase F treatment to generate mass signatures for glycosites that are formerly modified by core fucosylated N-linked glycans. We benchmark the STAGE method and use it to characterize site specific core fucosylation of glycoproteins from human hepatocellular carcinoma and pancreatic ductal adenocarcinoma, resulting in the identification of 1130 and 782 core fucosylated glycosites, respectively. These results indicate that our STAGE method enables quantitative characterization of core fucosylation events from complex protein mixtures, which may benefit our understanding of core fucosylation functions in various diseases.
Collapse
|
22
|
Dokunmu T, Obi P, Fatiregun O, Rotimi O, Agodirin S, Rotimi S. Haptoglobin genotypes and malaria comorbidity in breast cancer and healthy Nigerian women. Ann Afr Med 2022; 21:231-236. [DOI: 10.4103/1596-3519.356811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Guan S, Bythell BJ. Evidence of gas-phase pyranose-to-furanose isomerization in protonated peptidoglycans. Phys Chem Chem Phys 2021; 23:23256-23266. [PMID: 34632474 DOI: 10.1039/d1cp03842g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptidoglycans are diverse co- and post-translational modifications of key importance in myriad biological processes. Mass spectrometry is employed to infer their biomolecular sequences and stereochemisties, but little is known about the critical gas-phase dissociation processes involved. Here, using tandem mass spectrometry (MS/MS and MSn), isotopic labelling and high-level simulations, we identify and characterize a facile isomerization reaction that produces furanose N-acetylated ions. This reaction occurs for both O- and N-linked peptidoglycans irrespective of glycosidic linkage stereochemistry (α/β). Dissociation of the glycosidic and other bonds thus occur from the furanose isomer critically altering the reaction feasibility and product ion structures.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 307 The Chemistry Building, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, MO 63121, USA.
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 The Chemistry Building, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, MO 63121, USA.
| |
Collapse
|
24
|
Naryzny SN, Legina OK. Haptoglobin as a Biomarker. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2021; 15:184-198. [PMID: 34422226 PMCID: PMC8365284 DOI: 10.1134/s1990750821030069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S. N. Naryzny
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| | - O. K. Legina
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| |
Collapse
|
25
|
Kumari M, Singh P, Singh N, Bal A, Srinivasan R, Ghosh S. Identification and characterization of non-small cell lung cancer associated sialoglycoproteins. J Proteomics 2021; 248:104336. [PMID: 34298184 DOI: 10.1016/j.jprot.2021.104336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Aberrantly sialylated cellular glycoconjugates were found to be involved in different processes during tumorigenesis. Such alteration was also noted in case of lung cancer, an important cause of cancer-related death throughout the world. Thus, study on lung cancer associated sialoglycoproteins is of paramount relevance to have a deeper insight into the mechanism of the disease pathogenesis. In the present study, sialic acid specific lectin (Maackia amurensis agglutinin and Sambcus nigra agglutinin)-based affinity chromatography followed by 2D-PAGE and MALDI-TOF/TOF mass spectrometric analysis were done to explore the disease-associated serum proteins of squamous cell carcinoma and adenocarcinoma [the major two subtypes of NSCLC (non-small cell lung carcinoma)] patients. Among seven identified proteins, α1-antitrypsin and haptoglobin-β were preferred for further studies. These two proteins were characterized as the disease associated serum-sialoglycoproteins of NSCLC-patients by western immunoblotting using each lectin specific inhibitor. The presence of these sialoglycoproteins was found on NSCLC cell lines (NCI-H520 & A549) by confocal microscopy. Both these proteins were also present in tissue samples of NSCLC origin and involved in proliferation, invasion and migration of NSCLC cells. Our findings suggest that α1-antitrypsin and haptoglobin-β may be the disease-associated sialoglycoproteins in NSCLC, which seem to be involved in disease progression. SIGNIFICANCE: Our contribution regarding the identification of the NSCLC associated sialoglycoproteins may provide a new vision towards the development of clinically useful newer strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Munmun Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology & Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
26
|
Shu H, Zhang L, Chen Y, Guo Y, Li L, Chen F, Cao Z, Yan G, Lu C, Liu C, Zhang S. Quantification of Intact O-Glycopeptides on Haptoglobin in Sera of Patients With Hepatocellular Carcinoma and Liver Cirrhosis. Front Chem 2021; 9:705341. [PMID: 34336790 PMCID: PMC8316590 DOI: 10.3389/fchem.2021.705341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Haptoglobin (Hp) is one of the acute-phase response proteins secreted by the liver, and its aberrant N-glycosylation was previously reported in hepatocellular carcinoma (HCC). Limited studies on Hp O-glycosylation have been previously reported. In this study, we aimed to discover and confirm its O-glycosylation in HCC based on lectin binding and mass spectrometry (MS) detection. First, serum Hp was purified from patients with liver cirrhosis (LC) and HCC, respectively. Then, five lectins with Gal or GalNAc monosaccharide specificity were chosen to perform lectin blot, and the results showed that Hp in HCC bound to these lectins in a much stronger manner than that in LC. Furthermore, label-free quantification based on MS was performed. A total of 26 intact O-glycopeptides were identified on Hp, and most of them were elevated in HCC as compared to LC. Among them, the intensity of HYEGS316TVPEK (H1N1S1) on Hp was the highest in HCC patients. Increased HYEGS316TVPEK (H1N1S1) in HCC was quantified and confirmed using the MS method based on 18O/16O C-terminal labeling and multiple reaction monitoring. This study provided a comprehensive understanding of the glycosylation of Hp in liver diseases.
