1
|
Shah A, MacConell L, Liberman A, Di Bisceglie AM, Shapiro D. Challenges in Histological Endpoints for MASH Therapies: An Exercise in Statistical Modelling. Aliment Pharmacol Ther 2025; 61:1489-1499. [PMID: 39945523 DOI: 10.1111/apt.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 02/01/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Regulatory-accepted efficacy endpoints for nonalcoholic steatohepatitis (NASH; recently updated to metabolic-dysfunction associated steatohepatitis, MASH) clinical trials include fibrosis improvement with no worsening of NASH or NASH resolution with no worsening of fibrosis determined by liver biopsy using the NASH Clinical Research Network criteria. These endpoints involve the scoring of four liver histology parameters, all of which are associated with significant inter-/intra-reader variability. Since few trials have shown positive results with these endpoints, we evaluated the effects of imprecision in histologic scoring on trial results from a statistical perspective. METHODS Estimating the probability (sensitivity) of accurately scoring histology is based on the relationship between measures of agreement and sensitivity. We simulated kappa values for a range of sensitivities. Then, using published kappa values from NASH trials, we selected corresponding sensitivities for histology parameters. Finally, simulations assuming a range of "overscore" and "underscore" probabilities were conducted to estimate the dilution of the true effect size. RESULTS Simulations for 2-arm trials with sample sizes of 400 (mix of stage 2/3 fibrosis) subjects showed ~50% dilution of the true effect size for both approvable endpoints due to scoring imprecision. Such dilution remains constant regardless of sample size. CONCLUSION Imprecise histologic scoring disproportionately impacts the 'superior' arm as the error is proportional to the true response rate. This dilution of effect size should be considered when weighing the clinical benefit and the overall risk-benefit profile in the review of NASH studies. This argues for the adoption of non-invasive biomarkers rather than histologic endpoints.
Collapse
Affiliation(s)
- Amrik Shah
- Karma Statistics LLC, Skillman, New Jersey, USA
| | | | | | | | - David Shapiro
- Integrated Quality Resources, San Diego, California, USA
| |
Collapse
|
2
|
Torp N, Israelsen M, Krag A. The steatotic liver disease burden paradox: unravelling the key role of alcohol. Nat Rev Gastroenterol Hepatol 2025; 22:281-292. [PMID: 39639157 DOI: 10.1038/s41575-024-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
The classification of steatotic liver disease (SLD) has evolved, incorporating all conditions characterized by hepatic lipid accumulation. SLD represents a continuum of disorders that are shaped by the dynamic factors of alcohol intake and cardiometabolic risk factors. This updated classification has profound implications for both the management and research of SLD, especially with the new distinct category of patients with both metabolic and alcohol-related liver disease. In this Perspective, we highlight the pivotal role of alcohol within the SLD framework. We introduce the 'SLD burden paradox': a concept illustrating the disparity in which metabolic dysfunction-associated steatotic liver disease is more prevalent, yet individuals with SLD and excessive alcohol intake (such as in metabolic and alcohol-related liver disease and in alcohol-related liver disease) account for greater global liver-related morbidity and mortality. We explore strategies to mitigate the effect of SLD on morbidity and mortality, emphasizing the importance of early detection and reducing stigma associated with alcohol intake. Our discussion extends to methods for assessing and monitoring alcohol intake together with the critical role of managing cardiometabolic risk factors in patients across the SLD spectrum. Conclusively, we advocate for a coordinated care framework that adopts a person-centric approach when managing SLD, aiming to improve outcomes and patient care.
Collapse
Affiliation(s)
- Nikolaj Torp
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Israelsen
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aleksander Krag
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Park Y, Ko KS, Rhee BD. Non-Alcoholic Fatty Liver Disease (NAFLD) Management in the Community. Int J Mol Sci 2025; 26:2758. [PMID: 40141404 PMCID: PMC11943420 DOI: 10.3390/ijms26062758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has frequently been associated with obesity, type 2 diabetes (T2D), and dyslipidemia, all of which are shared by increased insulin resistance. It has become the most common liver disorder in Korea as well as in developed countries and is therefore associated with an increased health burden of morbidity and mortality. It has an association with T2D, and T2D increases the risk of cirrhosis and related complications. NAFLD encompasses a disease continuum from simple steatosis to non-alcoholic steatohepatitis which is characterized by faster fibrosis progression. Although its liver-related complication is estimated to be, at most, 10%, it will be a leading cause of cirrhosis and hepatocellular carcinoma soon in Korea. Although the main causes of death in people with NAFLD are cardiovascular disease and extra-hepatic malignancy, advanced liver fibrosis is a key prognostic marker for liver-related outcomes and can be assessed with combinations of non-invasive tests in the community. A number of components of metabolic syndrome involved could be another important prognostic information of NAFLD assessed easily in the routine care of the community. There is a few approved therapies for NAFLD, although several drugs, including antioxidants, attract practitioners' attention. Because of the modest effect of the present therapeutics, let alone complex pathophysiology and substantial heterogeneity of disease phenotypes, combination treatment is a viable option for many patients with NAFLD in the Korean community. Comprehensive approach taking healthy lifestyle and weight reduction into account remain a mainstay to the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Internal Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, 1342 Dongil-ro, Nowon-gu, Seoul 01757, Republic of Korea; (K.S.K.); (B.D.R.)
| | | | | |
Collapse
|
4
|
Nakatsuka T, Tateishi R, Sato M, Hashizume N, Kamada A, Nakano H, Kabeya Y, Yonezawa S, Irie R, Tsujikawa H, Sumida Y, Yoneda M, Akuta N, Kawaguchi T, Takahashi H, Eguchi Y, Seko Y, Itoh Y, Murakami E, Chayama K, Taniai M, Tokushige K, Okanoue T, Sakamoto M, Fujishiro M, Koike K. Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease. Hepatology 2025; 81:976-989. [PMID: 38768142 PMCID: PMC11825480 DOI: 10.1097/hep.0000000000000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND AND AIMS Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide images of biopsy-proven steatotic liver disease. APPROACH AND RESULTS We included 639 patients who did not develop HCC for ≥7 years after biopsy (non-HCC class) and 46 patients who developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC and non-HCC classes matched by biopsy date and institution were used for training, and the remaining nonpaired cases were used for validation. The DL model was trained using deep convolutional neural networks with 28,000 image tiles cropped from whole-slide images of the paired cases, with an accuracy of 81.0% and an AUC of 0.80 for predicting HCC development. Validation using the nonpaired cases also demonstrated a good accuracy of 82.3% and an AUC of 0.84. These results were comparable to the predictive ability of logistic regression model using fibrosis stage. Notably, the DL model also detected the cases of HCC development in patients with mild fibrosis. The saliency maps generated by the DL model highlighted various pathological features associated with HCC development, including nuclear atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infiltration, fibrosis, and a lack of large fat droplets. CONCLUSIONS The ability of the DL model to capture subtle pathological features beyond fibrosis suggests its potential for identifying early signs of hepatocarcinogenesis in patients with steatotic liver disease.
