1
|
Fukuda K, Kasuga A, Shigematsu Y, Kato K, Ito H, Ueki A, Okamoto T, Ozaka M, Takahashi Y, Sasahira N. Pathological complete response following addition of durvalumab to gemcitabine and cisplatin therapy for intrahepatic cholangiocarcinoma with Lynch syndrome-associated mismatch repair deficiency. Clin J Gastroenterol 2025; 18:520-526. [PMID: 40210796 DOI: 10.1007/s12328-025-02122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
A 64-year-old man with a history of surgery for rectal cancer and colon cancer was referred for a hepatic mass identified on computed tomography (CT). He was diagnosed with unresectable intrahepatic cholangiocarcinoma (ICC) with perihilar and para-aortic lymph node metastases. After 4 cycles of gemcitabine and cisplatin combination therapy (GC therapy), follow-up CT showed slight enlargement of the primary tumor and a slight increase in carbohydrate antigen (CA) 19-9. Genetic testing was performed during GC therapy based on the strong family history of cancer. Germline pathogenic variant in MLH1 was identified, leading to the diagnosis of Lynch syndrome (LS) with mismatch repair deficiency (dMMR: loss of MLH1/PMS2). Durvalumab was added to GC therapy following regulatory approval in Japan. A significant reduction in tumor size and CA19-9 was observed after only two cycles of GC and durvalumab therapy. Continuous improvement was observed, and conversion surgery involving liver resection, partial inferior vena cava resection, and perihilar and para-aortic lymph nodes dissection was performed with curative intent. No malignant cells were found in any of the resected specimens, consistent with pathological complete response.
Collapse
Affiliation(s)
- Koshiro Fukuda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichiro Kato
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiromichi Ito
- Department of Hepato-Biliary-Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Arisa Ueki
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Okamoto
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Takahashi
- Department of Hepato-Biliary-Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
2
|
Horti-Oravecz K, Bozsik A, Pócza T, Vereczkey I, Strausz T, Tóth E, Sedlackova T, Rusnakova D, Szemes T, Likó I, Oláh E, Butz H, Patócs A, Papp J, Grolmusz VK. Whole genome sequencing completes the molecular genetic testing workflow of patients with Lynch syndrome. NPJ Genom Med 2025; 10:5. [PMID: 39827169 PMCID: PMC11742971 DOI: 10.1038/s41525-025-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Multigene panel tests (MGPTs) revolutionized the diagnosis of Lynch syndrome (LS), however noncoding pathogenic variants (PVs) can only be detected by complementary methods including whole genome sequencing (WGS). Here we present a DNA-, RNA- and tumor tissue-based WGS prioritization workflow for patients with a suspicion of LS where MGPT detected no LS-related PV. Among the 100 enrolled patients, MGPT detected 28 simple PVs and an additional 3 complex PVs. Among the 69 MGPT-negative patients, the lack of somatic MLH1 promoter methylation in a patient with a distinguished MLH1 allelic imbalance selected this sample for WGS. This returned a germline deep intronic MLH1 variant, with further functional studies confirming its' pathogenicity. Interestingly, all three complex PVs and the MLH1 deep intronic PV were found to be recurrent at our center. Our straightforward and cost-effective prioritization workflow can optimally include WGS in the genetic diagnosis of LS.
Collapse
Affiliation(s)
- Klaudia Horti-Oravecz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Ildikó Vereczkey
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tamás Strausz
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Erika Tóth
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tatiana Sedlackova
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
| | - Diana Rusnakova
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - István Likó
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Bozsik A, Butz H, Grolmusz VK, Pócza T, Patócs A, Papp J. Spectrum and genotyping strategies of "dark" genetic matter in germline susceptibility genes of tumor syndromes. Crit Rev Oncol Hematol 2025; 205:104549. [PMID: 39528122 DOI: 10.1016/j.critrevonc.2024.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Despite the widespread use of high-throughput genotyping strategies, certain mutation types remain understudied. We provide an overview of these often overlooked mutation types, with representative examples from common hereditary cancer syndromes. METHODS We conducted a comprehensive review of the literature and locus-specific variant databases to summarize the germline pathogenic variants discovered through non-routine genotyping methods. We evaluated appropriate detection and analysis methods tailored for these specific genetic aberrations. Additionally, we performed in silico splice predictions on deep intronic variants registered in the ClinVar database. RESULTS Our study suggests that, aside from founder mutations, most cases are sporadic. However, we anticipate a relatively high likelihood of splice effects for deep intronic variants. The findings underscore the significant clinical utility of genome sequencing techniques and the importance of applying relevant analysis methods.
Collapse
Affiliation(s)
- Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary; Department of Oncology Biobank, National Institute of Oncology, Budapest 1122, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| |
Collapse
|
4
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
5
|
Heriyanto DS, Yoshuantari N, Akbariani G, Lau V, Hanini H, Hidayati Z, Arief MZ, Gunawan AN, Ridwanuloh AM, Kusharyoto W, Handaya AY, Ilyas M, Kurnianda J, Hutajulu SH, Susanti S. High Probability of Lynch Syndrome Among Colorectal Cancer Patients Is Associated With Higher Occurrence of KRAS and PIK3CA Mutations. World J Oncol 2024; 15:612-624. [PMID: 38993255 PMCID: PMC11236368 DOI: 10.14740/wjon1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Background In Indonesia, early-onset colorectal cancer (EOCRC) rates are higher in patients < 50 years old compared to Western populations, possibly due to a higher frequency of Lynch syndrome (LS) in CRC patients. We aimed to examine the association of KRAS and PIK3CA mutations with LS. Methods In this retrospective cross-sectional single-center study, the PCR-HRM-based test was used for screening of microsatellite instability (MSI) mononucleotide markers (BAT25, BAT26, BCAT25, MYB, EWSR1), MLH1 promoter methylation, and oncogene mutations of BRAF (V600E), KRAS (exon 2 and 3), and PIK3CA (exon 9 and 20) in FFPE DNA samples. Results All the samples (n = 244) were from Dr. Sardjito General Hospital Yogyakarta, Indonesia. KRAS and PIK3CA mutations were found in 151/244 (61.88%) and 107/244 (43.85%) of samples, respectively. KRAS and PIK3CA mutations were significantly associated with MSI status in 32/42 (76.19%) and 25/42 (59.52%) of samples, respectively. KRAS mutation was significantly associated with LS status in 26/32 (81.25%) of samples. The PIK3CA mutation was present in a higher proportion in LS samples of 19/32 (59.38%), but not statistically significant. Clinicopathology showed that KRAS mutation was significantly associated with right-sided CRC and higher histology grade in 39/151 (25.83%) and 24/151 (16.44%) samples, respectively. PIK3CA mutation was significantly associated with female sex and lower levels of tumor-infiltrating lymphocytes in 62/107 (57.94%) and 26/107 (30.23%) samples, respectively. KRAS and PIK3CA mutations did not significantly affect overall survival (120 months) in LS and non-LS patients. Conclusions The high probability of LS in Indonesian CRC patients is associated with KRAS and PIK3CA mutations.
Collapse
Affiliation(s)
- Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology based Omics - PKR PrOmics, Yogyakarta, Indonesia
| | - Naomi Yoshuantari
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Gilang Akbariani
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Vincent Lau
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Hanifa Hanini
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Zulfa Hidayati
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Muhammad Zulfikar Arief
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Andrew Nobiantoro Gunawan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Asep Muhamad Ridwanuloh
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency Republic of Indonesia, Ir. Soekarno Science and Technology Park, Bogor, Indonesia
| | - Wien Kusharyoto
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency Republic of Indonesia, Ir. Soekarno Science and Technology Park, Bogor, Indonesia
| | - Adeodatus Yuda Handaya
- Division of Digestive Surgeon, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Mohammad Ilyas
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Johan Kurnianda
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Susanna Hilda Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Susanti Susanti
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Indonesia
| |
Collapse
|
6
|
Beech C, Hechtman JF. Molecular Approach to Colorectal Carcinoma: Current Evidence and Clinical Application. Clin Lab Med 2024; 44:221-238. [PMID: 38821642 DOI: 10.1016/j.cll.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Colorectal carcinoma is one of the most common cancer types in men and women, responsible for both the third highest incidence of new cancer cases and the third highest cause of cancer deaths. In the last several decades, the molecular mechanisms surrounding colorectal carcinoma's tumorigenesis have become clearer through research, providing new avenues for diagnostic testing and novel approaches to therapeutics. Laboratories are tasked with providing the most current information to help guide clinical decisions. In this review, we summarize the current knowledge surrounding colorectal carcinoma tumorigenesis and highlight clinically relevant molecular testing.
Collapse
Affiliation(s)
- Cameron Beech
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Jaclyn F Hechtman
- Molecular and GI Pathologist, NeoGenomics Laboratories, Fort Myers, FL, USA.
| |
Collapse
|
7
|
Oláh E. Learning from cancer to address COVID-19. Biol Futur 2023:10.1007/s42977-023-00156-5. [PMID: 37410273 DOI: 10.1007/s42977-023-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/24/2023] [Indexed: 07/07/2023]
Abstract
Patients with cancer have been disproportionately affected by the novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowledge collected during the last three decades of cancer research has helped the medical research community worldwide to respond to many of the challenges raised by COVID-19, during the pandemic. The review, briefly summarizes the underlying biology and risk factors of COVID-19 and cancer, and aims to present recent evidence on cellular and molecular relationship between the two diseases, with a focus on those that are related to the hallmarks of cancer and uncovered in the first less than three years of the pandemic (2020-2022). This may not only help answer the question "Why cancer patients are considered to be at a particularly high risk of developing severe COVID-19 illness?", but also helped treatments of patients during the COVID-19 pandemic. The last session highlights the pioneering mRNA studies and the breakthrough discovery on nucleoside-modifications of mRNA by Katalin Karikó, which led to the innovation and development of the mRNA-based SARSCoV-2 vaccines saving lives of millions and also opened the door for a new era of vaccines and a new class of therapeutics.