Collapse
Affiliation(s)
- Hong Shu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijie Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Limin Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhao Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
27
|
Wu CC, Lu YT, Yeh TS, Chan YH, Dash S, Yu JS. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. Int J Mol Sci 2021; 22:ijms22116079. [PMID: 34199928 PMCID: PMC8200073 DOI: 10.3390/ijms22116079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive cancer with a high mortality rate, necessitating the development of effective diagnostic, prognostic and predictive biomarkers for disease management. Aberrantly fucosylated proteins in PC are considered a valuable resource of clinically useful biomarkers. The main objective of the present study was to identify novel plasma glycobiomarkers of PC using the iTRAQ quantitative proteomics approach coupled with Aleuria aurantia lectin (AAL)-based glycopeptide enrichment and isotope-coded glycosylation site-specific tagging, with a view to analyzing the glycoproteome profiles of plasma samples from patients with non-metastatic and metastatic PC and gallstones (GS). As a result, 22 glycopeptides with significantly elevated levels in plasma samples of PC were identified. Fucosylated SERPINA1 (fuco-SERPINA1) was selected for further validation in 121 plasma samples (50 GS and 71 PC) using an AAL-based reverse lectin ELISA technique developed in-house. Our analyses revealed significantly higher plasma levels of fuco-SERPINA1 in PC than GS subjects (310.7 ng/mL v.s. 153.6 ng/mL, p = 0.0114). Elevated fuco-SERPINA1 levels were associated with higher TNM stage (p = 0.024) and poorer prognosis for overall survival (log-rank test, p = 0.0083). The increased plasma fuco-SERPINA1 levels support the utility of this protein as a novel prognosticator for PC.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Yu-Ting Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsin Chan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-211-8891
| |
Collapse
|
28
|
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| | - O K Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
29
|
Liang C, Fukuda T, Isaji T, Duan C, Song W, Wang Y, Gu J. α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim Biophys Acta Gen Subj 2021; 1865:129870. [PMID: 33571582 DOI: 10.1016/j.bbagen.2021.129870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC. METHODS FUT8 knockout (FUT8-KO) cells were established by the CRISPR/Cas9 system. Cell migration was analyzed by transwell and wound-healing assays. Cell proliferation was examined by MTT and colony-formation assays. Cancer stemness markers and spheroid formations were used to analyzed cancer stemness features. RESULTS Deficiency of FUT8 inhibited cell migration and proliferation in both MIA PaCa-2 and PANC-1 cells compared with wild-type cells. Moreover, the expression levels of cancer stemness markers such as EpCAM, CXCR4, c-Met, and CD133 were decreased in the FUT8-KO cells compared with wild-type cells. Also, the spheroid formations in the KO cells were loose and unstable, which could be reversed by restoration with FUT8 gene in the KO cells. Additionally, FUT8-KO increased the chemosensitivity to gemcitabine, which is the first-line therapy for advanced pancreatic cancer. CONCLUSIONS FUT8-KO reduced the cell proliferation and migration. Our results are the first to suggest that the expression of FUT8 is involved in regulating the stemness features of pancreatic cancer cells. GENERAL SIGNIFICANCE FUT8 could provide novel insights for the treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
30
|
Ito N, Yamada M, Morishita K, Nojima S, Motooka K, Sakata N, Asuka T, Otsu R, Takamatsu S, Kamada Y, Mori S, Akita H, Eguchi H, Morii E, Miyoshi E. Identification of fucosylated haptoglobin-producing cells in pancreatic cancer tissue and its molecular mechanism. Glycoconj J 2021; 38:45-54. [PMID: 33523362 DOI: 10.1007/s10719-020-09970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Fucosylated haptoglobin is a well-established glyco-biomarker of pancreatic cancer. We recently established a novel anti-glycan antibody (10-7G mAb) that specifically recognizes fucosylated haptoglobins, including prohaptoglobin (proHpt). Serum concentrations of the 10-7G value, as measured by ELISA, were increased in patients with pancreatic cancer relative to the healthy controls. However, it is currently unknown which specific tissue or cell type produces fucosylated haptoglobins or proHpt. In the present study, we performed