1
|
Modares NF, Hendrikse LD, Smith LK, Paul MS, Haight J, Luo P, Liu S, Fortin J, Tong FK, Wakeham AC, Jafari SM, Zheng C, Buckland M, Flick R, Silvester J, Berger T, Ketela T, Helke S, Foffi E, Niavarani R, Mcwilliam R, Saunders ME, Colonna I, David BA, Rastogi T, Lee WY, Kubes P, Mak TW. B cell-derived acetylcholine promotes liver regeneration by regulating Kupffer cell and hepatic CD8 + T cell function. Immunity 2025; 58:1201-1216.e7. [PMID: 40286791 DOI: 10.1016/j.immuni.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Liver regeneration (LR) is essential for recovery from acute trauma, cancer surgery, or transplantation. Neurotransmitters such as acetylcholine (ACh) play a role in LR by stimulating immune cells and augmenting hepatocyte proliferation, but the source of this ACh remains unclear. Here, we demonstrated that B cells expressing choline acetyltransferase (ChAT), which synthesizes ACh, were required for LR. Mice lacking ChAT+ B cells subjected to partial hepatectomy (PHX) displayed greater mortality due to failed LR. Kupffer cells and hepatic CD8+ T cells expressed the α7 nicotinic ACh receptor (nAChR), and LR was disrupted in mice lacking α7 nAChR. Mechanistically, B cell-derived ACh signaled through α7 nAChR to positively regulate the function of regenerative Kupffer cells and to control the activation of hepatic CD8+ T cells to curtail harmful interferon-gamma (IFNγ) production. Our work offers insights into LR mechanisms that may point to therapies for liver damage.
Collapse
Affiliation(s)
| | - Liam D Hendrikse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Logan K Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Frances K Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Chunxing Zheng
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Mackenzie Buckland
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Flick
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Simone Helke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Erica Foffi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Raheleh Niavarani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ryan Mcwilliam
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Isabelle Colonna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bruna Araujo David
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tashi Rastogi
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Woo-Yong Lee
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Paul Kubes
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biomedical and Molecular Science, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2025; 81:1400-1415. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Xu J, Li Y, Li X, Tan X, Liu L, Cao L, Xu H. Microglia-Derived IL-6 Promotes Müller Glia Reprogramming and Proliferation in Zebrafish Retina Regeneration. Invest Ophthalmol Vis Sci 2025; 66:67. [PMID: 40266594 PMCID: PMC12025339 DOI: 10.1167/iovs.66.4.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Purpose Inflammation activates the Jak1-Stat3 signaling pathway in zebrafish Müller glia (MG), leading to their status transition and proliferation following retinal injury. However, the source of Stat3-activating molecules remains unclear. This study aims to explore the expression and function of a Stat3-activating cytokine IL-6 in zebrafish retina regeneration. Methods Mechanical retinal injury was induced in adult zebrafish by a needle-poke lesion. Single-cell RNA sequencing (scRNAseq) and PCR were used to determine gene expression. Microglia ablation was performed by using the mpeg1:nsfb-mcherry transgenic zebrafish. Morpholino oligonucleotides, a recombinant zebrafish IL-6 protein and drugs, were used to manipulate IL-6 or Stat3 signaling in the retina. The 5-Ethynyl-2'-deoxyuridine (EdU) labeling was used to evaluate MG proliferation and the formation of MG-derived progenitor cells (MGPCs). Neuronal regeneration in the retina was analyzed by lineage tracing and immunostaining. Results The scRNAseq reveals that IL-6 is mainly expressed by a subset of pro-inflammatory microglia in the injured retina. Loss- and gain-of-function experiments demonstrate that IL-6 signaling promotes MG proliferation and the formation of MGPCs following retinal injury. Additionally, IL-6 facilitates MG status transition by modulating Jak1-Stat3 signaling and the expression of regeneration-associated genes. Interestingly, IL-6 may also regulate MGPC formation via phase-dependent pro-inflammatory and anti-inflammatory mechanisms. Finally, IL-6 promotes the early differentiation of MGPCs and contributes to the regeneration of retinal neurons in the injured retina. Conclusions Our study unveils the critical role of microglia-derived IL-6 in zebrafish retina regeneration, with potential implications for mammalian MG reprogramming.
Collapse
Affiliation(s)
- Jie Xu
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Li
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiangyu Li
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xuan Tan
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Lihua Liu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Xu
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Wang T, Wang M, Liu W, Zhang L, Zhang J, Zhao J, Wu Z, Lyu Y, Wu R. Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice. Int J Mol Med 2025; 55:42. [PMID: 39791211 PMCID: PMC11758893 DOI: 10.3892/ijmm.2025.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells in vitro. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.