Collapse
Affiliation(s)
- Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Ráth György u. 7-9, Budapest, 1122, Hungary.
| |
Collapse
|
8
|
Zalevskaja K, Mecklin JP, Seppälä TT. Clinical characteristics of pancreatic and biliary tract cancers in Lynch syndrome: A retrospective analysis from the Finnish National Lynch Syndrome Research Registry. Front Oncol 2023; 13:1123901. [PMID: 36816932 PMCID: PMC9929148 DOI: 10.3389/fonc.2023.1123901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Patients with Lynch syndrome (LS) have an increased lifetime risk of pancreatic cancer (PC) and biliary tract cancer (BTC). These cancers have a notoriously pessimistic prognosis due to late diagnosis and limited therapeutic options. There are limited data based on small cohorts reviewing PC and BTC in LS patients. Methods In this retrospective study of the Lynch Syndrome Registry of Finland (LSRFi), records of genetically verified LS patients diagnosed with PC or BTC between 1982 and 2020 were analyzed. Results Thirty-nine patients were included: tumor(s) were in the pancreas in 26 patients, in the biliary tract in 10, and in the ampulla of Vater in three. A pathogenic germline variant was found in MLH1 in 33 of 39 patients. Twenty-six patients with 28 tumors located in the pancreas were identified: 23 pancreatic ductal adenocarcinomas (PDACs) and five neuroendocrine tumors (NETs). The median age at diagnosis of PC was 64 years (range of 38-81). In PC, the 5-year overall survival (OS) rate was 20%, and in PDAC, it was 13.6%. Ten patients with BTC were diagnosed: two intrahepatic, five perihilar, two distal extrahepatic cholangiocarcinomas, and one gallbladder carcinoma. Eight patients were male, and the median age at diagnosis was 54 years (range of 34-82). The 5-year OS rate for BTC was 30%. Metachronous tumors were diagnosed in 28 patients (70%). Colorectal cancer was the most common metachronous tumor, diagnosed in 20 patients (51%), and diagnosed prior to PC or BTC in all cases. Curative surgery was attempted on 17 of 39 patients. For 30 patients (91%), the cause of death was PC or BTC; two patients died from another LS-associated cancer, and one died from a stroke. Conclusion Although the survival of LS patients with PC or BTC is better than in sporadic cancers, it is still poor and may be reflected by the relatively higher surgical resectability accounted for by the earlier age of onset. More studies on analyses of the molecular and immune profile, screening, and management of LS-associated pancreaticobiliary cancers are warranted.
Collapse
Affiliation(s)
- Kristina Zalevskaja
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland,Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland,*Correspondence: Kristina Zalevskaja, ; Toni T. Seppälä,
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland,Department of Education and Research, Jyväskylä Hospital Nova, Jyväskylä, Finland
| | - Toni T. Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland,Faculty of Medicine and Health Technology and Tays Cancer Centre, University of Tampere, Tampere, Finland,*Correspondence: Kristina Zalevskaja, ; Toni T. Seppälä,
| |
Collapse
|
9
|
Grolmusz VK, Nagy P, Likó I, Butz H, Pócza T, Bozsik A, Papp J, Oláh E, Patócs A. A common genetic variation in GZMB may associate with cancer risk in patients with Lynch syndrome. Front Oncol 2023; 13:1005066. [PMID: 36890824 PMCID: PMC9986427 DOI: 10.3389/fonc.2023.1005066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is a common genetic predisposition to cancer due to germline mutations in genes affecting DNA mismatch repair. Due to mismatch repair deficiency, developing tumors are characterized by microsatellite instability (MSI-H), high frequency of expressed neoantigens and good clinical response to immune checkpoint inhibitors. Granzyme B (GrB) is the most abundant serine protease in the granules of cytotoxic T-cells and natural killer cells, mediating anti-tumor immunity. However, recent results confirm a diverse range of physiological functions of GrB including that in extracellular matrix remodelling, inflammation and fibrosis. In the present study, our aim was to investigate whether a frequent genetic variation of GZMB, the gene encoding GrB, constituted by three missense single nucleotide polymorphisms (rs2236338, rs11539752 and rs8192917) has any association with cancer risk in individuals with LS. In silico analysis and genotype calls from whole exome sequencing data in the Hungarian population confirmed that these SNPs are closely linked. Genotyping results of rs8192917 on a cohort of 145 individuals with LS demonstrated an association of the CC genotype with lower cancer risk. In silico prediction proposed likely GrB cleavage sites in a high proportion of shared neontigens in MSI-H tumors. Our results propose the CC genotype of rs8192917 as a potential disease-modifying genetic factor in LS.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - István Likó
- Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.,National Oncology Biobank Center, National Institute of Oncology, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
10
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
11
|
Mitra S, Paramaguru R, Das P, Katti SV. Preneoplastic Lesions and Polyps of the Gastrointestinal Tract. SURGICAL PATHOLOGY OF THE GASTROINTESTINAL SYSTEM 2022:593-698. [DOI: 10.1007/978-981-16-6395-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
DeJesse J, Vajravelu RK, Dudzik C, Constantino G, Long JM, Wangensteen KJ, Valverde KD, Katona BW. Uptake and outcomes of small intestinal and urinary tract cancer surveillance in Lynch syndrome. World J Clin Oncol 2021; 12:1023-1036. [PMID: 34909397 PMCID: PMC8641013 DOI: 10.5306/wjco.v12.i11.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is a hereditary cancer predisposition syndrome associated with increased risk of multiple cancers. While colorectal cancer surveillance decreases mortality in LS and is recommended by guidelines, there is lack of evidence for the efficacy of surveillance for extra-colonic cancers associated with LS, including small intestinal cancer (SIC) and urinary tract cancer (UTC). Given the limited evidence, guidelines do not consistently recommend surveillance for SIC and UTC, and it remains unclear how often individuals will choose to undergo and follow through with extra-colonic surveillance recommendations.
AIM To study factors associated with SIC and UTC surveillance uptake and outcomes in LS.
METHODS This is an IRB-approved retrospective analysis of individuals with LS seen at a tertiary care referral center. Included individuals had a pathogenic or likely pathogenic variant in MLH1, MSH2, MSH6, PMS2, or EPCAM, or were a confirmed obligate carrier, and had at least one documented visit to our center. Information regarding SIC and UTC surveillance was captured for each individual, and detailed personal and family history was obtained for individuals who had an initial LS management visit in our center’s dedicated high-risk LS clinic between January 1, 2017 and October 29, 2020. During these initial management visits, all patients had in-depth discussions of SIC and UTC surveillance with 1 of 3 providers experienced in LS management to promote informed decision-making about whether to pursue SIC and/or UTC surveillance. Statistical analysis using Pearson’s chi-squared test and Wilcoxon rank-sum test was completed to understand the factors associated with pursuit and completion of SIC and UTC surveillance, and a P value below 0.05 was deemed statistically significant.
RESULTS Of 317 individuals with LS, 86 (27%) underwent a total of 105 SIC surveillance examinations, with 5 leading to additional work-up and no SICs diagnosed. Additionally, 99 (31%) patients underwent a total of 303 UTC surveillance examinations, with 19 requiring further evaluation and 1 UTC identified. Of 155 individuals who had an initial LS management visit between January 1, 2017 and October 29, 2020, 63 (41%) chose to undergo SIC surveillance and 58 (37%) chose to undergo UTC surveillance. However, only 26 (41%) and 32 (55%) of those who initially chose to undergo SIC or UTC surveillance, respectively, successfully completed their surveillance examinations. Individuals with a pathogenic variant in MSH2 or EPCAM were more likely to initially choose to undergo SIC surveillance (P = 0.034), and older individuals were more likely to complete SIC surveillance (P = 0.007). Choosing to pursue UTC surveillance was more frequent among older individuals (P = 0.018), and females more frequently completed UTC surveillance (P = 0.002). Personal history of cancer and family history of SIC or UTC were not significantly associated with electing nor completing surveillance. Lastly, the provider discussing SIC/UTC surveillance was significantly associated with subsequent surveillance choices.
CONCLUSION Pursuing and completing SIC/UTC surveillance in LS is influenced by several factors, however broad incorporation in LS management is likely unhelpful due to low yield and frequent false positive results.
Collapse
Affiliation(s)
- Jeshua DeJesse
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ravy K Vajravelu
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Christina Dudzik
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Gillain Constantino
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Jessica M Long
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kirk J Wangensteen
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Kathleen D Valverde
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
13
|
Beech C, Hechtman JF. Molecular Approach to Colorectal Carcinoma: Current Evidence and Clinical Application. Surg Pathol Clin 2021; 14:429-441. [PMID: 34373094 DOI: 10.1016/j.path.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Colorectal carcinoma is one of the most common cancer types in men and women, responsible for both the third highest incidence of new cancer cases and the third highest cause of cancer deaths. In the last several decades, the molecular mechanisms surrounding colorectal carcinoma's tumorigenesis have become clearer through research, providing new avenues for diagnostic testing and novel approaches to therapeutics. Laboratories are tasked with providing the most current information to help guide clinical decisions. In this review, we summarize the current knowledge surrounding colorectal carcinoma tumorigenesis and highlight clinically relevant molecular testing.
Collapse
Affiliation(s)
- Cameron Beech
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Jaclyn F Hechtman
- Molecular and GI Pathologist, NeoGenomics Laboratories, Fort Myers, FL, USA.
| |
Collapse
|
14
|
Lam KK, Thean LF, Cheah PY. Advances in colorectal cancer genomics and transcriptomics drive early detection and prevention. Int J Biochem Cell Biol 2021; 137:106032. [PMID: 34182137 DOI: 10.1016/j.biocel.2021.106032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Colorectal carcinoma (CRC) is a high incidence cancer and leading cause of cancer mortality worldwide. The advances in genomics and transcriptomics in the past decades have improved the detection and prevention of CRC in familial CRC syndromes. Nevertheless, the ultimate goal of personalized medicine for sporadic CRC is still not within reach due no less to the difficulty in integrating population disparity and clinical data to combat what essentially is a very heterogenous disease. This minireview highlights the achievement of the past decades and present possible direction in the hope of early detection and metastasis prevention for reducing CRC-associated morbidity and mortality.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Dong L, Zou S, Jin X, Lu H, Zhang Y, Guo L, Cai J, Ying J. Cytoplasmic MSH2 Related to Genomic Deletions in the MSH2/EPCAM Genes in Colorectal Cancer Patients With Suspected Lynch Syndrome. Front Oncol 2021; 11:627460. [PMID: 34055602 PMCID: PMC8162378 DOI: 10.3389/fonc.2021.627460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background A large proportion of patients with Lynch syndrome (LS) have MSH2 abnormalities, but genotype-phenotype studies of MSH2 mutations in LS are still lacking. The aim of this study was to comprehensively analyze the clinicopathological characteristics and molecular basis of colorectal cancer (CRC) in patients with uncommon MSH2 cytoplasmic expression. Methods We retrospectively reviewed 4195 consecutive cases of CRC patients diagnosed between January 2015 and December 2017 at the Cancer Hospital Chinese Academy of Medical Sciences. Of the 4195 patients with CRC, 69 were indicated to have abnormal MSH2 expression through tumor immunohistochemical staining. Genetic tests, such as next-generation sequencing, large genomic rearrangement (LGR) analysis, microsatellite instability status analysis and genomic breakpoint analysis, were performed. Clinicopathological and molecular characteristics and clinical immunotherapy response were analyzed. Results Forty-five of 69 patients were identified to have LS with pathogenic germline mutations in MSH2 and/or EPCAM. Of these LS patients, 26.7% were confirmed to harbor large genomic rearrangements (LGRs). Of note, three tumors from two unrelated family pedigrees exhibited a rare cytoplasmic MSH2 staining pattern that was found in LS patients with EPCAM/MSH2 deletions. RNA analysis showed that two novel mRNA fusions of EPCAM and MSH2 resulted in the predicted protein fusion with MSH2 cytoplasmic localization. Analyses of genomic breakpoints indicated that two novel deletions of EPCAM and MSH2 originated from Alu repeat-mediated recombination events. Our study also provides clinical evidence for the beneficial effect of the PD-1 inhibitor pembrolizumab for CRC patients that exhibit cytoplasmic MSH2 staining. Conclusion Our study demonstrates that the rare cytoplasmic MSH2 staining pattern should be fully recognized by pathologists and geneticists. Given the specific genotype-phenotype correlation in LS screening, we advocate that all CRC patients with cytoplasmic MSH2 staining in histology should be screened for LGRs of EPCAM and MSH2.