immunohistochemical (IHC) and ELISA analyses of pancreatic cancer tissue samples using 10-7G mAb. Among 21 pancreatic tissue sections, only 1 showed direct staining of pancreatic cells with the 10-7G mAb. However, 12 of the 21 sections stained positively for immune cells. Although there was no significant difference in the 10-7G expression between the positive and negative staining IHC groups, the median value of serum 10-7G was slightly higher in IHC-positive cases. Among many assayed leukemic cell lines, differentiated THP-1 cells (a human acute monocytic leukemia cell line) were found to have the highest levels of proHpt, per Western blot using 10-7G mAb. Interestingly, production of proHpt in vitro was dramatically increased under either hypoxic conditions or after IL-6 treatment. These results suggest that immune cells, including macrophages, in the pancreatic tissue microenvironment produce fucosylated haptoglobin and proHpt. Thus, fucosylated haptoglobins can be detected by the 10-7G mAb and may be a promising biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Nami Ito
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Momoko Yamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Kei Motooka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Natsumi Sakata
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Tatsuya Asuka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Ryoji Otsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan
| | - Soichiro Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, 565-0871, Japan.
| |
Collapse
|
31
|
Motooka K, Morishita K, Ito N, Shinzaki S, Tashiro T, Nojima S, Shimizu K, Date M, Sakata N, Yamada M, Takamatsu S, Kamada Y, Iijima H, Mizushima T, Morii E, Takehara T, Miyoshi E. Detection of fucosylated haptoglobin using the 10-7G antibody as a biomarker for evaluating endoscopic remission in ulcerative colitis. World J Gastroenterol 2021; 27:162-175. [PMID: 33510557 PMCID: PMC7807302 DOI: 10.3748/wjg.v27.i2.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing inflammation of the digestive tract. Although fecal and serum biomarkers have been extremely important and supportive for monitoring of IBD, their low sensitivity and high variability characteristics limit clinical efficacy. Thus, the establishment of better biomarkers is expected. Fucosylation is one of the most important glycosylation modifications of proteins. Fucosylated haptoglobin (Fuc-Hpt) is used as a biomarker for several cancers and inflammation-related diseases. We recently established a novel glycan monoclonal antibody (mAb), designated 10-7G, which recognizes Fuc-Hpt. We developed an enzyme-linked immunosorbent assay (ELISA) to measure serum levels of Fuc-Hpt (10-7G values).
AIM To investigate the usefulness of the serum 10-7G values as a potential biomarker for monitoring disease activity in IBD.
METHODS This was a case control study. Intestinal tissues of IBD patients (n = 10) were examined immunohistochemically using the 10-7G mAb. We determined 10-7G values using serum from patients with ulcerative colitis (UC, n = 110), Crohn’s disease (n = 45), acute enteritis (AE, n = 11), and healthy volunteers (HVs) who exhibited normal (n = 20) or high (n = 79) C-reactive protein (CRP) levels at medical check-up. We investigated the correlation between the 10-7G value and various clinical parameters of IBD patients by correlation analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the usefulness of the 10-7G values as a biomarker for clinical and endoscopic remission of UC compared to conventional serum biomarkers.
RESULTS In the immunohistochemical analysis, positive 10-7G mAb staining was observed in lymphocytes infiltrating into inflammatory sites of the mucosal layer and lymphoid follicles. The 10-7G values were significantly higher in patients with IBD (P < 0.001) and AE (P < 0.05) compared with HVs. In addition, 10-7G values were correlated with clinical examination parameters related to inflammation in patients with UC, particularly the CRP level (rs = 0.525, P = 0.003) and clinical activity index score (rs = 0.435, P = 0.038). However, there was no correlation between 10-7G values and CRP in HVs with high CRP levels, suggesting that the 10-7G values is not the same as a general inflammation biomarker. ROC curve analysis showed that area under the curve (AUC) value of 10-7G values for the diagnosis of endoscopic remission was higher than other biomarkers (AUC value = 0.699).
CONCLUSION The serum 10-7G value is a novel biomarker for evaluating intestinal inflammation and endoscopic mucosal healing in UC.