Collapse
Affiliation(s)
- Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuka Hashizume
- RWD Analytics, Healthcare & Life Science, IBM Japan Ltd., Tokyo, Japan
| | - Ami Kamada
- RWD Analytics, Healthcare & Life Science, IBM Japan Ltd., Tokyo, Japan
| | - Hiroki Nakano
- RWD Analytics, Healthcare & Life Science, IBM Japan Ltd., Tokyo, Japan
| | - Yoshinori Kabeya
- RWD Analytics, Healthcare & Life Science, IBM Japan Ltd., Tokyo, Japan
| | - Sho Yonezawa
- RWD Analytics, Healthcare & Life Science, IBM Japan Ltd., Tokyo, Japan
| | - Rie Irie
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshio Sumida
- Department of Internal Medicine, Division of Hepatology and Pancreatology, Aichi Medical University, Aichi, Japan
| | - Masashi Yoneda
- Department of Internal Medicine, Division of Hepatology and Pancreatology, Aichi Medical University, Aichi, Japan
| | - Norio Akuta
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Takumi Kawaguchi
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Fukuoka, Japan
| | | | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, Saga, Japan
- Loco Medical General Institute, Saga, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| | - Makiko Taniai
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology, Saiseikai Suita Hospital, Suita, Osaka, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepatobiliary and Pancreatic Medicine, Kanto Central Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Knezović E, Hefer M, Blažanović S, Petrović A, Tomičić V, Srb N, Kirner D, Smolić R, Smolić M. Drug Pipeline for MASLD: What Can Be Learned from the Successful Story of Resmetirom. Curr Issues Mol Biol 2025; 47:154. [PMID: 40136408 PMCID: PMC11941580 DOI: 10.3390/cimb47030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing global health problem linked to obesity, insulin resistance, and dyslipidemia. MASLD often leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, therapeutic options are limited, emphasizing the need for novel, targeted pharmacological interventions. Resmetirom, a selective thyroid hormone receptor beta (THR-β) agonist, offers a promising approach by specifically enhancing hepatic metabolism while minimizing systemic effects. Clinical trials have demonstrated its capacity to reduce hepatic triglyceride accumulation and improve lipid profiles. Early- and advanced-phase studies, including the MAESTRO program, highlight significant reductions in hepatic fat content and favorable impacts on noninvasive biomarkers of fibrosis with minimal side effects. This review highlights evidence from pivotal studies, explores resmetirom's mechanism of action, and compares its efficacy and safety with other emerging therapeutic agents. While resmetirom marks a breakthrough in non-cirrhotic MASH management, further long-term studies are essential to fully evaluate its clinical benefits and potential regulatory approval for broader use in MASLD and MASH.
Collapse
Affiliation(s)
- Elizabeta Knezović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
- Clinical Institute of Translational Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Marija Hefer
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Suzana Blažanović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Ana Petrović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Vice Tomičić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Nika Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Damir Kirner
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Robert Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Martina Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| |
Collapse
|
6
|
Devasia AG, Ramasamy A, Leo CH. Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2025; 26:1778. [PMID: 40004240 PMCID: PMC11855529 DOI: 10.3390/ijms26041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been proposed to better connect liver disease to metabolic dysfunction, which is the most common chronic liver disease worldwide. MASLD affects more than 30% of individuals globally, and it is diagnosed by the combination of hepatic steatosis and obesity, type 2 diabetes, or two metabolic risk factors. MASLD begins with the buildup of extra fat, often greater than 5%, within the liver, causing liver hepatocytes to become stressed. This can proceed to a more severe form, metabolic dysfunction-associated steatohepatitis (MASH), in 20-30% of people, where inflammation in the liver causes tissue fibrosis, which limits blood flow over time. As fibrosis worsens, MASH may lead to cirrhosis, liver failure, or even liver cancer. While the pathophysiology of MASLD is not fully known, the current "multiple-hits" concept proposes that dietary and lifestyle factors, metabolic factors, and genetic or epigenetic factors contribute to elevated oxidative stress and inflammation, causing liver fibrosis. This review article provides an overview of the pathogenesis of MASLD and evaluates existing therapies as well as pharmacological drugs that are currently being studied in clinical trials for MASLD or MASH.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
7
|
Wu Y, Dong P, Wu Q, Zhang Y, Xu G, Pan C, Tong H. Insights into Clinical Trials for Drugs Targeting MASLD: Progress, Challenges, and Future Directions. Clin Pharmacol Ther 2025. [PMID: 39953659 DOI: 10.1002/cpt.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
The transition in terminology from fatty liver disease to metabolic dysfunction-associated steatotic liver disease (MASLD) marks a considerable evolution in diagnostic standards. This new definition focuses on liver fat accumulation in the context of overweight/obesity, type 2 diabetes, or metabolic dysfunction, without requiring the exclusion of other concurrent liver diseases. The new definition also provides clear guidelines for defining alcohol consumption in relation to the disease. MASLD is currently acknowledged as the most widespread liver disorder globally, affecting ~25% of the population. Despite the extensive array of clinical trials conducted in recent years, the number of approved treatments for metabolic dysfunction-associated fatty liver disease is very limited. In the review critically evaluates the results of clinical trials of related drugs and assesses the future directions for drug development trials. The renaming of MASLD presents new challenges and opportunities for the design of clinical trials and the selection of target populations for drug development.
Collapse
Affiliation(s)
- Yu Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pu Dong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ya Zhang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
Cazac-Panaite GD, Lăcătușu CM, Grigorescu ED, Foșălău AB, Onofriescu A, Mihai BM. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J Clin Med 2025; 14:1042. [PMID: 40004572 PMCID: PMC11857078 DOI: 10.3390/jcm14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac-Panaite
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adina-Bianca Foșălău
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
9
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
10
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
11
|
Souza M, Amaral MJM, Lima LCV, Villela-Nogueira CA. Meta-Analysis of Placebo-Treated Patients: Dropout Rates From Treatment in MASH Randomised Controlled Trials. Aliment Pharmacol Ther 2025. [PMID: 39807647 DOI: 10.1111/apt.18498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Dropout is common and affects the statistical power and randomization balance of randomised controlled trials (RCTs). AIMS To estimate the dropout rate in RCTs of metabolic dysfunction-associated steatohepatitis (MASH) and to examine factors associated with dropout in placebo-treated participants. METHODS PubMed and Cochrane databases were searched for phase 2-4 MASH RCTs with placebo arms through November 24, 2024. Dropout was defined as the attrition of patients included in the intention-to-treat analysis but did not complete treatment. RCTs were qualitatively reviewed to assess the expected and observed dropouts. Generalised linear mixed model was used to estimate pooled dropout rates. RESULTS Sixty RCTs with 3230 placebo-treated participants with MASH were analysed. Thirty-three RCTs reported the dropout rate used to estimate the effect size. Of these, 60.6%, 36.4%, and 3.0% had an expected dropout rate that was higher, lower, and similar, respectively, than the observed dropout rate in the placebo arm. Overall, the dropout rate was 11.06% (95% confidence interval [CI] 9.07 to 13.42), with a higher rate in phase 3-4 trials than in phase 2 trials. The corresponding rates due to adverse events, loss to follow-up and patient choice were 2.41% (95% CI 1.67 to 3.48), 1.79% (95% CI 1.06 to 2.99) and 4.06% (95% CI 2.97 to 5.53), respectively. Meta-regression determined that the dropout rate increased with longer treatment duration. CONCLUSION Placebo dropout in MASH RCTs is significant, mainly due to patient choice. Factors such as trial phase and treatment duration should be considered when calculating sample size in future clinical trials.