Collapse
Affiliation(s)
- Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianglan Jin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haizhen Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Beijing Microread Genetics, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Pócza T, Grolmusz VK, Papp J, Butz H, Patócs A, Bozsik A. Germline Structural Variations in Cancer Predisposition Genes. Front Genet 2021; 12:634217. [PMID: 33936164 PMCID: PMC8081352 DOI: 10.3389/fgene.2021.634217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to single nucleotide variations and small-scale indels, structural variations (SVs) also contribute to the genetic diversity of the genome. SVs, such as deletions, duplications, amplifications, or inversions may also affect coding regions of cancer-predisposing genes. These rearrangements may abrogate the open reading frame of these genes or adversely affect their expression and may thus act as germline mutations in hereditary cancer syndromes. With the capacity of disrupting the function of tumor suppressors, structural variations confer an increased risk of cancer and account for a remarkable fraction of heritability. The development of sequencing techniques enables the discovery of a constantly growing number of SVs of various types in cancer predisposition genes (CPGs). Here, we provide a comprehensive review of the landscape of germline SV types, detection methods, pathomechanisms, and frequency in CPGs, focusing on the two most common cancer syndromes: hereditary breast- and ovarian cancer and gastrointestinal cancers. Current knowledge about the possible molecular mechanisms driving to SVs is also summarized.
Collapse
Affiliation(s)
- Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Kóder G, Olasz J, Tanyi JL, George E, Tóth L, Antal-Szalmás P, Nagy B, Bubán T, András C, Urbancsek H, Laczik M, Csuka O, Damjanovich L, Tanyi M. Identification of Novel Pathogenic Sequence Variants of the Mismatch Repair Genes During Screening for Lynch Syndrome in a Single Centre of Eastern Hungary. J Gastrointest Cancer 2021; 51:1007-1015. [PMID: 31939059 PMCID: PMC7399673 DOI: 10.1007/s12029-020-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction Lynch syndrome is an autosomal dominant disorder, most frequent leading to colon cancer. Identification of patients with Lynch syndrome and screening of their family members are available prevention approach that can significantly decrease mortality. Unfortunately, routine screening still does not belong to standard of care in Hungary. In this study, we performed a comprehensive screening in order to identify patients with mismatch repair (MMR) mutation between the years of 2011 and 2014. Identified mutations were compared with those already published in the international databases. Patients and Methods Patients who underwent treatment for colorectal cancer at the Surgical Institute of the University of Debrecen were screened using the modified Amsterdam and Bethesda Criteria. Immunohistochemistry and microsatellite analyses were performed in order to identify possible mutation carrier cases. Suspicious cases underwent DNA sequencing to detect mutations in the mismatch repair genes (hMLH1, hMSH2). Results All together 760 colorectal cancer patients were screened. A total of 28 patients were identified as possible MMR mutation carrier and underwent further genetic evaluation. Pathogenic sequence variants of the MMR gene were found in 5 patients. Hypermethylation of the promoter region of the hMLH1 gene was identified in 2 patients. Two out of the 5 pathogenic sequence variants of the MMR gene were first identified by our group while other 2 mutations were previously published as possible founder mutations. Conclusion Identification of families with Lynch syndrome, while challenging because of variable phenotypes at diagnosis, is feasible with available molecular biological technologies and crucial to reduce mortality caused by this syndrome.
Collapse
Affiliation(s)
- Gergely Kóder
- Department of Surgery, Faculty of General Medicine, Medical and Health Science Centre, University of Debrecen, Móricz Zs. Krt. 22, Debrecen, 4032, Hungary.
| | - Judit Olasz
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Erin George
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - László Tóth
- Department of Pathology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bubán
- Department of Internal Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Hilda Urbancsek
- Department of Oncology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Laczik
- R&D Epigenetics Department of Diagenode SA, Liège, Belgium
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - László Damjanovich
- Department of Surgery, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Tanyi
- Department of Surgery, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Abstract
AbstractLynch syndrome was formerly known as Hereditary Nonpolyposis Colorectal Cancer. Currently, these two nomenclatures each have their unique definitions and are no longer used interchangeably. The history of hereditary nonpolyposis colorectal cancer was first recognized formally in the literature by Henry Lynch in 1967. With advances of molecular genetics, there has been a transformation from clinical phenotype to genotype diagnostics. This has led to the ability to diagnose affected patients before they manifest with cancer, and therefore allow preventative surveillance strategies. Genotype diagnostics has shown a difference in penetrance of different cancer risks dependent on the gene containing the mutation. Surgery is recommended as prevention for some cancers; for others they are reserved for once cancer is noted. Various surveillance strategies are recommended dependent on the relative risk of cancer and the ability to intervene with surgery to impact on survival. Risk reduction through aspirin has shown some recent promise, and continues to be studied.
Collapse
|
19
|
Negrete-Tobar G, González-Motta A, Messa-Botero OA, Galvis JC, Garciandía Rozo I, Álvarez Martínez JS, Pineda Ortega J, Londoño de Vivero N, Bruges Maya R. Inestabilidad microsatelital y cáncer gástrico. REVISTA COLOMBIANA DE CIRUGÍA 2021. [DOI: 10.30944/20117582.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
La inestabilidad microsatelital es causada por una alteración de los sistemas de reparación de apareamientoincorrecto, que puede afectar los microsatélites dentro de todo el genoma humano, produciendo errores en su replicación. Los estudios publicados, principalmente en la literatura inglesa, han encontrado que algunos tumores, como los gástricos, pueden expresar inestabilidad microsatelital. En la siguiente revisión de tema, se presenta una descripción de los sistemas de reparación de apareamientos incorrectos y su relación con la presencia de inestabilidad microsatelital en los tumores gástricos, así como su posible utilidad clínica, como factor asociado en la respuesta al tratamiento con inmunoterapia en los pacientes con dicha patología.
Collapse
|
20
|
te Paske IBAW, Ligtenberg MJL, Hoogerbrugge N, de Voer RM. Candidate Gene Discovery in Hereditary Colorectal Cancer and Polyposis Syndromes-Considerations for Future Studies. Int J Mol Sci 2020; 21:E8757. [PMID: 33228212 PMCID: PMC7699508 DOI: 10.3390/ijms21228757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
To discover novel high-penetrant risk loci for hereditary colorectal cancer (hCRC) and polyposis syndromes many whole-exome and whole-genome sequencing (WES/WGS) studies have been performed. Remarkably, these studies resulted in only a few novel high-penetrant risk genes. Given this observation, the possibility and strategy to identify high-penetrant risk genes for hCRC and polyposis needs reconsideration. Therefore, we reviewed the study design of WES/WGS-based hCRC and polyposis gene discovery studies (n = 37) and provide recommendations to optimize discovery and validation strategies. The group of genetically unresolved patients is phenotypically heterogeneous, and likely composed of distinct molecular subtypes. This knowledge advocates for the screening of a homogeneous, stringently preselected discovery cohort and obtaining multi-level evidence for variant pathogenicity. This evidence can be collected by characterizing the molecular landscape of tumors from individuals with the same affected gene or by functional validation in cell-based models. Together, the combined approach of a phenotype-driven, tumor-based candidate gene search might elucidate the potential contribution of novel genetic predispositions in genetically unresolved hCRC and polyposis.
Collapse
Affiliation(s)
- Iris B. A. W. te Paske
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.B.A.W.t.P.); (M.J.L.L.); (N.H.)
| | - Marjolijn J. L. Ligtenberg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.B.A.W.t.P.); (M.J.L.L.); (N.H.)
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.B.A.W.t.P.); (M.J.L.L.); (N.H.)
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.B.A.W.t.P.); (M.J.L.L.); (N.H.)
| |
Collapse
|
21
|
Cuatrecasas M, Gorostiaga I, Riera C, Saperas E, Llort G, Costa I, Matias-Guiu X, Carrato C, Navarro M, Pineda M, Dueñas N, Brunet J, Marco V, Trias I, Busteros JI, Mateu G, Balaguer F, Fernández-Figueras MT, Esteller M, Musulén E. Complete Loss of EPCAM Immunoexpression Identifies EPCAM Deletion Carriers in MSH2-Negative Colorectal Neoplasia. Cancers (Basel) 2020; 12:cancers12102803. [PMID: 33003511 PMCID: PMC7599495 DOI: 10.3390/cancers12102803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal carcinomas from patients with Lynch syndrome (LS) due to EPCAM deletions show loss of MSH2 expression. The aim of our study was to evaluate the usefulness of EPCAM expression in identifying carriers of EPCAM deletion among patients with MSH2-negative lesions. MSH2 and EPCAM immunohistochemistry was performed in a large series of lesions (190) composed of malignant and benign neoplasms as well as precursor lesions of different organs from 71 patients with suspected LS due to MSH2 alterations. Germ-line analysis confirmed LS in 68 patients due to MSH2 mutations (53) and EPCAM deletions (15). Among colorectal lesions with lack of MSH2 expression, only 17 were EPCAM-negative and belonged to patients with EPCAM deletions. We confirm that loss of EPCAM expression identifies EPCAM deletion carriers with 100% specificity and we recommend adding EPCAM IHC to the algorithm of MSH2-negative colorectal neoplasia. Abstract The use of epithelial cell adhesion molecule (EPCAM) immunohistochemistry (IHC) is not included in the colorectal cancer (CRC) screening algorithm to detect Lynch syndrome (LS) patients. The aim of the present study was to demonstrate that EPCAM IHC is a useful tool to guide the LS germ-line analysis when a loss of MSH2 expression was present. We retrospectively studied MSH2 and EPCAM IHC in a large series of 190 lesions composed of malignant neoplasms (102), precursor lesions of gastrointestinal (71) and extra-gastrointestinal origin (9), and benign neoplasms (8) from different organs of 71 patients suspicious of being LS due to MSH2 alterations. LS was confirmed in 68 patients, 53 with MSH2 mutations and 15 with EPCAM 3′-end deletions. Tissue microarrays were constructed with human normal tissues and their malignant counterparts to assist in the evaluation of EPCAM staining. Among 154 MSH2-negative lesions, 17 were EPCAM-negative, including 10 CRC and 7 colorectal polyps, and 5 of them showed only isolated negative glands. All lesions showing a lack of EPCAM expression belonged to patients with EPCAM 3′-end deletions. EPCAM IHC is a useful screening tool, with 100% specificity to identify LS patients due to EPCAM 3′-end deletions in MSH2-negative CRC and MSH2-negative colorectal polyps.