Collapse
Affiliation(s)
- Kei Motooka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Nami Ito
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Kayoko Shimizu
- FUJIFILM Wako Pure Chemical Corporation, Amagasaki 661-0963, Hyogo, Japan
| | - Mutsuhiro Date
- FUJIFILM Wako Pure Chemical Corporation, Amagasaki 661-0963, Hyogo, Japan
| | - Natsumi Sakata
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Momoko Yamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| |
Collapse
|
32
|
Liu D, Liu G, Li Y, Wang Y, Zheng Y, Sha S, Li W, Kameyama A, Dong W. Rapid glycosylation analysis of mouse serum glycoproteins separated by supported molecular matrix electrophoresis. J Proteomics 2021; 234:104098. [PMID: 33421637 DOI: 10.1016/j.jprot.2020.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/06/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Previously, we developed a novel separation technique, namely, supported molecular matrix electrophoresis (SMME), which separates mucins on a PVDF membrane that impregnated with a hydrophilic polymer (such as polyvinyl alcohol), so it has the characteristics that are compatible with glycan analysis of the separated bands. Here, we describe the first instance of the application of SMME to mouse sera fractionation and demonstrate their differences from the pooled human sera fractionation by SMME. Furthermore, we have developed a fixation method for the lectin blotting of SMME-separated glycoproteins by immersing the SMME membranes into acetone solvent followed by heating. It showed that the amount of protein samples required for SMME were reduced more than 4-fold than that of the process of SDS-PAGE. We applied these techniques for the detection of glycosylation patterns of serum proteins from Fut8+/+ and Fut8-/- mice, further analyzed N-linked and O-linked glycans from the separated γ-bands by mass spectrometry, and demonstrated that there are α2,8-sialylated O-glycans contained in mouse sera glycoproteins. SMME can provide simple, rapid sera fractionation, glycan profiling differences between the bands of two samples and a new insight into the underlying mechanism that responsible for related diseases. SIGNIFICANCE: We describe that the first application of SMME can separate mouse serum proteins into six bands and identify the major protein components of each fraction in mouse serum separated by SMME. Furthermore, we successfully developed a fixation method for lectin blotting of SMME-separated glycoproteins and applied to the detection of glycosylation patterns of serum glycoproteins from Fut8+/+ and Fut8-/- mice, also, the method is promising for detecting glycan profiling differences between two samples in both research and clinical settings.
Collapse
Affiliation(s)
- Dongqi Liu
- China Medical University - The Queen's University of Belfast Joint College, Shenyang 110122, Liaoning, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yue Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuanyuan Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shanshan Sha
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Open Space Laboratory C-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
33
|
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int J Mol Sci 2021; 22:E455. [PMID: 33466384 PMCID: PMC7795606 DOI: 10.3390/ijms22010455] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
Collapse
Affiliation(s)
- Kayla Bastian
- Institute of Biosciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; (E.S.); (D.J.E.); (J.M.)
| | | | | | | |
Collapse
|
34
|
Brown CJ, Gaunitz S, Wang Z, Strindelius L, Jacobson SC, Clemmer DE, Trinidad JC, Novotny MV. Glycoproteomic Analysis of Human Urinary Exosomes. Anal Chem 2020; 92:14357-14365. [PMID: 32985870 PMCID: PMC7875506 DOI: 10.1021/acs.analchem.0c01952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes represent a class of secreted biological vesicles, which have recently gained attention due to their function as intertissue and interorganism transporters of genetic materials, small molecules, lipids, and proteins. Although the protein constituents of these exosomes are often glycosylated, a large-scale characterization of the glycoproteome has not yet been completed. This study identified 3144 unique glycosylation events belonging to 378 glycoproteins and 604 unique protein sites of glycosylation. With these data, we investigated the level of glycan microheterogeneity within the urinary exosomes, finding on average 5.9 glycans per site. The glycan family abundance on individual proteins showed subtle differences, providing an additional level of molecular characterization compared to the unmodified proteome. Finally, we show protein site-specific changes in regard to the common urinary glycoprotein, uromodulin. While uromodulin is an individual case, these same site-specific analyses provide a way forward for developing diagnostic glycoprotein biomarkers with urine as a noninvasive biological fluid. This study represents an important first step in understanding the functional urinary glycoproteome.