Collapse
Affiliation(s)
- Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio J M Amaral
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan C V Lima
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Koullias E, Papavdi M, Koskinas J, Deutsch M, Thanopoulou A. Targeting Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Available and Future Pharmaceutical Options. Cureus 2025; 17:e76716. [PMID: 39897209 PMCID: PMC11783198 DOI: 10.7759/cureus.76716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects an ever-increasing part of the global population, affecting millions of individuals worldwide. Despite the progress in the treatment of other liver diseases, there is a scarcity of liver-specific drugs targeting MASLD. In light of that, research has focused both on pipeline drugs targeting multiple different receptors implicated in the pathogenesis of the disease, as well as medications already approved for other indications, that might exert beneficial effects on MASLD. The fact that MASLD is associated with an increased prevalence of obesity and type 2 diabetes mellitus (T2DM) establishes a possible pathway with respect to already available pharmaceutical interventions for this group of patients, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose co-transporter-2 inhibitors (SGLT2-is). Thus, the hitherto at hand, along with the upcoming members of these families, provide much-needed options for our arsenal. This review attempts to explore old and novel dimensions of the pharmaceutical treatment of MASLD in the continuous effort of the medical society to improve patient outcomes.
Collapse
Affiliation(s)
- Emmanouil Koullias
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Maria Papavdi
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - John Koskinas
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Melanie Deutsch
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Anastasia Thanopoulou
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
13
|
Nielsen MH, Nøhr-Meldgaard J, Møllerhøj MB, Oró D, Pors SE, Andersen MW, Kamzolas I, Petsalaki E, Vacca M, Harder LM, Perfield JW, Veidal S, Hansen HH, Feigh M. Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G51-G71. [PMID: 39404770 DOI: 10.1152/ajpgi.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ioannis Kamzolas
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Laboratory of Liver Metabolism and MASLD, Roger Williams Institute of Hepatology, London, United Kingdom
| | - Lea Mørch Harder
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Sanne Veidal
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
14
|
Khare T, Liu K, Chilambe LO, Khare S. NAFLD and NAFLD Related HCC: Emerging Treatments and Clinical Trials. Int J Mol Sci 2025; 26:306. [PMID: 39796162 PMCID: PMC11720452 DOI: 10.3390/ijms26010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most prevalent liver disease worldwide. It is associated with an increased risk of developing hepatocellular carcinoma (HCC) in the background of cirrhosis or without cirrhosis. The prevalence of NAFLD-related HCC is increasing all over the globe, and HCC surveillance in NAFLD cases is not that common. In the present review, we attempt to summarize promising treatments and clinical trials focused on NAFLD, nonalcoholic steatohepatitis (NASH), and HCC in the past five to seven years. We categorized the trials based on the type of intervention. Most of the trials are still running, with only a few completed and with conclusive results. In clinical trial NCT03942822, 25 mg/day of milled chia seeds improved NAFLD condition. Completed trial NCT03524365 concluded that Rouxen-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) results in histological resolution of NASH without worsening of fibrosis, while NCT04677101 validated sensitivity/accuracy of blood biomarkers in predicting NASH and fibrosis stage. Moreover, trials with empagliflozin (NCT05694923), curcuvail (NCT06256926), and obeticholic acid (NCT03439254) were completed but did not provide conclusive results. However, trial NCT03900429 reported effective improvement in fibrosis by at least one stage, without worsening of NAFLD activity score (NAS), as well as improvement in lipid profile of the NASH patients by 80 or 100 mg MGL-3196 (resmetirom). Funded by Madrigal Pharmaceuticals, Rezdiffra (resmetirom), used in the clinical trial NCT03900429, is the first FDA-approved drug for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Karina Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | | | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
15
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
16
|
Cheng JY, Shan GY, Wan H, Liu YY, Zhang YX, Shi WN, Li HJ. Hepatitis B virus-induced cirrhosis: Mechanisms, global variations, and treatment advances. World J Hepatol 2024; 16:1515-1523. [DOI: 10.4254/wjh.v16.i12.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
We focus on hepatitis B virus (HBV)-induced cirrhosis, global differences, and the evolution of antiviral treatment strategies. Chronic HBV (CHB) infection affects more than 250 million people globally, leading to cirrhosis and hepatocellular carcinoma. The aim of this article was to synthesize the current understanding of the pathophysiological mechanisms and clinical consequences of HBV-induced cirrhosis, and explore differences in disease progression between geographic regions. Disease progression varies across regions due to differences in HBV subtypes, transmission routes, and immune responses. The challenge of late diagnosis and treatment, particularly in resource-limited areas, highlights the urgency and importance of CHB service expansion. Modern nucleos(t)ide analogues, such as tenofovir and entecavir, have emerged as the main therapeutic regimens to improve clinical outcomes in patients by suppressing viral replication and attenuating liver fibrosis. However, drug resistance challenges highlight the need for ongoing research and personalized treatment strategies. This article highlights the mechanisms and impact of cirrhosis progression in the context of CHB infection, aiming to reduce the incidence of cirrhosis and its serious consequences, thereby improving the long-term health of CHB patients worldwide, especially in Africa.
Collapse
Affiliation(s)
- Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
17
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
18
|
Helsley RN, Zelows MM, Noffsinger VP, Anspach GB, Dharanipragada N, Mead AE, Cobo I, Carter A, Wu Q, Shalaurova I, Saito K, Morganti JM, Gordon SM, Graf GA. Hepatic Inactivation of Carnitine Palmitoyltransferase 1a Lowers Apolipoprotein B Containing Lipoproteins in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628437. [PMID: 39763810 PMCID: PMC11702516 DOI: 10.1101/2024.12.13.628437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of CPT1a SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of Cpt1a (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number. Despite a reduction in steady-state plasma lipids, VLDL-triglyceride (VLDL-TG) and cholesterol (VLDL-C) secretion rates are increased, suggesting accelerated clearance of apoB-containing lipoproteins (apoB-LPs) in LKO mice. Mechanistic approaches show greater peroxisome proliferator activated receptor α (PPARα) signaling which favors enhanced lipoprotein lipase-mediated metabolism of apoB-LPs, including increases in ApoCII and ApoAIV and reductions in ApoCIII & Angptl3. These studies provide mechanistic insight linking genetic variants and methylation status of CPT1a to reductions in circulating apoB-LPs in humans. HIGHLIGHTS Loss-of-function SNPs in CPT1a associate with reductions in plasma cholesterol in humans Hepatic Cpt1a expression positively associates with plasma cholesterol levels across inbred strains of miceLiver-specific Cpt1a deficiency lowers circulating apoB, plasma cholesterol, LDL-C, and LDL particle numberCpt1a ablation activates PPARα and favors clearance of apoB-containing lipoproteins.