Collapse
Affiliation(s)
- Míriam Cuatrecasas
- Department of Pathology, Center of Biomedical Diagnosis (CDB), Hospital Clínic, 08036 Barcelona, Spain;
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| | - Iñigo Gorostiaga
- Department of Pathology, Hospital Universitario de Araba, 01009 Vitoria-Gasteiz, Spain;
| | - Cristina Riera
- Gastroenterology Department, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Valles, 08195 Barcelona, Spain; (C.R.); (E.S.)
| | - Esteban Saperas
- Gastroenterology Department, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Valles, 08195 Barcelona, Spain; (C.R.); (E.S.)
- Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08017 Barcelona, Spain;
| | - Gemma Llort
- Oncology Department, Parc Taulí Hospital Universitari, Sabadell, 08208 Barcelona, Spain;
- Oncology Department, Consorci Sanitari de Terrassa, Terrassa, 08208 Barcelona, Spain
| | - Irmgard Costa
- Department of Pathology, Parc Taulí Hospital Universitari, Sabadell, 08208 Barcelona, Spain;
| | - Xavier Matias-Guiu
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Department of Pathology, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Pathology, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain
- Universitat de Lleida, IRBLLEIDA, 25003 Lleida, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain;
| | - Matilde Navarro
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marta Pineda
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Núria Dueñas
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Joan Brunet
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Universitat de Girona, 17190 Girona, Spain
| | - Vicente Marco
- Department of Pathology, Hospital Quirónsalud Barcelona, 08023 Barcelona, Spain;
| | - Isabel Trias
- Department of Pathology, Hospital Platón, 08006 Barcelona, Spain;
| | - José Ignacio Busteros
- Department of Pathology, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain;
| | - Gemma Mateu
- Department of Pathology, University Hospital Josep Trueta, 17007 Girona, Spain;
| | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Gastroenterology Department, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, 08036 Barcelona, Spain
| | - María-Teresa Fernández-Figueras
- Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08017 Barcelona, Spain;
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Vallès, 08190 Barcelona, Spain
| | - Manel Esteller
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Eva Musulén
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain;
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Vallès, 08190 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Correspondence: or
| |
Collapse
|
22
|
Peltomäki P, Olkinuora A, Nieminen TT. Updates in the field of hereditary nonpolyposis colorectal cancer. Expert Rev Gastroenterol Hepatol 2020; 14:707-720. [PMID: 32755332 DOI: 10.1080/17474124.2020.1782187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Up to one third of colorectal cancers show familial clustering and 5% are hereditary single-gene disorders. Hereditary non-polyposis colorectal cancer comprises DNA mismatch repair-deficient and -proficient subsets, represented by Lynch syndrome (LS) and familial colorectal cancer type X (FCCTX), respectively. Accurate knowledge of molecular etiology and genotype-phenotype correlations are critical for tailored cancer prevention and treatment. AREAS COVERED The authors highlight advances in the molecular dissection of hereditary non-polyposis colorectal cancer, based on recent literature retrieved from PubMed. Future possibilities for novel gene discoveries are discussed. EXPERT COMMENTARY LS is molecularly well established, but new information is accumulating of the associated clinical and tumor phenotypes. FCCTX remains poorly defined, but several promising candidate genes have been discovered and share some preferential biological pathways. Multi-level characterization of specimens from large patient cohorts representing multiple populations, combined with proper bioinformatic and functional analyses, will be necessary to resolve the outstanding questions.
Collapse
Affiliation(s)
- Paivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| |
Collapse
|
23
|
Clinicopathological significance of deficient DNA mismatch repair and MLH1 promoter methylation in endometrioid endometrial carcinoma. Mod Pathol 2020; 33:1443-1452. [PMID: 32060377 DOI: 10.1038/s41379-020-0501-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
The pathogenesis of DNA mismatch repair (MMR)-deficient endometrial carcinoma (EC) is driven by inactivating methylation or less frequently mutation of an MMR gene (MLH1, PMS2, MSH2, or MSH6). This study evaluated the prognostic and clinicopathologic differences between methylation-linked and nonmethylated MMR-deficient endometrioid ECs. We performed MMR immunohistochemistry and methylation-specific multiplex ligation-dependent probe amplification, and classified 682 unselected endometrioid ECs as MMR proficient (MMRp, n = 438) and MMR deficient (MMRd, n = 244), with the latter subcategorized as methylated (MMRd Met) and nonmethylated tumors. Loss of MMR protein expression was detected in 35.8% of the tumors as follows: MLH1 + PMS2 in 29.8%, PMS2 in 0.9%, MSH2 + MSH6 in 1.3%, MSH6 in 2.8%, and multiple abnormalities in 0.9%. Of the 244 MMRd cases, 76% were methylation-linked. MMR deficiency was associated with older age, high grade of differentiation (G3), advanced stage (II-IV), larger tumor size, abundant tumor-infiltrating lymphocytes, PD-L1 positivity in immune cells and combined positive score, wild-type p53, negative L1CAM, ARID1A loss, and type of adjuvant therapy. MMRd-Met phenotype correlated with older age and larger tumor size, and predicted diminished disease-specific survival in the whole cohort. In the MMRd subgroup, univariate analysis demonstrated an association between disease-specific survival and disease stage II-IV, high grade (G3), deep myometrial invasion, lymphovascular invasion, ER negativity, and L1CAM positivity. In conclusion, MMR methylation profile correlates with clinicopathologic characteristics of endometrioid EC, and MMRd-Met phenotype predicts lower disease-specific survival. MMR deficiency, but not MLH1 methylation status, correlates with T-cell inflammation and PD-L1 expression.
Collapse
|
24
|
Gaber A, Lenarčič B, Pavšič M. Current View on EpCAM Structural Biology. Cells 2020; 9:cells9061361. [PMID: 32486423 PMCID: PMC7349879 DOI: 10.3390/cells9061361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell–cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
25
|
Iwata N, Shikama A, Takao W, Hosokawa Y, Itagaki H, Tasaka N, Akiyama A, Ochi H, Minaguchi T, Arita M, Noguchi E, Moriwaki T, Satoh T. Ovarian metastases from ileum cancer in a patient with germline EPCAM gene deletion successfully treated with surgical resection and CAPOX chemotherapy: a case report. BMC MEDICAL GENETICS 2020; 21:76. [PMID: 32272879 PMCID: PMC7144057 DOI: 10.1186/s12881-020-01013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022]
Abstract
Background Despite recent findings that epithelial cell adhesion molecule (EPCAM) deletions can cause Lynch syndrome (LS), its clinical characteristics are still unknown. We present the first case of ileum cancer in a patient with germline EPCAM gene deletion, which was discovered during ovarian tumor surgery. Case presentation A 59-year-old woman presented with a history of colon cancer occurring at 38 and 55 years old. Five of her siblings had a history of colon cancer, and an elder sister had confirmed LS. As imaging examination revealed an ovarian tumor, and we performed hysterectomy and bilateral salpingo-oophorectomy. Careful observation during surgery revealed a cherry-sized tumor in the ileum, prompting partial ileal resection. Pathological examination showed the ovarian tumor to be a metastasis of ileum cancer. Genetic testing with blood-relative information using multiplex ligation-dependent probe amplification showed EPCAM exons 8 and 9 deletions, confirming LS. The patient received adjuvant chemotherapy with CAPOX (capecitabine and oxaliplatin) and has remained disease-free for 24 months. Conclusions We were fortunate to identify ileum cancer that would have been difficult to find preoperatively through careful observation during ovarian tumor surgery and successfully treated the patient by using surgical resection and CAPOX chemotherapy. When treating patients with hereditary cancer syndromes including LS, we should keep all associated cancers in mind.
Collapse
Affiliation(s)
- Narushi Iwata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Wataru Takao
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshihiko Hosokawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroya Itagaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Ochi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takeo Minaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Miwa Arita
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshikazu Moriwaki
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
26
|
Kim B, Tabori U, Hawkins C. An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol 2020; 139:703-715. [PMID: 31970492 DOI: 10.1007/s00401-020-02124-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
Cancer predisposition syndromes are associated with an increased risk of developing primary malignancies. Here we discuss those which are associated with an increased risk of tumors of the central nervous system (CNS) and gastrointestinal (GI) tract. These can be grouped into those in which the CNS tumors predominate versus those in which the GI cancers predominate. The former include constitutional mismatch repair deficiency (CMMRD) syndrome, Li-Fraumeni syndrome (LFS), and Cowden syndrome (CS) while the latter include familial adenomatosis polyposis 1 (FAP1), Lynch syndrome and polymerase proofreading-associated polyposis syndrome (PPAP). Tumor specificity does exist as medulloblastoma occur in FAP, LFS and CMMRD while glioma are most commonly seen in all replication repair-deficient genes and LFS. Choroid plexus carcinoma is strictly observed in LFS while Cowden syndrome patients develop Lhermitte Duclos disease or meningioma. In each syndrome, specific types of low-grade and high-grade gastrointestinal cancers can occur, but these will be discussed elsewhere. Underlying cancer predisposition syndromes are important to consider when faced with brain tumors, particularly in the pediatric and young adult age groups, as identification of an underlying germ line mutation may change the upfront management of the patient and has implications for future cancer surveillance for both the patient and potentially affected family members. Considerations of family history, presence of skin lesions and consanguinity provide valuable information in identifying patients at potential increased risk.
Collapse
Affiliation(s)
- Byungjin Kim
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Division of Haematology and Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
Brondani VB, Montenegro L, Lacombe AMF, Magalhães BM, Nishi MY, Funari MFDA, Narcizo ADM, Cardoso LC, Siqueira SAC, Zerbini MCN, Denes FT, Latronico AC, Mendonca BB, Almeida MQ, Lerario AM, Soares IC, Fragoso MCBV. High Prevalence of Alterations in DNA Mismatch Repair Genes of Lynch Syndrome in Pediatric Patients with Adrenocortical Tumors Carrying a Germline Mutation on TP53. Cancers (Basel) 2020; 12:E621. [PMID: 32156018 PMCID: PMC7139318 DOI: 10.3390/cancers12030621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical cancer is a rare malignant neoplasm associated with a dismal prognosis. Identification of the molecular pathways involved in adrenal tumorigenesis is essential for a better understanding of the disease mechanism and improvement of its treatment. The aim of this study is to define the prevalence of alterations in DNA mismatch repair (MMR) genes in Lynch syndrome among pediatric patients with adrenocortical neoplasia from southern Brazil, where the prevalence of a specific TP53 germline mutation (p.Arg337His) is quite high. Thirty-six pediatric patients were retrospectively evaluated. Immunohistochemistry (IHC) for the MMR enzymes MLH1, MSH2, MSH6, and PMS2, as well as next-generation sequencing (NGS) were performed. For IHC, 36 pediatric tumors were tested. In all of them, the expression of all evaluated MMR proteins was well-preserved. For NGS, 35 patients with pediatric tumor were tested. Three patients (8.57%) with the TP53 p.Arg337His germline mutation presented pathogenic and likely pathogenic variants in the MMR genes (two in MLH1 and one in MSH6). The prevalence of altered MMR genes among pediatric patients was elevated (8.57%) and higher than in colorectal and endometrial cancer cohorts. Pediatric patients with adrenocortical tumors should, thus, be strongly considered as at genetic risk for Lynch syndrome.