Collapse
Affiliation(s)
- Christopher J Brown
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Ziyu Wang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Lena Strindelius
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
35
|
Hemoglobin-Conjugated Gold Nanoclusters for Qualitative Analysis of Haptoglobin Phenotypes. Polymers (Basel) 2020; 12:polym12102242. [PMID: 33003451 PMCID: PMC7601242 DOI: 10.3390/polym12102242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022] Open
Abstract
Designing a facile and rapid detection method for haptoglobin (Hp) phenotypes in human blood plasma is urgently needed to meet clinic requirements in hemolysis theranostics. In this work, a novel approach to qualitatively analyze Hp phenotypes was developed using a fluorescent probe of gold nanoclusters (AuNCs). Hemoglobin-conjugated (Hb)-AuNCs were successfully synthesized with blue-green fluorescence and high biocompatibility via one-pot synthesis. The fluorescence of Hb-AuNCs comes from the ligand-metal charge transfer between surface ligands of Hb and the gold cores with high oxidation states. The biocompatibility assays including cell viability and fluorescence imaging, demonstrated high biocompatibility of Hb-AuNCs. For the qualitative analysis, three Hp phenotypes in plasma, Hp 1-1, Hp 2-1, and Hp 2-2, were successfully discriminated according to changes in the fluorescence intensity and peak position of the maximum intensity of Hb-AuNCs. Our work provides a practical method with facile and rapid properties for the qualitative analysis of three Hp phenotypes in human blood plasma.
Collapse
|
36
|
Zhang L, Gao Y, Zhang X, Guo M, Yang J, Cui H, Kong P, Niu X, Bi Y, Xu J, Yan T, Ma Y, Yang J, Qian Y, Wang F, Li H, Liu F, Cheng X, Cui Y. TSTA3 facilitates esophageal squamous cell carcinoma progression through regulating fucosylation of LAMP2 and ERBB2. Theranostics 2020; 10:11339-11358. [PMID: 33042286 PMCID: PMC7532669 DOI: 10.7150/thno.48225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
Background: TSTA3 gene encodes an enzyme responsible for synthesis of GDP-L-fucose as the only donor in fucosylation. This study was designed to explore clinical value, function and underlying mechanism of TSTA3 in the development of esophageal squamous cell carcinoma (ESCC). Methods: Whole genomic sequencing data from 663 ESCC patients and RNA sequencing data from 155 ESCC patients were used to analyze the copy number variation and mRNA expression of TSTA3 respectively. Immunohistochemistry based or not based on the tissue microarrays was used to detect its protein expression. Transwell assay and in vivo metastasis assay were used to study the effect of TSTA3 on invasion and metastasis of ESCC. Immunofluorescence was used to analyze fucosylation level. N-glycoproteomics and proteomics analysis, Lens Culinaris Agglutinin (LCA) and Ulex Europaeus Agglutinin I (UEA-I) affinity chromatography, immunoprecipitation, glycosyltransferase activity kit and rescue assay were used to explore the mechanism of TSTA3. Results: TSTA3 was frequently amplified and overexpressed in ESCC. TSTA3 amplification and protein overexpression were significantly associated with malignant progression and poor prognosis of ESCC patients. TSTA3 knockdown significantly suppressed ESCC cells invasion and tumor dissemination by decreasing fucosylation level. Conversely, exogenous overexpression of TSTA3 led to increased invasion and tumor metastasis in vitro and in vivo by increasing fucosylation level. Moreover, core fucosylated LAMP2 and terminal fucosylated ERBB2 might be mediators of TSTA3-induced pro-invasion in ESCC and had a synergistic effect on the process. Peracetylated 2-F-Fuc, a fucosyltransferase activity inhibitor, reduced TSTA3 expression and fucosylation modification of LAMP2 and ERBB2, thereby inhibiting ESCC cell invasion. Conclusion: Our results indicate that TSTA3 may be a driver of ESCC metastasis through regulating fucosylation of LAMP2 and ERBB2. Fucosylation inhibitor may have prospect to suppress ESCC metastasis by blocking aberrant fucosylation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| | - Yingzhen Gao
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaojuan Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Min Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jie Yang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Heyang Cui
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xia Niu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jing Xu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanchun Ma
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Qian
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Liu
- Department of Forensic, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongping Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| |
Collapse
|
37
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
38
|
Nedjadi T, Benabdelkamal H, Albarakati N, Masood A, Al-Sayyad A, Alfadda AA, Alanazi IO, Al-Ammari A, Al-Maghrabi J. Circulating proteomic signature for detection of biomarkers in bladder cancer patients. Sci Rep 2020; 10:10999. [PMID: 32620920 PMCID: PMC7335182 DOI: 10.1038/s41598-020-67929-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of clinically-relevant early diagnostic and prognostic protein biomarkers is essential to maximize therapeutic efficacy and prevent cancer progression. The aim of the current study is to determine whether aberrant plasma protein profile can be applied as a surrogate tool for early diagnosis of bladder carcinoma. Plasma samples from patients with low grade non-muscle invasive bladder cancer and healthy controls were analyzed using combined 2D-DIGE and mass-spectrometry to identify differentially expressed proteins. Validation was performed using western blotting analysis in an independent cohort of cancer patients and controls. Fifteen differentially-expressed proteins were identified of which 12 were significantly up-regulated and three were significantly down-regulated in tumors compared to controls. The Ingenuity Pathways Analysis revealed functional connection between the differentially-expressed proteins and immunological disease, inflammatory disease and cancer mediated through chemokine and cytokine signaling pathway and NF-kB transcription factor. Among the three validated proteins, haptoglobin was able to distinguish between patients with low grade bladder cancer and the controls with high sensitivity and specificity (AUC > 0.87). In conclusion, several biomarker proteins were identified in bladder cancer. Haptoglobin is a potential candidate that merit further investigation to validate its usefulness and functional significance as potential biomarkers for early detection of bladder cancer.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, PO Box 9515, Jeddah, 21423, Saudi Arabia.