Collapse
|
19
|
Marek GW, Malhi H. MetALD: Does it require a different therapeutic option? Hepatology 2024; 80:1424-1440. [PMID: 38820071 DOI: 10.1097/hep.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.
Collapse
Affiliation(s)
- George W Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
20
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2024:10.1038/s41573-024-01084-2. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
21
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
22
|
Pericàs JM, Anstee QM, Augustin S, Bataller R, Berzigotti A, Ciudin A, Francque S, Abraldes JG, Hernández-Gea V, Pons M, Reiberger T, Rowe IA, Rydqvist P, Schabel E, Tacke F, Tsochatzis EA, Genescà J. A roadmap for clinical trials in MASH-related compensated cirrhosis. Nat Rev Gastroenterol Hepatol 2024; 21:809-823. [PMID: 39020089 DOI: 10.1038/s41575-024-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Although metabolic dysfunction-associated steatohepatitis (MASH) is rapidly becoming a leading cause of cirrhosis worldwide, therapeutic options are limited and the number of clinical trials in MASH-related compensated cirrhosis is low as compared to those conducted in earlier disease stages. Moreover, designing clinical trials in MASH cirrhosis presents a series of challenges regarding the understanding and conceptualization of the natural history, regulatory considerations, inclusion criteria, recruitment, end points and trial duration, among others. The first international workshop on the state of the art and future direction of clinical trials in MASH-related compensated cirrhosis was held in April 2023 at Vall d'Hebron University Hospital in Barcelona (Spain) and was attended by a group of international experts on clinical trials from academia, regulatory agencies and industry, encompassing expertise in MASH, cirrhosis, portal hypertension, and regulatory affairs. The presented Roadmap summarizes important content of the workshop on current status, regulatory requirements and end points in MASH-related compensated cirrhosis clinical trials, exploring alternative study designs and highlighting the challenges that should be considered for upcoming studies on MASH cirrhosis.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | - Ramón Bataller
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Morbid Obesity Unit Coordinator, Vall d'Hebron University Hospital, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada
| | - Virginia Hernández-Gea
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Peter Rydqvist
- Medical Department, Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Elmer Schabel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Joan Genescà
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Mallet M, Silaghi CA, Sultanik P, Conti F, Rudler M, Ratziu V, Thabut D, Pais R. Current challenges and future perspectives in treating patients with NAFLD-related cirrhosis. Hepatology 2024; 80:1270-1290. [PMID: 37183906 DOI: 10.1097/hep.0000000000000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Despite the slow, progressive nature of NAFLD, the number of patients with NAFLD-related cirrhosis has significantly increased. Although the management of patients with cirrhosis is constantly evolving, improving the prognosis of patients with NAFLD-related cirrhosis is a challenge because it is situated at the crossroads between the liver, the metabolic, and the cardiovascular diseases. Therefore, the therapeutic interventions should not only target the liver but also the associated cardiometabolic conditions and should be adapted accordingly. The objective of the current review is to critically discuss the particularities in the management of patients with NAFLD-related cirrhosis. We relied on the recommendations of scientific societies and discussed them in the specific context of NAFLD cirrhosis and the surrounding cardiometabolic milieu. Herein, we covered the following aspects: (1) the weight loss strategies through lifestyle interventions to avoid sarcopenia and improve portal hypertension; (2) the optimal control of metabolic comorbidities in particular type 2 diabetes aimed not only to improve cardiovascular morbidity/mortality but also to lower the incidence of cirrhosis-related complications (we discussed various aspects related to the safety of oral antidiabetic drugs in cirrhosis); (3) the challenges in performing bariatric surgery in patients with cirrhosis related to the portal hypertension and the risk of cirrhosis decompensation; (4) the particularities in the diagnosis and management of the portal hypertension and the difficulties in managing patients awaiting for liver transplantation; and (5) the difficulties in developing drugs and conducting clinical trials in patients with NAFLD-related cirrhosis. Moreover, we discussed the emerging options to overcome these obstacles.
Collapse
Affiliation(s)
- Maxime Mallet
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristina Alina Silaghi
- Department of Endocrinology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Roumanie
| | - Philippe Sultanik
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Brain Liver Pitié-Salpêtrière Study Group (BLIPS), Paris, France
| | - Filomena Conti
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS_938 Paris, France
| | - Marika Rudler
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Brain Liver Pitié-Salpêtrière Study Group (BLIPS), Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS_938 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Vlad Ratziu
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- INSERM UMRS 1138 CRC, Paris, France
| | - Dominique Thabut
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Brain Liver Pitié-Salpêtrière Study Group (BLIPS), Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS_938 Paris, France
| | - Raluca Pais
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'hepato-gastroentérologie, Hôpital Pitié-Salpêtrière, Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS_938 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
24
|
Wu Y, Zhou J, Zhang J, Li H. Cytokeratin 18 in nonalcoholic fatty liver disease: value and application. Expert Rev Mol Diagn 2024; 24:1009-1022. [PMID: 39387822 DOI: 10.1080/14737159.2024.2413941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a common metabolism-related disease worldwide. Although studies have shown that some medications may be effective for treating NAFLD, they do not satisfy the medical requirements, and lifestyle changes are the most basic strategy. Thus, early detection of NAFLD and timely lifestyle interventions are highly important. AREAS COVERED The traditional diagnostic methods for NAFLD are limited by accuracy, cost, and security issues. Cytokeratin 18 (CK18), which is a marker of apoptosis and overall cell death, is an excellent biomarker for NAFLD. Liver fat accumulation in NAFLD triggers the activation of caspases, which increases the CK18 cleavage and its release into the blood. CK18 can help diagnose different stages of NAFLD, especially the nonalcoholic steatohepatitis (NASH) stage. In evaluating the efficacy of the NAFLD treatment and predicting the risk of NAFLD-related diseases, CK18 plays a significant role. EXPERT OPINION CK18 can non-invasively monitor the pathological conditions of NAFLD patients and provide new hope for the early diagnosis of NAFLD. Adding CK18 to the NAFLD diagnostic criteria that are widely used in clinical settings may be efficient for the detection of NAFLD and early effective intervention.