Collapse
Affiliation(s)
- Vania Balderrama Brondani
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
| | - Luciana Montenegro
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
| | - Amanda Meneses Ferreira Lacombe
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
| | - Breno Marchiori Magalhães
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
| | - Mirian Yumie Nishi
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
| | - Mariana Ferreira de Assis Funari
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
| | - Amanda de Moraes Narcizo
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.d.M.N.); (L.C.C.)
| | - Lais Cavalca Cardoso
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.d.M.N.); (L.C.C.)
| | - Sheila Aparecida Coelho Siqueira
- Departamento de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (S.A.C.S.); (M.C.N.Z.)
| | - Maria Claudia Nogueira Zerbini
- Departamento de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (S.A.C.S.); (M.C.N.Z.)
| | - Francisco Tibor Denes
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil;
| | - Ana Claudia Latronico
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
| | - Berenice Bilharinho Mendonca
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
| | - Madson Queiroz Almeida
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
- Serviço de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ibere Cauduro Soares
- Serviço de Anatomia Patológica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil;
| | - Maria Candida Barisson Villares Fragoso
- Laboratório de Hormônios e Genética Molecular LIM/42, Unidade de Suprarrenal, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil; (A.M.F.L.); (B.M.M.); (A.C.L.); (B.B.M.); (M.Q.A.)
- Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil (M.F.d.A.F.)
- Serviço de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 0540396, Brasil
| |
Collapse
|
28
|
Shao WH, Wang CY, Wang LY, Xiao F, Xiao DS, Yang H, Long XY, Zhang L, Luo HG, Yin JY, Wu W. A Hereditable Mutation of MSH2 Gene Associated with Lynch Syndrome in a Five Generation Chinese Family. Cancer Manag Res 2020; 12:1469-1482. [PMID: 32161499 PMCID: PMC7051253 DOI: 10.2147/cmar.s222572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose In order to clarify which variants of the MMR gene could provide current "healthy" members in affected families a more accurate risk assessment or predictive testing. Patients and Methods One family, which meets the criteria according to both Amsterdam I/II and Bethesda guidelines, is reported in this study. The proband and some relatives of the patient have been investigated for whole genome sequencing, microsatellite instability, immunohistochemical MMR protein staining and verified by Sanger sequencing. Results A heterozygous insertion of uncertain significance (c.420dup, p.Met141Tyrfs) in MSH2 gene was found in proband (III-16) and part of His relatives. The variant was associated with a lack of expression of MSH2 protein (MMR deficient) and high microsatellite instability analysis (MSI) status in tumor tissues of LS patients. In addition, we found that the variant could affect the expression of MSH2 and the response to chemotherapy drugs in vitro. Conclusion We identified an insertion mutation (rs1114167810, c.420dup, p.Met141Tyrfs) in MSH2 in LS using whole genome-wide sequencing (WGS). We further confirmed that this mutation plays an important role in LS patients of this pedigree based on in vivo and vitro study.
Collapse
Affiliation(s)
- Wei-Hua Shao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Cheng-Yu Wang
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Fan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - De-Sheng Xiao
- Department of Pathology, Xiangya Hospital/School of Basic Medicine, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Hao Yang
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Xue-Ying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Heng-Gui Luo
- Department of General Surgery, The Central Hospital of Xiangtan City, Xiangtan, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Wei Wu
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
29
|
Paredes SR, Chan C, Rickard MJFX. Immunohistochemistry in screening for heritable colorectal cancer: what to do with an abnormal result. ANZ J Surg 2019; 90:702-707. [PMID: 31828933 DOI: 10.1111/ans.15586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023]
Abstract
Recent developments in our understanding of molecular genetics have transformed screening and diagnostic practices for Lynch syndrome. The current standard involves universal tumour analysis of resected colorectal cancer (and ideally polypectomy) specimens using immunohistochemistry and molecular techniques. Patients with abnormal immunohistochemical findings are subsequently referred for definitive mutational testing. This review relates the molecular pathogenesis of Lynch syndrome to current immunohistochemistry-based screening strategies and discusses the interpretation and clinical implications of screening results.
Collapse
Affiliation(s)
- Steven R Paredes
- Discipline of Surgery, School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Concord Clinical School, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Charles Chan
- Concord Clinical School, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Matthew J F X Rickard
- Discipline of Surgery, School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Division of Colorectal Surgery, Department of Surgery, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Division of Colorectal Surgery, Department of Surgery, Macquarie University Hospital, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Das B, Okamoto K, Rabalais J, Kozan PA, Marchelletta RR, McGeough MD, Durali N, Go M, Barrett KE, Das S, Sivagnanam M. Enteroids expressing a disease-associated mutant of EpCAM are a model for congenital tufting enteropathy. Am J Physiol Gastrointest Liver Physiol 2019; 317:G580-G591. [PMID: 31433211 PMCID: PMC6879886 DOI: 10.1152/ajpgi.00098.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease characterized by severe intestinal failure in infancy and mutations in the epithelial cell adhesion molecule (EPCAM) gene. Previous studies of CTE in mice expressing mutant EpCAM show neonatal lethality. Hence, to study the cellular, molecular, and physiological alterations that result from EpCAM mutation, a tamoxifen-inducible mutant EpCAM enteroid model has been generated. The presence of mutant EpCAM in the model was confirmed at both mRNA and protein levels. Immunofluorescence microscopy demonstrated the reduced expression of mutant EpCAM. Mutant enteroids had reduced budding potential as well as significantly decreased mRNA expression for epithelial lineage markers (Mucin 2, lysozyme, sucrase-isomaltase), proliferation marker Ki67, and secretory pathway transcription factors (Atoh1, Hnf1b). Significantly decreased numbers of Paneth and goblet cells were confirmed by staining. These findings were correlated with intestinal tissue from CTE patients and the mutant mice model that had significantly fewer Paneth and goblet cells than in healthy counterparts. FITC-dextran studies demonstrated significantly impaired barrier function in monolayers derived from mutant enteroids compared with control monolayers. In conclusion, we have established an ex vivo CTE model. The role of EpCAM in the budding potential, differentiation, and barrier function of enteroids is noted. Our study establishes new facets of EpCAM biology that will aid in understanding the pathophysiology of CTE and role of EpCAM in health and disease.NEW & NOTEWORTHY Here, we develop a novel ex vivo enteroid model for congenital tufting enteropathy (CTE) based on epithelial cell adhesion molecule (EPCAM) gene mutations found in patients. With this model we demonstrate the role of EpCAM in maintaining the functional homeostasis of the intestinal epithelium, including differentiation, proliferation, and barrier integrity. This study further establishes a new direction in EpCAM biology that will help in understanding the detailed pathophysiology of CTE and role of EpCAM.
Collapse
Affiliation(s)
- Barun Das
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Philip A. Kozan
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | | | - Matthew D. McGeough
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Nassim Durali
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Maria Go
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kim E. Barrett
- 2Department of Medicine, University of California, San Diego, La Jolla, California
| | - Soumita Das
- 3Department of Pathology, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California,4Rady Children’s Hospital, San Diego, California
| |
Collapse
|
31
|
Niu X, Amendola LM, Hart R, Bennette CS, Heagerty P, Horike-Pyne M, Trinidad SB, Rosenthal EA, Comstock B, Nefcy C, Hisama FM, Bennett RL, Grady WM, Gallego CJ, Tarczy-Hornoch P, Fullerton SM, Burke W, Regier DA, Dorschner MO, Shirts BH, Robertson PD, Nickerson DA, Patrick DL, Jarvik GP, Veenstra DL. Clinical exome sequencing vs. usual care for hereditary colorectal cancer diagnosis: A pilot comparative effectiveness study. Contemp Clin Trials 2019; 84:105820. [PMID: 31400517 PMCID: PMC6741782 DOI: 10.1016/j.cct.2019.105820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clinical exome sequencing (CES) provides the advantage of assessing genetic variation across the human exome compared to a traditional stepwise diagnostic approach or multi-gene panels. Comparative effectiveness research methods offer an approach to better understand the patient-centered and economic outcomes of CES. PURPOSE To evaluate CES compared to usual care (UC) in the diagnostic work-up of inherited colorectal cancer/polyposis (CRCP) in a randomized controlled trial (RCT). METHODS The primary outcome was clinical sensitivity for the diagnosis of inherited CRCP; secondary outcomes included psychosocial outcomes, family communication, and healthcare resource utilization. Participants were surveyed 2 and 4 weeks after results return and at 3-month intervals up to 1 year. RESULTS Evolving outcome measures and standard of care presented critical challenges. The majority of participants in the UC arm received multi-gene panels [94.73%]. Rates of genetic findings supporting the diagnosis of hereditary CRCP were 7.5% [7/93] vs. 5.4% [5/93] in the CES and UC arms, respectively (P = 0.28). Differences in privacy concerns after receiving CRCP results were identified (0.88 in UC vs 0.38 in CES, P = 0.05); however, healthcare resource utilization, family communication and psychosocial outcomes were similar between the two arms. More participants with positive results (17.7%) intended to change their life insurance 1 month after the first return visit compared to participants returned a variant of uncertain significance (9.1%) or negative result (4.8%) (P = 0.09). CONCLUSION Our results suggest that CES provides similar clinical benefits to multi-gene panels in the diagnosis of hereditary CRCP.