| | - Hicham Benabdelkamal
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nada Albarakati
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, PO Box 9515, Jeddah, 21423, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Sayyad
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim O Alanazi
- National Center for Biotechnology (NCBT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Adel Al-Ammari
- Department of Urology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Loss of core fucosylation in both ST6GAL1 and its substrate enhances glycoprotein sialylation in mice. Biochem J 2020; 477:1179-1201. [DOI: 10.1042/bcj20190789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/16/2023]
Abstract
Fucosyltransferase 8 (FUT8) and β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1. However, the mechanism for the interaction between these two enzymes is unknown. In this study, we show that serum levels of α2,6-sialylated N-glycans are increased in Fut8−/− mice, whereas the mRNA and protein levels of ST6GAL1 are unchanged in mouse live tissues. The level of α2,6-sialylation on IgG was also enhanced in Fut8−/− mice along with ST6GAL1 catalytic activity increase in both serum and liver. Moreover, it was observed that ST6GAL1 prefers non-fucosylated substrates. Interestingly, increased core fucosylation accompanied by a reduction in α2,6-sialylation, was detected in rheumatoid arthritis patient serum. These findings provide new insight into the interactions between FUT8 and ST6GAL1.
Collapse
|
40
|
Fuertes-Martín R, Correig X, Vallvé JC, Amigó N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J Clin Med 2020; 9:E354. [PMID: 32012794 PMCID: PMC7073769 DOI: 10.3390/jcm9020354] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies suggest that variations in the concentration of plasma glycoproteins can influence cellular changes in a large number of diseases. In recent years, proton nuclear magnetic resonance (1H-NMR) has played a major role as an analytical tool for serum and plasma samples. In recent years, there is an increasing interest in the characterization of glycoproteins through 1H-NMR in order to search for reliable and robust biomarkers of disease. The objective of this review was to examine the existing studies in the literature related to the study of glycoproteins from an analytical and clinical point of view. There are currently several techniques to characterize circulating glycoproteins in serum or plasma, but in this review, we focus on 1H-NMR due to its great robustness and recent interest in its translation to the clinical setting. In fact, there is already a marker in H-NMR representing the acetyl groups of the glycoproteins, GlycA, which has been increasingly studied in clinical studies. A broad search of the literature was performed showing a general consensus that GlycA is a robust marker of systemic inflammation. The results also suggested that GlycA better captures systemic inflammation even more than C-reactive protein (CRP), a widely used classical inflammatory marker. The applications reviewed here demonstrated that GlycA was potentially a key biomarker in a wide range of diseases such as cancer, metabolic diseases, cardiovascular risk, and chronic inflammatory diseases among others. The profiling of glycoproteins through 1H-NMR launches an encouraging new paradigm for its future incorporation in clinical diagnosis.
Collapse
Affiliation(s)
- Rocío Fuertes-Martín
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Xavier Correig
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Joan-Carles Vallvé
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
- Lipids and Arteriosclerosis Research Unit, Sant Joan de Reus University Hospital, 43201 Reus, Spain
| | - Núria Amigó
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
41
|
Morishita K, Maki Y, Takamatsu S, Ito N, Koda S, Motooka K, Kamada Y, Kajihara Y, Miyoshi E. Identification of the epitope of 10-7G glycan antibody to recognize cancer-associated haptoglobin. Anal Biochem 2020; 593:113588. [PMID: 31981485 DOI: 10.1016/j.ab.2020.113588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/25/2019] [Accepted: 01/15/2020] [Indexed: 01/30/2023]
Abstract
We previously identified fucosylated haptoglobin (Fuc-Hpt) as a clinical serum biomarker of pancreatic cancer and established the novel glycan monoclonal antibody (mAb) 10-7G. This antibody recognizes cancer-associated haptoglobin including Fuc-Hpt and the precursor of haptoglobin. Interestingly, Western blot analysis showed that the 10-7G mAb reacts with the haptoglobin α chain, which has no N-glycan potential sites; haptoglobin β chain has four N-glycan sites. In this study, we identified the epitope for the 10-7G mAb using haptoglobin deletion mutants, as well as inhibition ELISA with recombinant peptides. We illustrated molecular graphics to show a relationship between the epitope and the β chain. Furthermore, we hypothesized that the 10-7G mAb minimally recognizes normal haptoglobin, but aberrant glycosylation on the β chain causes conformational changes, enabling the 10-7G mAb to easily access the epitope within the α chain. Because 10-7G values, an enzyme-linked immunosorbent assay-immobilized 10-7G mAb, in patients with pancreatic cancer varied by haptoglobin phenotype, the amount of aberrant glycosylation needed to affect haptoglobin conformation probably depends on haptoglobin phenotype. Taken together, the 10-7G mAb recognized characteristic peptides on the haptoglobin α chain as a result of conformational changes and is a promising tool for diagnosing pancreatic cancer by haptoglobin phenotype.