Collapse
Affiliation(s)
- Yuan Wu
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongshan Li
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
25
|
Zhou D, Fan J. Drug treatment for MASLD: Progress and direction. Chin Med J (Engl) 2024:00029330-990000000-01284. [PMID: 39470028 DOI: 10.1097/cm9.0000000000003355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 10/30/2024] Open
Abstract
ABSTRACT Metabolic dysfunction-associated steatotic liver disease (MASLD), also called non-alcoholic fatty liver disease, is the most epidemic chronic liver disease worldwide. Metabolic dysfunction-associated steatohepatitis (MASH) is the critical stage of MASLD, and early diagnosis and treatment of MASH are crucial for reducing the incidence of intrahepatic and extrahepatic complications. So far, pharmacotherapeutics for the treatment of MASH are still a major challenge, because of the complexity of the pathogenesis and heterogeneity of MASH. Many agents under investigation have shown impressive therapeutic effects by targeting different key pathways, including the attenuation of steatohepatitis or fibrosis or both. It is notable that thyroid hormone receptor-β agonist, resmetirom has become the first officially approved drug for treating MASH with fibrosis. Other agents such as peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 analogs, and fibroblast growth factor 21 analogs are awaiting approval. This review focuses on the current status of drug therapy for MASH and summarizes the latest results of new medications that have completed phase 2 or 3 clinical trials, and presents the future directions and difficulties of new drug research for MASH.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
26
|
Rapacciuolo P, Finamore C, Giorgio CD, Fiorillo B, Massa C, Urbani G, Marchianò S, Bordoni M, Cassiano C, Morretta E, Spinelli L, Lupia A, Moraca F, Biagioli M, Sepe V, Monti MC, Catalanotti B, Fiorucci S, Zampella A. Design, Synthesis, and Pharmacological Evaluation of Dual FXR-LIFR Modulators for the Treatment of Liver Fibrosis. J Med Chem 2024; 67:18334-18355. [PMID: 39382988 DOI: 10.1021/acs.jmedchem.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Although multiple approaches have been suggested, treating mild-to-severe fibrosis in the context of metabolic dysfunction associated with liver disease (MASLD) remains a challenging area in drug discovery. Pathogenesis of liver fibrosis is multifactorial, and pathogenic mechanisms are deeply intertwined; thus, it is well accepted that future treatment requires the development of multitarget modulators. Harnessing the 3,4,5-trisubstituted isoxazole scaffold, previously described as a key moiety in Farnesoid X receptor (FXR) agonism, herein we report the discovery of a novel class of hybrid molecules endowed with dual activity toward FXR and the leukemia inhibitory factor receptor (LIFR). Up to 27 new derivatives were designed and synthesized. The pharmacological characterization of this series resulted in the identification of 3a as a potent FXR agonist and LIFR antagonist with excellent ADME properties. In vitro and in vivo characterization identified compound 3a as the first-in-class hybrid LIFR inhibitor and FXR agonist that protects against the development of acute liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Via Università, 40, Cagliari 09124, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
27
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
28
|
Zhi Y, Dong Y, Li X, Zhong W, Lei X, Tang J, Mao Y. Current Progress and Challenges in the Development of Pharmacotherapy for Metabolic Dysfunction-Associated Steatohepatitis. Diabetes Metab Res Rev 2024; 40:e3846. [PMID: 39329241 DOI: 10.1002/dmrr.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), poses a significant threat to global health. Despite extensive research efforts over the past decade, only one drug has received market approval under accelerated pathways. In this review, we summarise the pathogenesis of MASH and present a comprehensive overview of recent advances in phase 2-3 clinical trials targeting MASH. These trials have highlighted considerable challenges, including low response rates to drugs, limitations of current surrogate histological endpoints, and inadequacies in the design of MASH clinical trials, all of which hinder the progress of MASH pharmacotherapy. We also explored the potential of non-invasive tests to enhance clinical trial design. Furthermore, given the strong association between MASLD and cardiometabolic disorders, we advocate for an integrated approach to disease management to improve overall patient outcomes. Continued investigation into the mechanisms and pharmacology of combination therapies may offer valuable insights for developing innovative MASH treatments.
Collapse
Affiliation(s)
- Yang Zhi
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Dong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Iyer JS, Juyal D, Le Q, Shanis Z, Pokkalla H, Pouryahya M, Pedawi A, Stanford-Moore SA, Biddle-Snead C, Carrasco-Zevallos O, Lin M, Egger R, Hoffman S, Elliott H, Leidal K, Myers RP, Chung C, Billin AN, Watkins TR, Patterson SD, Resnick M, Wack K, Glickman J, Burt AD, Loomba R, Sanyal AJ, Glass B, Montalto MC, Taylor-Weiner A, Wapinski I, Beck AH. AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases. Nat Med 2024; 30:2914-2923. [PMID: 39112795 PMCID: PMC11485234 DOI: 10.1038/s41591-024-03172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/03/2024] [Indexed: 09/08/2024]
Abstract
Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis) require histologic scoring for assessment of inclusion criteria and endpoints. However, variability in interpretation has impacted clinical trial outcomes. We developed an artificial intelligence-based measurement (AIM) tool for scoring MASH histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research Network necroinflammation grades and fibrosis stages were reproducible (κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62-0.74). The AIM-MASH versus consensus agreements were comparable to average pathologists for MASH Clinical Research Network scores (82% versus 81%) and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH for key histological features of MASH correlated with mean pathologist scores and noninvasive biomarkers and strongly predicted progression-free survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. In a retrospective analysis of the ATLAS trial (NCT03449446), responders receiving study treatment showed a greater continuous change in fibrosis compared with placebo (P = 0.02). Overall, these results suggest that AIM-MASH may assist pathologists in histologic review of MASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aryan Pedawi
- PathAI, Boston, MA, USA
- Atomwise, San Francisco, CA, USA
| | | | | | | | - Mary Lin
- PathAI, Boston, MA, USA
- Supernus Pharmaceuticals, Rockville, MD, USA
| | | | - Sara Hoffman
- PathAI, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hunter Elliott
- PathAI, Boston, MA, USA
- BigHat Biosciences, San Mateo, CA, USA
| | - Kenneth Leidal
- PathAI, Boston, MA, USA
- Genesis Therapeutics, Burlingame, CA, USA
| | - Robert P Myers
- Gilead Sciences, Inc., Foster City, CA, USA
- OrsoBio, Inc., Palo Alto, CA, USA
| | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, CA, USA
- Inipharm, San Diego, CA, USA
| | | | | | | | - Murray Resnick
- PathAI, Boston, MA, USA
- Rhode Island Hospital and The Miriam Hospital, Providence, RI, USA
| | | | - Jon Glickman
- PathAI, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Alastair D Burt
- NIHRB Medical Research Center, Newcastle University, Newcastle, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, VCU School of Medicine, Richmond, VA, USA
| | | | | | | | - Ilan Wapinski
- PathAI, Boston, MA, USA
- Sanofi Pharmaceuticals, Cambridge, MA, USA
| | | |
Collapse
|
30
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
31
|
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024; 157:155937. [PMID: 38782182 DOI: 10.1016/j.metabol.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRβ-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRβ-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.