Collapse
Affiliation(s)
- Xin Niu
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Laura M Amendola
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Ragan Hart
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | - Patrick Heagerty
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Martha Horike-Pyne
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Susan B Trinidad
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth A Rosenthal
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Bryan Comstock
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Chris Nefcy
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Robin L Bennett
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98101, USA
| | - Carlos J Gallego
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Comparative Health Outcomes, Economics and Policy Institute (CHOICE), University of Washington, Seattle, WA 98195, USA
| | - Peter Tarczy-Hornoch
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Stephanie M Fullerton
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michael O Dorschner
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peggy D Robertson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Donald L Patrick
- Department of Health Services, University of Washington, Seattle, WA 98195, USA
| | - Gail P Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David L Veenstra
- Comparative Health Outcomes, Economics and Policy Institute (CHOICE), University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, Kawashita N, Tatsumi-Miyajima J. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24:999-1011. [PMID: 31273487 DOI: 10.1007/s10147-019-01494-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Collapse
Affiliation(s)
- Kazuo Tamura
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan.
| | - Motohide Kaneda
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mashu Futagawa
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Miho Takeshita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Sanghyuk Kim
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Norihito Kawashita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Junko Tatsumi-Miyajima
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| |
Collapse
|
33
|
Cini G, Quaia M, Canzonieri V, Fornasarig M, Maestro R, Morabito A, D'Elia AV, Urso ED, Mammi I, Viel A. Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype. Mol Genet Genomic Med 2019; 7:e587. [PMID: 30916491 PMCID: PMC6503020 DOI: 10.1002/mgg3.587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 11/27/2022] Open
Abstract
Background Inherited epimutations of Mismatch Repair (MMR) genes are responsible for Lynch Syndrome (LS) in a small, but well defined, subset of patients. Methylation of the MSH2 promoter consequent to the deletion of the upstream EPCAM gene is found in about 1%–3% of the LS patients and represents a classical secondary, constitutional and tissue‐specific epimutation. Several different EPCAM deletions have been reported worldwide, for the most part representing private variants caused by an Alu‐mediated recombination. Methods 712 patients with suspected LS were tested for MMR mutation in our Institute. EPCAM deletions were detected by multiplex ligation‐dependent probe amplification (MLPA) and then defined by Long‐Range polymerase chain reaction (PCR)/Sanger sequencing. A comprehensive molecular characterization of colorectal cancer (CRC) tissues was carried out by immunohistochemistry of MMR proteins, Microsatellite Instability (MSI) assay, methylation specific MLPA and transcript analyses. In addition, somatic deletions and/or variants were investigated by MLPA and next generation sequencing (NGS). Results An EPCAM deletion was found in five unrelated probands in Italy: variants c.556‐490_*8438del and c.858+1193_*5826del are novel; c.859‐1430_*2033del and c.859‐670_*530del were previously reported. All probands were affected by CRC at young age; tumors showed MSI and abnormal MSH2/MSH6 proteins expression. MSH2 promoter methylation, as well as aberrant in‐frame or out‐of‐frame EPCAM/MSH2 fusion transcripts, were detected in CRCs and normal mucosae. Conclusion An EPCAM deletion was the causative variant in about 2% of our institutional series of 224 LS patients, consistent with previously estimated frequencies. Early age and multiple CRCs was the main clinical feature of this subset of patients.
Collapse
Affiliation(s)
- Giulia Cini
- Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | - Michele Quaia
- Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | - Mara Fornasarig
- Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | - Roberta Maestro
- Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | | | | | - Emanuele Damiano Urso
- Department of Surgical Oncology and Gastroenterology, University of Padua, Padova, Italy
| | | | - Alessandra Viel
- Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN, Italy
| |
Collapse
|
34
|
Abstract
Lynch syndrome is the hereditary disorder that most frequently predisposes to colorectal cancer as well as predisposing to a number of extracolonic cancers, most prominently endometrial cancer. It is caused by germline mutations in the mismatch repair genes. Both its phenotype and genotype show marked heterogeneity. This review gives a historical overview of the syndrome, its heterogeneity, its genomic landscape, and its implications for complex diagnosis, genetic counseling and putative implications for immunotherapy.
Collapse
|
35
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2019; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane-bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3' end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556-14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype-phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J. Pathak
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| | - James L. Mueller
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Kevin Okamoto
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Barun Das
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Jozef Hertecant
- Genetics/Metabolics ServiceTawam HospitalAl AinUnited Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health PartnersBirmingham Women's HospitalBirminghamUK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Odul E. Gurkan
- Department of PediatricsGazi University School of MedicineAnkaraTurkey
| | - Michael Yourshaw
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Erick Hernandez
- Pediatric GastroenterologyMiami Children's Health SystemMiamiFlorida
| | | | - Sandhia Naik
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Ian R. Sanderson
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Irene Axelsson
- Department of PediatricsSkane University HospitalMalmoSweden
| | - Daniel Agardh
- Department of Clinical SciencesLund University, Skane University HospitalMalmoSweden
| | - C. Richard Boland
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Martin G. Martin
- Department of PediatricsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Christopher D. Putnam
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
- San Diego BranchLudwig Institute for Cancer ResearchLa JollaCalifornia
| | - Mamata Sivagnanam
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| |
Collapse
|
36
|
Dashti SG, Win AK, Hardikar SS, Glombicki SE, Mallenahalli S, Thirumurthi S, Peterson SK, You YN, Buchanan DD, Figueiredo JC, Campbell PT, Gallinger S, Newcomb PA, Potter JD, Lindor NM, Le Marchand L, Haile RW, Hopper JL, Jenkins MA, Basen-Engquist KM, Lynch PM, Pande M. Physical activity and the risk of colorectal cancer in Lynch syndrome. Int J Cancer 2018; 143:2250-2260. [PMID: 29904935 PMCID: PMC6195467 DOI: 10.1002/ijc.31611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
Greater physical activity is associated with a decrease in risk of colorectal cancer for the general population; however, little is known about its relationship with colorectal cancer risk in people with Lynch syndrome, carriers of inherited pathogenic mutations in genes affecting DNA mismatch repair (MMR). We studied a cohort of 2,042 MMR gene mutations carriers (n = 807, diagnosed with colorectal cancer), from the Colon Cancer Family Registry. Self-reported physical activity in three age-periods (20-29, 30-49 and ≥50 years) was summarized as average metabolic equivalent of task hours per week (MET-hr/week) during the age-period of cancer diagnosis or censoring (near-term exposure) and across all age-periods preceding cancer diagnosis or censoring (long-term exposure). Weighted Cox regression was used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) for the association between physical activity and colorectal cancer risk. Near-term physical activity was associated with a small reduction in the risk of colorectal cancer (HR ≥35 vs. <3.5 MET-hr/week, 0.71; 95% CI, 0.53-0.96). The strength and direction of associations were similar for long-term physical activity, although the associations were not nominally significant. Our results suggest that physical activity is inversely associated with the risk of colorectal cancer for people with Lynch syndrome; however, further confirmation is warranted. The potential modifying effect of physical activity on colorectal cancer risk in people with Lynch syndrome could be useful for risk prediction and support counseling advice for lifestyle modification to reduce cancer risk.
Collapse
Affiliation(s)
- S. Ghazaleh Dashti
- Center for Epidemiology and Biostatistics, The University of Melbourne School of Population and Global Health, Parkville, VIC 3010, Australia
| | - Aung Ko Win
- Center for Epidemiology and Biostatistics, The University of Melbourne School of Population and Global Health, Parkville, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sheetal S Hardikar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen E Glombicki
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheila Mallenahalli
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Susan K Peterson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel D Buchanan
- Center for Epidemiology and Biostatistics, The University of Melbourne School of Population and Global Health, Parkville, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
| | - Jane C Figueiredo
- Keck School of Medicine, Norris Comprehensive Cancer Center, The University of Southern California, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Polly A Newcomb
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - John D Potter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Loic Le Marchand
- Cancer Epidemiology Program, The University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - John L Hopper
- Center for Epidemiology and Biostatistics, The University of Melbourne School of Population and Global Health, Parkville, VIC 3010, Australia
| | - Mark A Jenkins
- Center for Epidemiology and Biostatistics, The University of Melbourne School of Population and Global Health, Parkville, VIC 3010, Australia
| | - Karen M Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mala Pande
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Weymann D, Veenstra DL, Jarvik GP, Regier DA. Patient preferences for massively parallel sequencing genetic testing of colorectal cancer risk: a discrete choice experiment. Eur J Hum Genet 2018; 26:1257-1265. [PMID: 29802320 PMCID: PMC6117311 DOI: 10.1038/s41431-018-0161-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
This study enumerated patients' preference-based personal utility and willingness-to-pay for massively parallel sequencing (MPS) genetic testing of colorectal cancer (CRC) risk. Our setting was the New Exome Technology in (NEXT) Medicine Study, a randomized control trial of usual care genetic testing vs. exome sequencing. Using a discrete choice experiment (DCE), we elicited patient preferences for information on genetic causes of CRC. We estimated personal utility for the following four attributes: proportion of individuals with a genetic cause of CRC who receive a diagnosis, number of tests used, wait time for results, and cost. A total of 122 patients completed our DCE (66% response rate). On average, patients preferred genetic tests identifying more individuals with a diagnosis and involving a shorter wait time. Assuming MPS identifies more individuals with a Mendelian form of CRC risk, involves fewer tests, and results in a shorter wait than traditional diagnostic testing, average willingness-to-pay (WTP) for MPS ranged from US$400 (95% CI: $300, $500) to US$1541 (95% CI: $1224, $1859). These results indicate that patients value information on genetic causes of CRC and replacing traditional diagnostic testing with MPS testing will increase patients' utility. Future research exploring the costs and benefits of MPS for CRC risk is warranted.
Collapse
Affiliation(s)
- Deirdre Weymann
- Canadian Centre for Applied Research in Cancer Control (ARCC), Cancer Control Research, British Columbia Cancer, Vancouver, BC, Canada
| | - David L Veenstra
- The Comparative Health Outcomes, Policy & Economics (CHOICE) Institute, Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control (ARCC), Cancer Control Research, British Columbia Cancer, Vancouver, BC, Canada.
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Huang D, Matin SF, Lawrentschuk N, Roupret M. Systematic Review: An Update on the Spectrum of Urological Malignancies in Lynch Syndrome. Bladder Cancer 2018; 4:261-268. [PMID: 30112437 PMCID: PMC6087433 DOI: 10.3233/blc-180180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Lynch syndrome is an autosomal dominant disorder that predisposes individuals affected to certain malignancies. Colon and endometrial cancers are the malignancies most highly associated with Lynch syndrome. However, growing body of evidence links Lynch syndrome to urological cancers. Objective: This review aims to clarify the type of urological malignancies that fall under the Lynch-associated cancer spectrum. Methods: Using PRISMA guidelines, a systematic search between January 1990 to February 2018, was conducted using the MEDLINE database with the application of the following MESH terms: colorectal neoplasms, hereditary nonpolyposis; DNA mismatch repair; urologic neoplasms; kidney pelvis; ureteral neoplasms; urinary bladder; carcinoma, transitional cell; prostatic neoplasms; testicular neoplasms. Results: Upper tract urothelial cancers are well established under the Lynch spectrum. Increasing evidence supports its association with prostate cancer. However, there is, inconclusive and limited evidence for an association with bladder and testicular cancer. Conclusions: The evidence underpinning certain urological malignancies associated with Lynch syndrome has expanded in recent years. Our review may assist in providing a summary of the current standing in literature. However, we recommend further investigations to better clarify associations, particularly with prostate, bladder and testicular cancer.