Collapse
Affiliation(s)
- Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nami Ito
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sayaka Koda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Motooka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
42
|
Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, Morikawa K, Suda G, Sho T, Nakai M, Higashino K, Numata Y, Shinohara Y, Sakamoto N. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. J Proteome Res 2019; 18:3133-3141. [DOI: 10.1021/acs.jproteome.9b00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kobayashi
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Hato
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomoyo Yoshinaga
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
44
|
Kuwatani M, Kawakami H, Kubota Y, Kawakubo K, Ito YM, Togo S, Ikeda T, Kusama K, Kobayashi Y, Murata T, Sakamoto N. Verification of the effectiveness of fucosylated haptoglobin as a pancreatic cancer marker in clinical diagnosis. Pancreatology 2019; 19:569-577. [PMID: 31031206 DOI: 10.1016/j.pan.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fucosylated haptoglobin detected by Pholiota squarrosa lectin (PhoSL) that had specificity for fucose α1-6 was reported as an effective biomarker for several gastrointestinal diseases. The aim of this study was to verify Fucosylated haptoglobin detected by Pholiota squarrosa lectin (PhoSL-HP) as a pancreatic cancer (PC) marker using a new method of PhoSL-ELISA. METHODS PhoSL-HP in sera from 98 PC patients and 158 non-PC samples including 32 intraductal papillary mucinous neoplasm (IPMN) patients, 21 chronic pancreatitis (CP) patients and 105 non-pancreatic disease controls (NPDC) were measured. We compared sensitivities, specificities and areas under the curves (AUC) of PhoSL-HP, CA19-9 and CEA as single markers. We also evaluated PhoSL-HP as combination marker by comparing AUC of CA19-9 combined with PhoSL-HP or CEA. RESULTS The sensitivities of PhoSL-HP, CA19-9 and CEA for PC were 58%, 76% and 42%, respectively. Although the specificity of PhoSL-HP for NPDC was inferior to both of CA19-9 and CEA, that for pancreatic diseases was higher than both of CA19-9 and CEA. Combined CA19-9 with PhoSL-HP, the AUC was significantly higher at 0.880 than single use of CA19-9 at 0.825 in case of distinguishing PC from other pancreatic diseases. In contrast, the AUC of CA19-9 was not elevated significantly when combined with CEA. CONCLUSION PhoSL-HP would be a useful marker for PC and have sufficient complementarity for CA19-9.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroshi Kawakami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshimasa Kubota
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Shinji Togo
- Ishikawacho Medical Clinic, Yokohama, Kanagawa, Japan
| | - Takaaki Ikeda
- Yokosuka Mutual Aid Hospital, Yokosuka, Kanagawa, Japan
| | - Ken Kusama
- J-Oil Mills, Inc., Yokohama, Kanagawa, Japan
| | | | | | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
45
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
46
|
Zhang M, Wang L, Zhang H, Cong J, Zhang L. Serum α-l-fucosidase activities are significantly increased in patients with preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:349-362. [DOI: 10.1016/bs.pmbts.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Jia L, Zhang J, Ma T, Guo Y, Yu Y, Cui J. The Function of Fucosylation in Progression of Lung Cancer. Front Oncol 2018; 8:565. [PMID: 30619732 PMCID: PMC6296341 DOI: 10.3389/fonc.2018.00565] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a disease that influences human health and has become a leading cause of cancer mortality worldwide. However, it is frequently diagnosed at the advanced stage. It is necessary by means of biology to identify specific lung tumor biomarkers with high sensitivity. Glycosylation is one of the most important post-translational modifications and is related to many different diseases. It is involved in numerous essential biological processes, such as cell proliferation, differentiation, migration, cell-cell integrity and recognition, and immune modulation. However, little was known about deregulation of glycosylation in lung cancer and contribution to tumor–microenvironment interactions. Among the numerous glycosylations, fucosylation is the most common modification of glycoproteins and glycosylated oligosaccharides. Increased levels of fucosylation have been detected in various pathological conditions, as well as in lung cancer. In this article, we reviewed the role of fucosylation in lung cancer. We highlighted some of the fucosylation alterations currently being pursued in sera or tissues of lung cancer patients. Moreover, we elaborated on the regulation mechanism of fucosylation in proliferative invasion and metastasis of lung tumor cells. In summary, alterations in fucosylation provide potential biomarkers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Liyuan Jia