Collapse
Affiliation(s)
- Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
5
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Dong Q, Liu Z, Ma Y, Chen X, Wang X, Tang J, Ma K, Liang C, Wang M, Wu X, Liu Y, Zhou Y, Yang H, Gao M. Adipose tissue deficiency impairs transient lipid accumulation and delays liver regeneration following partial hepatectomy in male Seipin knockout mice. Clin Transl Med 2025; 15:e70238. [PMID: 39980067 PMCID: PMC11842221 DOI: 10.1002/ctm2.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Liver diseases pose significant health challenges, underscoring the importance of understanding liver regeneration mechanisms. Systemic adipose tissue is thought to be a primary source of lipids and energy during this process; however, empirical data on the effects of adipose tissue deficiency are limited. This study investigates the role of adipose tissue in liver regeneration, focusing on transient regeneration-associated steatosis (TRAS) and hepatocyte proliferation using a Seipin knockout mouse model that mimics severe human lipodystrophy. Additionally, the study explores therapeutic strategies through adipose tissue transplantation. METHODS Male Seipin knockout (Seipin-/-) and wild-type (WT) mice underwent 2/3 partial hepatectomy (PHx). Liver and plasma samples were collected at various time points post-surgery. Histological assessments, lipid accumulation analyses and measurements of hepatocyte proliferation markers were conducted. Additionally, normal adipose tissue was transplanted into Seipin-/- mice to evaluate the restoration of liver regeneration. RESULTS Seipin-/- mice exhibited significantly reduced liver regeneration rates and impaired TRAS, as evidenced by histological and lipid measurements. While WT mice demonstrated extensive hepatocyte proliferation at 48 and 72 h post-PHx, characterised by increased mitotic cells, elevated proliferating cell nuclear antigen and Ki67 expression, Seipin-/- mice showed delayed hepatocyte proliferation. Notably, adipose tissue transplantation into Seipin-/- mice restored TRAS and improved liver regeneration and hepatocyte proliferation. Conversely, liver-specific overexpression of Seipin in Seipin-/- mice did not affect TRAS or liver regeneration, indicating that the observed effects are primarily due to adipose tissue deficiency rather than hepatic Seipin itself. CONCLUSIONS Systemic adipose tissue is essential for TRAS and effective liver regeneration following PHx. Its deficiency impairs these processes, while adipose tissue transplantation can restore normal liver function. These findings underscore the critical role of adipose tissue in liver recovery and suggest potential therapeutic strategies for liver diseases associated with lipodystrophies. KEY POINTS Seipin-/- mice, which lack adipose tissue, exhibit significantly impaired TRAS and delayed liver regeneration following partial hepatectomy. Transplantation of normal adipose tissue into Seipin-/- mice restores TRAS and enhances liver regeneration, highlighting the essential role of adipose tissue in these processes. Liver-specific overexpression of Seipin has no effect on TRAS and liver regeneration in Seipin-/- mice.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Clinical LaboratoryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ziwei Liu
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Clinical LaboratoryBethune International Peace HospitalShijiazhuangHebeiChina
| | - Yidan Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xin Chen
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of General SurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaowei Wang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jinye Tang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Kexin Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Chenxi Liang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Mengyu Wang
- Department of CardiologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoqin Wu
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yang Liu
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yaru Zhou
- Department of EndocrinologyThe Third Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Hongyuan Yang
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mingming Gao
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
7
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
8
|
Milligan C, Cowley DO, Stewart W, Curry AM, Forbes E, Rector B, Hastie A, Liu L, Hawkins GA. Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models. Brain Sci 2025; 15:84. [PMID: 39851451 PMCID: PMC11764401 DOI: 10.3390/brainsci15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant.