Collapse
Affiliation(s)
- Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
32
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
33
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
34
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Singal AK, Shah VH, Malhi H. Emerging targets for therapy in ALD: Lessons from NASH. Hepatology 2024; 80:223-237. [PMID: 36938877 PMCID: PMC10511666 DOI: 10.1097/hep.0000000000000381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Alcohol-associated liver disease due to harmful alcohol use and NAFLD associated with metabolic syndrome are the 2 most common liver diseases worldwide. Control of respective risk factors is the cornerstone in the long-term management of these diseases. Furthermore, there are no effective therapies. Both diseases are characterized by metabolic derangements; thus, the focus of this review was to broaden our understanding of metabolic targets investigated in NAFLD, and how these can be applied to alcohol-associated liver disease. Conserved pathogenic pathways such as dysregulated lipid metabolism, cell death pathways including apoptosis and activation of innate immune cells, and stellate cells mediate both alcohol and NAFLDs, resulting in histological abnormalities of steatosis, inflammation, fibrosis, and cirrhosis. However, pathways such as gut microbiome changes, glucose metabolism and insulin resistance, inflammatory signaling, and microRNA abnormalities are distinct in these 2 diseases. In this review article, we describe conserved and distinct pathogenic pathways highlighting therapeutic targets that may be of potential in both diseases and those that are unique to each disease.
Collapse
Affiliation(s)
- Ashwani K. Singal
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, USA
- Division of Gastroenterology and Hepatology, Avera Transplant Institute, Sioux Falls, South Dakota, USA
- VA Medical Center, Sioux Falls, South Dakota, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Wang Q, Bu Q, Xu Z, Liang Y, Zhou J, Pan Y, Zhou H, Lu L. Macrophage ATG16L1 expression suppresses metabolic dysfunction-associated steatohepatitis progression by promoting lipophagy. Clin Mol Hepatol 2024; 30:515-538. [PMID: 38726504 PMCID: PMC11261221 DOI: 10.3350/cmh.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is an unmet clinical challenge due to the rapid increased occurrence but lacking approved drugs. Autophagy-related protein 16-like 1 (ATG16L1) plays an important role in the process of autophagy, which is indispensable for proper biogenesis of the autophagosome, but its role in modulating macrophage-related inflammation and metabolism during MASH has not been documented. Here, we aimed to elucidate the role of ATG16L1 in the progression of MASH. METHODS Expression analysis was performed with liver samples from human and mice. MASH models were induced in myeloid-specific Atg16l1-deficient and myeloid-specific Atg16l1-overexpressed mice by high-fat and high-cholesterol diet or methionine- and choline-deficient diet to explore the function and mechanism of macrophage ATG16L1 in MASH. RESULTS Macrophage-specific Atg16l1 knockout exacerbated MASH and inhibited energy expenditure, whereas macrophage-specific Atg16l1 transgenic overexpression attenuated MASH and promotes energy expenditure. Mechanistically, Atg16l1 knockout inhibited macrophage lipophagy, thereby suppressing macrophage β-oxidation and decreasing the production of 4-hydroxynonenal, which further inhibited stimulator of interferon genes(STING) carbonylation. STING palmitoylation was enhanced, STING trafficking from the endoplasmic reticulum to the Golgi was promoted, and downstream STING signaling was activated, promoting proinflammatory and profibrotic cytokines secretion, resulting in hepatic steatosis and hepatic stellate cells activation. Moreover, Atg16l1-deficiency enhanced macrophage phagosome ability but inhibited lysosome formation, engulfing mtDNA released by pyroptotic hepatocytes. Increased mtDNA promoted cGAS/STING signaling activation. Moreover, pharmacological promotion of ATG16L1 substantially blocked MASH progression. CONCLUSION ATG16L1 suppresses MASH progression by maintaining macrophage lipophagy, restraining liver inflammation, and may be a promising therapeutic target for MASH management.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yufeng Pan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
37
|
Amoroso M, Augustin S, Moosmang S, Gashaw I. Non-invasive biomarkers prognostic of decompensation events in NASH cirrhosis: a systematic literature review. J Mol Med (Berl) 2024; 102:841-858. [PMID: 38753041 PMCID: PMC11213726 DOI: 10.1007/s00109-024-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 06/29/2024]
Abstract
Liver cirrhosis due to nonalcoholic steatohepatitis (NASH) is a life-threatening condition with increasing incidence world-wide. Although its symptoms are unspecific, it can lead to decompensation events such as ascites, hepatic encephalopathy, variceal hemorrhage, and hepatocellular carcinoma (HCC). In addition, an increased risk for cardiovascular events has been demonstrated in patients with NASH. Pharmacological treatments for NASH cirrhosis are not yet available, one of the reasons being the lack in surrogate endpoints available in clinical trials of NASH cirrhosis. The feasibility of non-invasive prognostic biomarkers makes them interesting candidates as possible surrogate endpoints if their change following treatment would result in better outcomes for patients in future clinical trials of NASH cirrhosis. In this systematic literature review, a summary of the available literature on the prognostic performance of non-invasive biomarkers in terms of cardiovascular events, liver-related events, and mortality is outlined. Due to the scarcity of data specific for NASH cirrhosis, this review includes studies on NAFLD whose evaluation focuses on cirrhosis. Our search strategy identified the following non-invasive biomarkers with prognostic value in studies of NASH patients: NAFLD fibrosis score (NFS), Fibrosis-4 (FIB-4), aspartate aminotransferase (AST) to platelet ratio index (APRI), enhanced liver fibrosis (ELF™), BARD (BMI, AST/ALT (alanine aminotransferase) ratio, diabetes), Hepamet Fibrosis Score (HFS), liver enzymes (AST + ALT), alpha-fetoprotein, platelet count, neutrophil to lymphocyte ratio (NLR), Lysyl oxidase-like (LOXL) 2, miR-122, liver stiffness, MEFIB (liver stiffness measured with magnetic resonance elastography (MRE) + FIB-4), and PNPLA3 GG genotype. The aim of the present systematic literature review is to provide the reader with a summary of the non-invasive biomarkers with prognostic value in NASH cirrhosis and give an evaluation of their utility as treatment monitoring biomarkers in future clinical trials.