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yayuan Guo
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| | - Jihong Cui
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| |
Collapse
|
48
|
Tanaka-Okamoto M, Hanzawa K, Mukai M, Takahashi H, Ohue M, Miyamoto Y. Identification of internally sialylated carbohydrate tumor marker candidates, including Sda/CAD antigens, by focused glycomic analyses utilizing the substrate specificity of neuraminidase. Glycobiology 2018; 28:247-260. [PMID: 29390163 DOI: 10.1093/glycob/cwy010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/27/2018] [Indexed: 12/27/2022] Open
Abstract
In our previous study, 14 sulfated carbohydrate tumor marker candidates were identified by focused glycomic analyses. Here, glycomic analyses focused on internally sialylated glycans to identify novel marker candidates. Internally sialylated glycans were enriched by digestion of pyridylaminated glycans prepared from sera with α-neuraminidase from Salmonella typhimurium, which did not cleave sialic acids linked to internal residues, followed by anion-exchange chromatography. Next, internally sialylated O-glycan profiles were constructed using two types of high performance liquid chromatography, which were compared between 20 healthy controls and 11 patients with gastric cancer and 9 patients with pancreatic cancer. In all, 17 marker candidates were identified. The structures of glycan candidates were precisely analyzed using enzymatic digestion, glycan synthesis, 2D mapping and mass spectrometry. Among 17 candidates, one was STn, and the other 16 comprised 10 core1, 1 core2 and 5 core3 glycans. The various structures included a α2,6-sialylated reducing terminal GalNAc and α2,6-sialylated type1 N-acetyl-lactosamine. Eight candidates possessed the Sda/CAD antigen. The levels of these candidate glycans in sera from all 40 subjects were quantified using a selected reaction monitoring assay and found to be elevated in at least one or more patients. Although the serum levels of each candidate glycan varied between patients, those candidates having the same backbone or determinant, such as core3 backbone and core1 structures with extended type1 N-acetyl-lactosamine, displayed similar patterns of elevation. These results suggest that analysis of multiple markers may be an effective means of diagnosing various cancers.
Collapse
Affiliation(s)
| | | | | | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | | |
Collapse
|
49
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Jingfu Zhao
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Xue Dong
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Alireza Banazadeh
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Yifan Huang
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Ahmed Hussien
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA.,b Department of Biotechnology , Institute of Graduate Studies and Research, University of Alexandria , Alexandria , Egypt
| | - Yehia Mechref
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
50
|
Haptoglobin phenotype is a critical factor in the use of fucosylated haptoglobin for pancreatic cancer diagnosis. Clin Chim Acta 2018; 487:84-89. [PMID: 30189188 DOI: 10.1016/j.cca.2018.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
Abstract
Fucosylation is one of the most important glycosylations involved in cancer and inflammation. Many studies have reported significant increases in serum fucosylated haptoglobin (Fuc-Hpt) in a variety of cancer patients. In this study, we measured Fuc-Hpt using a lectin-antibody enzyme-linked immunosorbent assay (ELISA) or a novel ELISA system that used a glycan antibody for Fuc-Hpt. Hpt is known to be divided into three phenotypes (Hpt1-1, Hpt2-1, and Hpt2-2), depending on its genetic background. Normal levels of serum Hpt are different in each Hpt phenotype and these phenotypes are associated with the incidence of several human diseases. Here, we investigated how Hpt phenotype affected measurements of Fuc-Hpt, using two kinds of ELISA. Interestingly, we found that serum Fuc-Hpt levels were dramatically lower in the Hpt1-1 phenotype for both types of ELISA. For Hpt2-1 and Hpt2-2, we observed significantly increased serum Fuc-Hpt levels in patients with pancreatic cancer. When cases of the Hpt1-1 phenotype were depleted, our receiver operating characteristic (ROC) curve analyses showed that the area under the curve (AUC) value for pancreatic cancer diagnosis increased in each ELISA. Taken together, our results indicate that Hpt phenotype is a critical for the clinical application of Fuc-Hpt as a cancer biomarker.
Collapse
|