Collapse
Affiliation(s)
- Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dale O. Cowley
- Department of Genetics and Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - William Stewart
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alyson M. Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Rector
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Annette Hastie
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory A. Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Wang R, Liang Q, Zhang Q, Zhao S, Lin Y, Liu B, Ma Y, Mai X, Fu Q, Bao X, Wang N, Chen B, Yan P, Zhu Y, Wang K. Ccl2-Induced Regulatory T Cells Balance Inflammation Through Macrophage Polarization During Liver Reconstitution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403849. [PMID: 39352304 PMCID: PMC11615773 DOI: 10.1002/advs.202403849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Indexed: 12/06/2024]
Abstract
Inflammation is highlighted as an initial factor that helps orchestrate liver reconstitution. However, the precise mechanisms controlling inflammation during liver reconstitution have not been fully elucidated. In this study, a clear immune response is demonstrated during hepatic reconstitution. Inhibition of the hepatic inflammatory response retards liver regeneration. During this process, Ccl2 is primarily produced by type 1 innate lymphoid cells (ILC1s), and ILC1-derived Ccl2 recruits peripheral ILC1s and regulatory T cells (Tregs) to the liver. Deletion of Ccl2 or Tregs exacerbates hepatic injury and inflammatory cytokine release, accelerating liver proliferation and regeneration. The adoption of Tregs and IL-10 injection reversed these effects on hepatocyte regenerative proliferation. Additionally, Treg-derived IL-10 can directly induce macrophage polarization from M1 to M2, which alleviated macrophage-secreted IL-6 and TNF-α and balanced the intrahepatic inflammatory milieu during liver reconstitution. This study reveals the capacity of Tregs to modulate the intrahepatic inflammatory milieu and liver reconstitution through IL-10-mediated macrophage polarization, providing a potential opportunity to improve hepatic inflammation and maintain homeostasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Qing Liang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Qian Zhang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Shuchao Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoShandong266000China
| | - Yuxiang Lin
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamenFujian361102China
| | - Bing Liu
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Yinjiang Ma
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Xiaoya Mai
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Quanze Fu
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Xiaorui Bao
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Nan Wang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Binglin Chen
- Department of DermatologyZhongshan Hospital Xiamen UniversityXiamenFujian361102China
| | - Peng Yan
- NHC Key Laboratory of Forensic ScienceNational Biosafety Evidence FoundationCollege of Forensic ScienceXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic ScienceNational Biosafety Evidence FoundationCollege of Forensic ScienceXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kejia Wang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologyCancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361102China
| |
Collapse
|
10
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
11
|
Zhang L, Wang X, Yang X, Chi Y, Chu Y, Zhang Y, Gong Y, Wang F, Zhao Q, Zhao D. Genome Engineering of Primary and Pluripotent Stem Cell-Derived Hepatocytes for Modeling Liver Tumor Formation. BIOLOGY 2024; 13:684. [PMID: 39336111 PMCID: PMC11428634 DOI: 10.3390/biology13090684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms.
Collapse
Affiliation(s)
- Lulu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xunting Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Xuelian Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yijia Chi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yihang Chu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yufan Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Qian Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| |
Collapse
|
12
|
Frick J, Frobert A, Quintela Pousa AM, Balaphas A, Meyer J, Schäfer K, Giraud MN, Egger B, Bühler L, Gonelle-Gispert C. Evidence for platelet-derived transforming growth factor β1 as an early inducer of liver regeneration after hepatectomy in mice. FASEB J 2024; 38:e70039. [PMID: 39258958 DOI: 10.1096/fj.202400345r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Platelets play a crucial role in tissue regeneration, and their involvement in liver regeneration is well-established. However, the specific contribution of platelet-derived Transforming Growth Factor Beta 1 (TGFβ1) to liver regeneration remains unexplored. This study investigated the role of platelet-derived TGFβ1 in initiating liver regeneration following 2/3 liver resection. Using platelet-specific TGFβ1 knockout (Plt.TGFβ1 KO) mice and wild-type littermates (Plt.TGFβ1 WT) as controls, the study assessed circulating levels and hepatic gene expression of TGFβ1, Platelet Factor 4 (PF4), and Thrombopoietin (TPO) at early time points post-hepatectomy (post-PHx). Hepatocyte proliferation was quantified through Ki67 staining and PCNA expression in total liver lysates at various intervals, and phosphohistone-H3 (PHH3) staining was employed to mark mitotic cells. Circulating levels of hepatic mitogens, Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL6) were also assessed. Results revealed that platelet-TGFβ1 deficiency significantly reduced total plasma TGFβ1 levels at 5 h post-PHx in Plt.TGFβ1 KO mice compared to controls. While circulating PF4 levels, liver platelet recruitment and activation appeared normal at early time points, Plt.TGFβ1 KO mice showed more stable circulating platelet numbers with higher numbers at 48 h post-PHx. Notably, hepatocyte proliferation was significantly reduced in Plt.TGFβ1 KO mice. The results show that a lack of TGFβ1 in platelets leads to an unbalanced expression of IL6 in the liver and to strongly increased HGF levels 48 h after liver resection, and yet liver regeneration remains reduced. The study identifies platelet-TGFβ1 as a regulator of hepatocyte proliferation and platelet homeostasis in the early stages of liver regeneration.