Collapse
Affiliation(s)
| | | | - Sven Moosmang
- Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| | | |
Collapse
|
38
|
Malandris K, Papandreou S, Vasilakou D, Kakotrichi P, Sarakapina A, Kalopitas G, Karagiannis T, Giouleme O, Bekiari E, Liakos A, Iatridi F, Paschos P, Sinakos E, Tsapas A. Efficacy of pharmacologic interventions on magnetic resonance imaging biomarkers in patients with nonalcoholic fatty liver disease: systematic review and network meta-analysis. J Gastroenterol Hepatol 2024; 39:1219-1229. [PMID: 38627972 DOI: 10.1111/jgh.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIM Several agents are under investigation for nonalcoholic fatty liver disease (NAFLD). We assessed the comparative efficacy of pharmacologic interventions for patients with NAFLD focusing on magnetic resonance imaging (MRI) biomarkers. METHODS We searched Medline, Embase, and CENTRAL. We included randomized controlled trials of more than 12 weeks of intervention that recruited patients with biopsy-confirmed or MRI-confirmed NAFLD and assessed the efficacy of interventions on liver fat content (LFC) and fibrosis by means of MRI. We performed random-effects frequentist network meta-analyses and assessed confidence in our estimates using the CINeMA (Confidence in Network Meta-Analysis) approach. RESULTS We included 47 trials (8583 patients). Versus placebo, thiazolidinediones were the most efficacious for the absolute change in LFC, followed by vitamin E, fibroblast growth factor (FGF) analogs, and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) with mean differences ranging from -7.46% (95% confidence interval [-11.0, -3.9]) to -4.36% (-7.2, -1.5). No differences between drug classes were evident. Patients receiving GLP-1 RAs or glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs were more likely to achieve ≥30% relative reduction in LFC. Among agents, efruxifermin produced the largest reduction in LFC compared to placebo [-13.5% (-18.5, -8.5)], followed by pioglitazone, while being superior to most interventions. The effect of interventions on magnetic resonance elastography assessed fibrosis was small and insignificant. The confidence in our estimates was low to very low. CONCLUSIONS Several drug classes may reduce LFC in patients with NAFLD without a significant effect on fibrosis; nevertheless, trial duration was small, and confidence in the effect estimates was low.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Papandreou
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Vasilakou
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Kakotrichi
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Sarakapina
- First Medical Department, Papageorgiou Hospital, Thessaloniki, Greece
| | - Georgios Kalopitas
- First Medical Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Karagiannis
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Giouleme
- Second Propaedeutic Medical Department, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Bekiari
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aris Liakos
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Paschos
- First Medical Department, Papageorgiou Hospital, Thessaloniki, Greece
| | - Emmanouil Sinakos
- Fourth Medical Department, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
40
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
41
|
Simonsson C, Nyman E, Gennemark P, Gustafsson P, Hotz I, Ekstedt M, Lundberg P, Cedersund G. A unified framework for prediction of liver steatosis dynamics in response to different diet and drug interventions. Clin Nutr 2024; 43:1532-1543. [PMID: 38754305 DOI: 10.1016/j.clnu.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder, characterized by the accumulation of excess fat in the liver, and is a driving factor for various severe liver diseases. These multi-factorial and multi-timescale changes are observed in different clinical studies, but these studies have not been integrated into a unified framework. In this study, we aim to present such a unified framework in the form of a dynamic mathematical model. METHODS For model training and validation, we collected data for dietary or drug-induced interventions aimed at reducing or increasing liver fat. The model was formulated using ordinary differential equations (ODEs) and the mathematical analysis, model simulation, model formulation and the model parameter estimation were all performed in MATLAB. RESULTS Our mathematical model describes accumulation of fat in the liver and predicts changes in lipid fluxes induced by both dietary and drug interventions. The model is validated using data from a wide range of drug and dietary intervention studies and can predict both short-term (days) and long-term (weeks) changes in liver fat. Importantly, the model computes the contribution of each individual lipid flux to the total liver fat dynamics. Furthermore, the model can be combined with an established bodyweight model, to simulate even longer scenarios (years), also including the effects of insulin resistance and body weight. To help prepare for corresponding eHealth applications, we also present a way to visualize the simulated changes, using dynamically changing lipid droplets, seen in images of liver biopsies. CONCLUSION In conclusion, we believe that the minimal model presented herein might be a useful tool for future applications, and to further integrate and understand data regarding changes in dietary and drug induced changes in ectopic TAG in the liver. With further development and validation, the minimal model could be used as a disease progression model for steatosis.
Collapse
Affiliation(s)
- Christian Simonsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics, Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Gennemark
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gustafsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Department of Media and Information Technology, Linköping University, Norrköping, Sweden
| | - Ingrid Hotz
- Department of Media and Information Technology, Linköping University, Norrköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics, Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
42
|
Wang H, Ma Q, Chen Y, Luo L, Ye J, Zhong B. Optimized strategy among diet, exercise, and pharmacological interventions for nonalcoholic fatty liver disease: A network meta-analysis of randomized controlled trials. Obes Rev 2024; 25:e13727. [PMID: 38509775 DOI: 10.1111/obr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emerging treatment methods, including exercise, diet, and drugs, for nonalcoholic fatty liver disease have been proposed. However, the differences in their efficacy have not been determined. We aimed to compare the effects of these treatments excluding surgery via a systematic review and network meta-analysis of randomized controlled trials. DATA SOURCE The data sources included PubMed, Embase, Web of Science and Cochrane up to February 1st, 2023. The endpoints consisted of body mass index (BMI), serum markers of metabolism and liver injury markers, liver fat content, and stiffness. RESULTS A total of 174 studies with 10,183 patients were included in this meta-analysis. In terms of improving BMI, Pan-agonist of peroxisome proliferator-activated receptors (PPAR) is the best treatment with the highest SUCRA (surface under the cumulative ranking) of 84.8% (mean = -3.40, 95% CI -5.55, -1.24) by the comparative effectiveness ranking. GLP-1 (glucagon-like peptide-1) has the best effect in improving the liver fat content based on the MRI-PDFF, steatosis score (SUCRA 99.7%, mean = -2.19, 95% CI -2.90, -1.48) and ballooning score (SUCRA 61.2%, mean = -0.82, 95% CI -4.46, 2.83). CONCLUSIONS Pan-agonist of PPAR was the most efficacious regimen in lowering BMIs, whereas GLP-1R agonists achieved the highest efficacy of steatosis improvement in this network meta-analysis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qianqian Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Codipilly DC, Faghani S, Hagan C, Lewis J, Erickson BJ, Iyer PG. The Evolving Role of Artificial Intelligence in Gastrointestinal Histopathology: An Update. Clin Gastroenterol Hepatol 2024; 22:1170-1180. [PMID: 38154727 DOI: 10.1016/j.cgh.2023.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
Significant advances in artificial intelligence (AI) over the past decade potentially may lead to dramatic effects on clinical practice. Digitized histology represents an area ripe for AI implementation. We describe several current needs within the world of gastrointestinal histopathology, and outline, using currently studied models, how AI potentially can address them. We also highlight pitfalls as AI makes inroads into clinical practice.