Collapse
Affiliation(s)
- Dora Huang
- Department of Surgery, Austin Health, The University of Melbourne, VIC, Australia
| | - Surena F Matin
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan Lawrentschuk
- Department of Surgery, Austin Health, The University of Melbourne, VIC, Australia.,Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Morgan Roupret
- Sorbonne Université, GRC n° 5, ONCOTYPE-URO, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
39
|
Schneider NB, Pastor T, de Paula AE, Achatz MI, dos Santos ÂR, Vianna FSL, Rosset C, Pinheiro M, Ashton‐Prolla P, Moreira MÂM, Palmero EI, Brazilian Lynch Syndrome Study Group SilvaPatrícia SantosKoehler‐SantosPatríciaCossioSilvia LilianaNettoCristinada SilvaGustavo StumpfVargasFernando Reglade LimaMaria AngélicaScapulatempo‐NetoCristovamReisRui ManuelCarvalhoAndré LopesPintoCarlaTeixeiraManuel RuiVianaDanilo VilelaRossiBenedito MauroOliveiraJunea CarisGalvãoHenrique CamposAssumpçãoPauloIshakGeraldoLima JúniorSérgio. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome. Cancer Med 2018; 7:2078-2088. [PMID: 29575718 PMCID: PMC5943474 DOI: 10.1002/cam4.1316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1,MSH2,MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice‐site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one‐third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome.
Collapse
Affiliation(s)
- Nayê Balzan Schneider
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Tatiane Pastor
- Genetics ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | - Maria Isabel Achatz
- AC Camargo Cancer CenterSão PauloBrazil
- Clinical Genetics BranchDivision of Cancer Epidemiology and GeneticsDepartment of Health and Human ServicesNational Cancer InstituteNational Institutes of HealthBethesdaMaryland
| | - Ândrea Ribeiro dos Santos
- Núcleo de Pesquisas Oncológicas and Laboratório de Genética Humana e MédicaUniversidade Federal do Pará Universidade Federal do Pará (UFPA)BelémBrazil
| | - Fernanda Sales Luiz Vianna
- Laboratório de Pesquisa em Bioética e Ética na Ciência‐ LAPEBEC ‐ Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Clévia Rosset
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Manuela Pinheiro
- Serviço de GenéticaInstituto Português de Oncologia do Porto (IPO Porto)PortoPortugal
| | - Patricia Ashton‐Prolla
- Laboratório de Medicina GenômicaCentro de Pesquisa ExperimentalHospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós Graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | | | - Edenir Inêz Palmero
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Barretos School of Health SciencesDr. Paulo Prata – FACISBBarretosBrazil
| | | |
Collapse
|
40
|
Akbari MR, Zhang S, Cragun D, Lee JH, Coppola D, McLaughlin J, Risch HA, Rosen B, Shaw P, Sellers TA, Schildkraut J, Narod SA, Pal T. Correlation between germline mutations in MMR genes and microsatellite instability in ovarian cancer specimens. Fam Cancer 2018; 16:351-355. [PMID: 28176205 DOI: 10.1007/s10689-017-9973-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high proportion of ovarian cancers from women who carry germline mutations in mismatch repair (MMR) genes demonstrate microsatellite instability (MSI). The utility of pre-screening ovarian cancer specimens for MSI to identify potential patients for germline screening for MMR mutations is uncertain. 656 women with malignant ovarian cancer underwent both MSI testing and germline mutation testing for large rearrangements in three MMR genes, MLH1, MSH2 and MSH6. Germline DNA sequencing data for the same genes was available. Among the 656 women, only four (0.6%) carried a clearly pathogenic MMR mutation. All four cancers from patients with mutations had loss of two or more microsatellite markers (MSI-high). Eighty-four of 652 (13.0%) women without a mutation had MSI-high ovarian cancers. Using MSI-high as a prescreening criterion, the sensitivity of MSI testing to identify germline MMR gene mutations was 100% and the positive predictive value was 4.5%. Germline mutations in MLH1, MSH2 and MSH6 are rare among unselected cases of ovarian cancer. Patients with germline mutations often will have MSI-positive cancers and pre-screening of ovarian cancer specimens may be an efficient way of identifying patients with Lynch syndrome.
Collapse
Affiliation(s)
- Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, 790 Bay Street, 7th Floor, Toronto, ON, M5G 1N8, Canada
| | - Shiyu Zhang
- Women's College Research Institute, Women's College Hospital, University of Toronto, 790 Bay Street, 7th Floor, Toronto, ON, M5G 1N8, Canada
| | - Deborah Cragun
- Departments of Cancer Epidemiology, Moffitt Cancer Center, Biostatistics, Anatomic Pathology, and Experimental Therapeutics, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ji-Hyun Lee
- Departments of Cancer Epidemiology, Moffitt Cancer Center, Biostatistics, Anatomic Pathology, and Experimental Therapeutics, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Domenico Coppola
- Departments of Cancer Epidemiology, Moffitt Cancer Center, Biostatistics, Anatomic Pathology, and Experimental Therapeutics, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - John McLaughlin
- Samuel Lunenfeld Research Institute, and Dalla Lana School of Public Health, University of Toronto, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College St., New Haven, CT, 06510, USA
| | - Barry Rosen
- Department of Gynecology-Oncology, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, ON, M5T 2M9, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, 610 University Avenue, Toronto, ON, M5T 2M9, Canada
| | - Patricia Shaw
- Department of Pathology, Princess Margaret Hospital, 610 University Avenue, Toronto, ON, M5T 2M9, Canada
| | - Thomas A Sellers
- Departments of Cancer Epidemiology, Moffitt Cancer Center, Biostatistics, Anatomic Pathology, and Experimental Therapeutics, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Joellen Schildkraut
- Department of Community and Family Medicine, Duke Comprehensive Cancer Center, Duke University Medical Center, Box 2949, Durham, NC, 27710, USA
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, 790 Bay Street, 7th Floor, Toronto, ON, M5G 1N8, Canada.
| | - Tuya Pal
- Departments of Cancer Epidemiology, Moffitt Cancer Center, Biostatistics, Anatomic Pathology, and Experimental Therapeutics, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
41
|
Abstract
Cancer is a disease of the genome, in which mutations in particular genes and pathways give rise to tissue-specific genotype-phenotype correlations. In tumors associated with hereditary cancer syndromes, a person is generally born with the first mutation relevant to the development of their cancer. In this chapter we will discuss the genes that have been associated with germline mutations that confer a moderate to high risk for ovarian carcinoma.
Collapse
|
42
|
Dymerska D, Gołębiewska K, Kuświk M, Rudnicka H, Scott RJ, Billings R, Pławski A, Boruń P, Siołek M, Kozak-Klonowska B, Szwiec M, Kilar E, Huzarski T, Byrski T, Lubiński J, Kurzawski G. New EPCAM founder deletion in Polish population. Clin Genet 2017; 92:649-653. [PMID: 28369810 DOI: 10.1111/cge.13026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 01/30/2023]
Abstract
It is well known that founder mutations associated with cancer risk have useful implications for molecular diagnostics. We report the presence of a founder mutation in EPCAM involved in the etiology of Lynch syndrome (LS). The mutation extends nearly 8.7 kb (c.858 + 2478_*4507del) and is shared by 8 Polish families. Family members suffered almost exclusively from colorectal cancer; however, pancreatic and gastric cancers were also apparent. Next to mutations c. 2041G>A in MLH1 gene and c.942+3A>T in MSH2, the deletion mutation encompassing EPCAM is one of the most common causative changes responsible for LS in Poland.
Collapse
Affiliation(s)
- D Dymerska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - K Gołębiewska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - M Kuświk
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - H Rudnicka
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - R J Scott
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Discipline of Medical Genetics, University of Newcastle, Newcastle, Australia.,Division of Genetics, John Hunter Hospital, Newcastle, Australia
| | - R Billings
- Division of Genetics, John Hunter Hospital, Newcastle, Australia
| | - A Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland.,Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - P Boruń
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - M Siołek
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznań, Poland.,Holy Cross Cancer Center, Counselling Unit, Kielce, Poland
| | - B Kozak-Klonowska
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznań, Poland.,Holy Cross Cancer Center, Counselling Unit, Kielce, Poland
| | - M Szwiec
- Holy Cross Cancer Center, Counselling Unit, Kielce, Poland.,Regional Oncology Center, Counselling Unit, Opole, Poland
| | - E Kilar
- Regional Oncology Center, Counselling Unit, Opole, Poland.,Regional Oncology Center, Counselling Unit, Świdnica, Poland
| | - T Huzarski
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - T Byrski
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - J Lubiński
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - G Kurzawski
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
43
|
The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol 2017; 116:38-57. [PMID: 28693799 DOI: 10.1016/j.critrevonc.2017.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/02/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal Cancer (CRC) is the third most prevalent cancer in men and women. Up to 15% of CRCs display microsatellite instability (MSI). MSI is reflective of a deficient mismatch repair (MMR) system and is most commonly caused by hypermethylation of the MLH1 promoter. However, it may also be due to autosomal dominant constitutional mutations in DNA MMR, termed Lynch Syndrome. MSI may be diagnosed via polymerase chain reaction (PCR) or alternatively, immunohistochemistry (IHC) can identify MMR deficiency (dMMR). Many institutions now advocate universal tumor screening of CRC via either PCR for MSI or IHC for dMMR to guide Lynch Syndrome testing. The association of sporadic MSI with methylation of the MLH1 promoter and an activating BRAF mutation may offer further exclusion criteria for genetic testing. Aside from screening for Lynch syndrome, MMR testing is important because of its prognostic and therapeutic implications. Several studies have shown MSI CRCs exhibit different clinicopathological features and prognosis compared to microsatellite-stable (MSS) CRCs. For example, response to conventional chemotherapy has been reported to be less in MSI tumours. More recently, MSI tumours have been shown to be responsive to immune-checkpoint inhibition providing a novel therapeutic strategy. This provides a rationale for routine testing for MSI or dMMR in CRC.