Collapse
Affiliation(s)
- D Chamil Codipilly
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Shahriar Faghani
- Mayo Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Catherine Hagan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jason Lewis
- Department of Pathology, Mayo Clinic, Jacksonville, Florida
| | - Bradley J Erickson
- Mayo Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, Minnesota.
| |
Collapse
|
44
|
van Hooff MC, Werner E, van der Meer AJ. Treatment in primary biliary cholangitis: Beyond ursodeoxycholic acid. Eur J Intern Med 2024; 124:14-21. [PMID: 38307734 DOI: 10.1016/j.ejim.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Primary biliary cholangitis (PBC) is a rare cholestatic immune-mediated liver disease. The clinical course varies from mild to severe, with a substantial group of patients developing cirrhosis within a decade. These patients are at risk of hepatocellular carcinoma, decompensation and liver failure. First line Ursodeoxycholic acid (UDCA) treatment improves the cholestatic surrogate markers, and was recently associated with a favorable survival free of liver transplantation, even in case of an incomplete biochemical response. However, despite adequate UDCA therapy, patients remain at risk of liver disease progression. Therefore, on-treatment multifactor-based risk stratification is necessary to identify patients in need of additional therapy. This requires a personalized approach; especially as recent studies suggest that complete biochemical normalization as most stringent response criterion might be preferred in selected patients to optimize their outcome. Today, stricter biochemical goals might actually be reachable with the addition of farnesoid X receptor or peroxisome proliferator-activated receptor agonists, or, in highly-selected cases, use of corticosteroids. Randomized controlled trials showed improvements in the key biochemical surrogate markers with the addition of these drugs, which have also been associated with improved clinical outcome. Considering this evolving PBC landscape, with more versatile treatment options and treatment goals, this review recapitulates the recent insight in UDCA therapy, the selection of patients with a residual risk of liver disease progression and the results of the currently available second line treatment options.
Collapse
Affiliation(s)
- M C van Hooff
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands
| | - E Werner
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands
| | - A J van der Meer
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, NA building, Floor 6, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
45
|
Weber EJ, Younis IR, Wang L, Xiao D, Barchuk WT, Othman AA. Evaluation of the Effects of Meal Type and Acid-Reducing Agents on the Pharmacokinetics of Cilofexor, a Selective Nonsteroidal Farnesoid X Receptor Agonist. Clin Pharmacol Drug Dev 2024; 13:677-687. [PMID: 38346861 DOI: 10.1002/cpdd.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 06/02/2024]
Abstract
Cilofexor is a nonsteroidal farnesoid X receptor agonist being developed in combination with firsocostat/semaglutide for the treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated the effects of food and acid-reducing agents (ARAs) on the pharmacokinetics of cilofexor (100- or 30-mg fixed-dose combination with firsocostat) in healthy participants. Cohorts 1 (n = 20, 100 mg) and 2 (n = 30, 30 mg) followed a 3-period, 2-sequence crossover design and evaluated effects of light-fat and high-fat meals. Cohort 3 (n = 30, 100 mg fasting) followed a 2-period, 2-sequence crossover design and evaluated the effects of a 40-mg single dose of famotidine. Cohort 4 (n = 18, 100 mg) followed a 3-period, 2-sequence crossover design and evaluated the effects of a 40-mg once-daily regimen of omeprazole administered under fasting conditions or following a light-fat meal. Administration with light-fat or high-fat meals resulted in no change and an ∼35% reduction in cilofexor AUC, respectively, relative to the fasting conditions. Under fasting conditions, famotidine increased cilofexor AUC by 3.2-fold and Cmax by 6.1-fold, while omeprazole increased cilofexor AUC by 3.1-fold and Cmax by 4.8-fold. With a low-fat meal, omeprazole increased cilofexor exposure to a lesser extent (Cmax 2.5-fold, AUC 2.1-fold) than fasting conditions. This study suggests that caution should be exercised when cilofexor is administered with ARAs under fed conditions; coadministration of cilofexor (100 or 30 mg) with ARAs under fasting conditions is not recommended with the current clinical trial formulations.
Collapse
Affiliation(s)
| | | | - Lulu Wang
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | |
Collapse
|
46
|
Iwaki M, Yoneda M, Wada N, Otani T, Kobayashi T, Nogami A, Saito S, Nakajima A. Emerging drugs for the treatment of hepatic fibrosis on nonalcoholic steatohepatitis. Expert Opin Emerg Drugs 2024; 29:127-137. [PMID: 38469871 DOI: 10.1080/14728214.2024.2328036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Approved drug therapies for nonalcoholic steatohepatitis (NASH) are lacking, for which various agents are currently being tested in clinical trials. Effective drugs for liver fibrosis, the factor most associated with prognosis in NASH, are important. AREAS COVERED This study reviewed the treatment of NASH with a focus on the effects of existing drugs and new drugs on liver fibrosis. EXPERT OPINION Considering the complex pathophysiology of fibrosis in NASH, drug therapy may target multiple pathways. The method of assessing fibrosis is important when considering treatment for liver fibrosis in NASH. The Food and Drug Administration considers an important fibrosis endpoint to be histological improvement in at least one fibrosis stage while preventing worsening of fatty hepatitis. To obtain approval as a drug for NASH, efficacy needs to be demonstrated on endpoints such as liver-related events and myocardial infarction. Among the current therapeutic agents for NASH, thiazolidinedione, sodium-glucose co-transporter 2, and selective peroxisome proliferator-activated receptors α modulator have been reported to be effective against fibrosis, although further evidence is required. The effects of pan-peroxisome proliferator-activated receptors, obeticholic acid, and fibroblast growth factor-21 analogs on liver fibrosis in the development stage therapeutics for NASH are of particular interest.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Otani
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology, Sanno Hospital, Minato-Ku, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
47
|
Puengel T, Tacke F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: where are we today? Expert Opin Pharmacother 2024; 25:1249-1263. [PMID: 38954663 DOI: 10.1080/14656566.2024.2374463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor β-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
48
|
Tincopa MA, Anstee QM, Loomba R. New and emerging treatments for metabolic dysfunction-associated steatohepatitis. Cell Metab 2024; 36:912-926. [PMID: 38608696 DOI: 10.1016/j.cmet.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading etiology of chronic liver disease worldwide, with increasing incidence and prevalence in the setting of the obesity epidemic. MASH is also a leading indication for liver transplantation, given its associated risk of progression to end-stage liver disease. A key challenge in managing MASH is the lack of approved pharmacotherapy. In its absence, lifestyle interventions with a focus on healthy nutrition and regular physical activity have been the cornerstone of therapy. Real-world efficacy and sustainability of lifestyle interventions are low, however. Pharmacotherapy development for MASH is emerging with promising data from several agents with different mechanisms of action (MOAs) in phase 3 clinical trials. In this review, we highlight ongoing challenges and potential solutions in drug development for MASH and provide an overview of available data from emerging therapies across multiple MOAs.
Collapse
Affiliation(s)
- Monica A Tincopa
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA; School of Public Health, University of California, San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
49
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
50
|
Brouwers B, Rao G, Tang Y, Rodríguez Á, Glass LC, Hartman ML. Incretin-based investigational therapies for the treatment of MASLD/MASH. Diabetes Res Clin Pract 2024; 211:111675. [PMID: 38636848 DOI: 10.1016/j.diabres.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.
Collapse
Affiliation(s)
| | - Girish Rao
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|