Collapse
|
44
|
The Rising Incidence of Younger Patients With Colorectal Cancer: Questions About Screening, Biology, and Treatment. Curr Treat Options Oncol 2017; 18:23. [DOI: 10.1007/s11864-017-0463-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Win AK, Jenkins MA, Dowty JG, Antoniou AC, Lee A, Giles GG, Buchanan DD, Clendenning M, Rosty C, Ahnen DJ, Thibodeau SN, Casey G, Gallinger S, Le Marchand L, Haile RW, Potter JD, Zheng Y, Lindor NM, Newcomb PA, Hopper JL, MacInnis RJ. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2017; 26:404-412. [PMID: 27799157 PMCID: PMC5336409 DOI: 10.1158/1055-9965.epi-16-0693] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Although high-risk mutations in identified major susceptibility genes (DNA mismatch repair genes and MUTYH) account for some familial aggregation of colorectal cancer, their population prevalence and the causes of the remaining familial aggregation are not known.Methods: We studied the families of 5,744 colorectal cancer cases (probands) recruited from population cancer registries in the United States, Canada, and Australia and screened probands for mutations in mismatch repair genes and MUTYH We conducted modified segregation analyses using the cancer history of first-degree relatives, conditional on the proband's age at diagnosis. We estimated the prevalence of mutations in the identified genes, the prevalence of HR for unidentified major gene mutations, and the variance of the residual polygenic component.Results: We estimated that 1 in 279 of the population carry mutations in mismatch repair genes (MLH1 = 1 in 1,946, MSH2 = 1 in 2,841, MSH6 = 1 in 758, PMS2 = 1 in 714), 1 in 45 carry mutations in MUTYH, and 1 in 504 carry mutations associated with an average 31-fold increased risk of colorectal cancer in unidentified major genes. The estimated polygenic variance was reduced by 30% to 50% after allowing for unidentified major genes and decreased from 3.3 for age <40 years to 0.5 for age ≥70 years (equivalent to sibling relative risks of 5.1 to 1.3, respectively).Conclusions: Unidentified major genes might explain one third to one half of the missing heritability of colorectal cancer.Impact: Our findings could aid gene discovery and development of better colorectal cancer risk prediction models. Cancer Epidemiol Biomarkers Prev; 26(3); 404-12. ©2016 AACR.
Collapse
Affiliation(s)
- Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Rosty
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Dennis J Ahnen
- University of Colorado School of Medicine, Denver, Colorado
| | - Stephen N Thibodeau
- Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Robert W Haile
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, California
| | - John D Potter
- School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Yingye Zheng
- School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Polly A Newcomb
- School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia.
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Choi ES, Lee H, Lee CH, Goh SH. Overexpression of KLHL23 protein from read-through transcription of PHOSPHO2-KLHL23 in gastric cancer increases cell proliferation. FEBS Open Bio 2016; 6:1155-1164. [PMID: 27833855 PMCID: PMC5095152 DOI: 10.1002/2211-5463.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Gene fusion, as a prototypical pathognomonic mutation, contributes to genome complexity, and the cis‐transcription‐induced gene fusions generated by read‐through transcription of adjacent genes have been found to be important for tumor development. We screened read‐through transcription events from stomach adenocarcinoma RNA‐seq data and selected three candidates PHOSPHO2‐KLHL23, RPL17‐C18orf32, and PRR5‐ARHGAP8, to assess their biological role in gastric cancer. The expression of all three read‐through fusion transcripts was confirmed in gastric cancer cell lines and paired normal/tumor gastric cancer tissues by real‐time quantitative reverse transcription polymerase chain reaction and their expression was found to be significantly higher in the tumor (P < 0.05; n = 75). The correlation between the expression level and clinicopathological information was statistically analyzed. The level of the PHOSPHO2‐KLHL23 read‐through fusion transcript correlated with the Lauren classification and was significantly associated with the presence of perineural invasion. Overexpression of KLHL23 from PHOSPHO2‐KLHL23 read‐through transcript led to a significant increase in cell proliferation and resistance to anticancer drug treatment. Silencing of KLHL23 expression decreased cyclin D1 levels. The expression of KLHL23 from prevalent read‐through transcripts of PHOSPHO2‐KLHL23 in gastric cancer may undermine the efficacy of anticancer drug treatment.
Collapse
Affiliation(s)
- Eun-Seok Choi
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea; Department of Environmental Medical Biology Institute of Tropical Medicine Yonsei University College of Medicine Seoul Korea
| | - Hanna Lee
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Sung-Ho Goh
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| |
Collapse
|
47
|
Abstract
Familial adenomatous polyposis (FAP) is a colorectal cancer predisposition syndrome with considerable genetic and phenotypic heterogeneity, defined by the development of multiple adenomas throughout the colorectum. FAP is caused either by monoallelic mutations in the adenomatous polyposis coli gene APC, or by biallelic germline mutations of MUTYH, this latter usually presenting with milder phenotype. The aim of the present study was to characterize the genotype and phenotype of Hungarian FAP patients. Mutation screening of 87 unrelated probands from FAP families (21 of them presented as the attenuated variant of the disease, showing <100 polyps) was performed using DNA sequencing and multiplex ligation-dependent probe amplification. Twenty-four different pathogenic mutations in APC were identified in 65 patients (75 %), including nine cases (37.5 %) with large genomic alterations. Twelve of the point mutations were novel. In addition, APC-negative samples were also tested for MUTYH mutations and we were able to identify biallelic pathogenic mutations in 23 % of these cases (5/22). Correlations between the localization of APC mutations and the clinical manifestations of the disease were observed, cases with a mutation in the codon 1200-1400 region showing earlier age of disease onset (p < 0.003). There were only a few, but definitive dissimilarities between APC- and MUTYH-associated FAP in our cohort: the age at onset of polyposis was significantly delayed for biallelic MUTYH mutation carriers as compared to patients with an APC mutation. Our data represent the first comprehensive study delineating the mutation spectra of both APC and MUTYH in Hungarian FAP families, and underscore the overlap between the clinical characteristics of APC- and MUTYH-associated phenotypes, necessitating a more appropriate clinical characterization of FAP families.
Collapse
|
48
|
The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24. Fam Cancer 2016; 14:393-400. [PMID: 25724759 DOI: 10.1007/s10689-015-9791-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hereditary colorectal cancer accounts for approximately 30% of all colorectal cancers, but currently only 5% of these families can be explained by highly penetrant, inherited mutations. In the remaining 25% it is not possible to perform a gene test to identify the family members who would benefit from prophylactic screening. Consequently, all family members are asked to follow a screening program. The purpose of this study was to localize a new gene which causes colorectal cancer. We performed a linkage analysis using data from a SNP6.0 chip in one large family with 12 affected family members. We extended the linkage analysis with microsatellites (STS) and single nucleotide polymorphisms (SNP's) and looked for the loss of heterozygosity in tumour tissue. Furthermore, we performed the exome sequencing of one family member and we sequenced candidate genes by use of direct sequencing. Major rearrangements were excluded after karyotyping. The linkage analysis with SNP6 data revealed three candidate areas, on chromosome 2, 6 and 11 respectively, with a LOD score close to two and no negative LOD scores. After extended linkage analysis, the area on chromosome 6 was excluded, leaving areas on chromosome 2 and chromosome 11 with the highest possible LOD scores of 2.6. Two other studies have identified 11q24 as a candidate area for colorectal cancer susceptibility and this area is supported by our results.
Collapse
|
49
|
Risk-reduction surgery in pediatric surgical oncology: A perspective. J Pediatr Surg 2016; 51:675-87. [PMID: 26898681 DOI: 10.1016/j.jpedsurg.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A small percentage of pediatric solid cancers arise as a result of clearly identified inherited predisposition syndromes and nongenetic lesions. Evidence supports preemptive surgery for children with genetic [multiple endocrine neoplasia type 2 (MEN2), familial adenomatous polyposis syndrome (FAP), hereditary nonpolyposis colorectal cancer (HNPCC), and hereditary diffuse gastric cancer (HDGC) and nongenetic [thyroglossal duct cysts (TGDC), congenital pulmonary airway malformations (CPAM), alimentary tract duplication cysts (ATDC), and congenital choledochal cysts (CCC)] developmental anomalies. Our aim was to explore the utility of risk reduction surgery to treat and prevent cancer in children. METHODS A systematic review of the available peer-reviewed literature on PubMed was performed using a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) search strategy, where possible. Search items included "risk reduction surgery", "hereditary cancer predisposition syndrome", "multiple endocrine neoplasia type 2", "familial adenomatous polyposis", "hereditary nonpolyposis colorectal cancer", "hereditary diffuse gastric cancer", "thyroglossal duct cysts", congenital pulmonary airway malformations", "alimentary tract duplication cysts", "malignant transformation", and "guidelines". RESULTS We identified 67 articles that met the inclusion criteria describing the indications for prophylactic surgery in surgical oncology. For the genetic predisposition syndromes, 7 studies were related to professional endorsed guidelines, 7 were related to surgery for MEN2, 11 were related to colectomy for FAP, 6 were related to colectomy for HNPCC, and 12 related to gastrectomy for HDGC. Articles for the nongenetic lesions included 5 for techniques related to TGDC resection, 9 for surgery for CPAMs, and 10 for resection of ATDCs. Guidelines and strategies varied significantly especially related to the extent and timing of surgical intervention; the exception was for the timing of thyroidectomy in children with MEN2. CONCLUSION Current evidence supporting prophylactic surgery in the management of pediatric cancer predisposition syndromes and nongenetic lesions is best delineated for thyroidectomy to prevent medullary thyroid cancer in children with MEN2 (Strength of Recommendation Grade B/C). Despite the lack of pediatric specific evidence-based recommendations regarding the appropriate extent and timing for risk-reduction surgery for FAP, HNPCC, HDGC and nongenetic anomalies, our review represents an opportunity towards understanding the postgenomic development of these lesions and provides current indications and techniques for preemptive cancer prevention surgery in children.
Collapse
|
50
|
Srivastava S, Ludwig AK, Wong JWH, Hesson LB. An investigation of the potential for epigenetic inactivation by transcription read-through in a sporadic colorectal cancer. Gene 2016; 585:154-158. [PMID: 27016300 DOI: 10.1016/j.gene.2016.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/20/2016] [Indexed: 01/05/2023]
Abstract
Aberrant transcription read-through of a gene promoter as a result of genetic structural rearrangements can cause the epigenetic inactivation of a neighbouring gene. All reported cases have involved copy number alterations that remove the 3' poly(A) transcription terminator sequence of a gene leading to transcription read-through (TRT) and methylation of the gene promoter of a downstream gene. We aimed to determine whether deletion of poly (A) transcription terminator sequences was associated with the methylation of neighbouring genes in a CRC with extensive copy number alterations. We performed a high resolution CGH array and methylation analysis on a CRC specimen to identify such alterations. Analysis of the CRC using high-resolution CGH identified 6 genes with deletions in the 3' part of the gene that encompassed the poly(A) transcription terminator sequence. Bisulphite sequencing of the promoter region of neighbouring (affected) genes at these six regions showed all candidate genes were unmethylated. Considering the fact that six TRT affected genes in a CRC with multiple deletions show no signs of hypermethylated promoters, it would be fairly appropriate to suggest that epigenetic inactivation by TRT might be a rare phenomenon in sporadic CRCs.
Collapse
Affiliation(s)
- Sameer Srivastava
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India.
| | - Anne K Ludwig
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jason W H Wong
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Luke B Hesson
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|