Collapse
Affiliation(s)
- Johanna Frick
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aurelien Frobert
- Cardiology, Department of EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ana Maria Quintela Pousa
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Marie-Noelle Giraud
- Cardiology, Department of EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Li T, Zhong W, Li M, Shao Z, Zhang G, Wang W, Gao Z, Tan X, Xu Z, Luo F, Song G. TRIM26 deficiency enhancing liver regeneration through macrophage polarization and β-catenin pathway activation. Cell Death Dis 2024; 15:453. [PMID: 38926362 PMCID: PMC11208526 DOI: 10.1038/s41419-024-06798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Liver regeneration is a complex process involving the crosstalk between parenchymal and non-parenchymal cells, especially macrophages. However, the underlying mechanisms remain incompletely understood. Here, we identify the E3 ubiquitin ligase TRIM26 as a crucial regulator of liver regeneration. Following partial hepatectomy or acute liver injury induced by carbon tetrachloride, Trim26 knockout mice exhibit enhanced hepatocyte proliferation compared to wild-type controls, while adeno-associated virus (AAV)-mediated overexpression of Trim26 reverses the promotional effects. Mechanistically, Trim26 deficiency promotes the recruitment of macrophages to the liver and their polarization towards pro-inflammatory M1 phenotype. These M1 macrophages secrete Wnts, including Wnt2, which subsequently stimulate hepatocyte proliferation through the activation of Wnt/β-catenin signaling. In hepatocytes, Trim26 knockdown reduces the ubiquitination and degradation of β-catenin, thereby further enhancing Wnt/β-catenin signaling. Pharmacological inhibition of Wnt/β-catenin pathway by ICG-001 or depletion of macrophages by clodronate liposomes diminishes the pro-regenerative effects of Trim26 deficiency. Moreover, bone marrow transplantation experiments provide evidence that Trim26 knockout in myeloid cells alone can also promote liver regeneration, highlighting the critical role of macrophage Trim26 in this process. Taken together, our study uncovers TRIM26 as a negative regulator of liver regeneration by modulating macrophage polarization and Wnt/β-catenin signaling in hepatocytes, providing a potential therapeutic target for promoting liver regeneration in clinical settings.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zile Shao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixing Gao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei Tan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ziyi Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Wang MJ, Zhang HL, Chen F, Guo XJ, Liu QG, Hou J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp Hematol Oncol 2024; 13:62. [PMID: 38890694 PMCID: PMC11184755 DOI: 10.1186/s40164-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine and exerts its complex biological functions mainly through three different signal modes, called cis-, trans-, and cluster signaling. When IL-6 binds to its membrane or soluble receptors, the co-receptor gp130 is activated to initiate downstream signaling and induce the expression of target genes. In the liver, IL-6 can perform its anti-inflammatory activities to promote hepatocyte reprogramming and liver regeneration. On the contrary, IL-6 also exerts the pro-inflammatory functions to induce liver aging, fibrosis, steatosis, and carcinogenesis. However, understanding the roles and underlying mechanisms of IL-6 in liver physiological and pathological processes is still an ongoing process. So far, therapeutic agents against IL‑6, IL‑6 receptor (IL‑6R), IL-6-sIL-6R complex, or IL-6 downstream signal transducers have been developed, and determined to be effective in the intervention of inflammatory diseases and cancers. In this review, we summarized and highlighted the understanding of the double-edged effects of IL-6 in liver homeostasis, aging, inflammation, and chronic diseases, for better shifting the "negative" functions of IL-6 to the "beneficial" actions, and further discussed the potential therapeutic effects of targeting IL-6 signaling in the clinics.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Hai-Ling Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Neurology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiao-Jing Guo
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
15
|
Xu S, Deng KQ, Lu C, Fu X, Zhu Q, Wan S, Zhang L, Huang Y, Nie L, Cai H, Wang Q, Zeng H, Zhang Y, Wang F, Ren H, Chen Y, Yan H, Xu K, Zhou L, Lu M, Zhu Y, Liu S, Lu Z. Interleukin-6 classic and trans-signaling utilize glucose metabolism reprogramming to achieve anti- or pro-inflammatory effects. Metabolism 2024; 155:155832. [PMID: 38438106 DOI: 10.1016/j.metabol.2024.155832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.
Collapse
Affiliation(s)
- Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510530, China.
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xin Fu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Qingmei Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Shiqi Wan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China
| | - Yu Huang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China.
| | - Longyu Nie
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China.
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Human Province, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China.
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China.
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany.
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Shi Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China; State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Human Province, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
17
|
Xu H, Qiu X, Wang Z, Wang K, Tan Y, Gao F, Perini MV, Xu X. Role of the portal system in liver regeneration: From molecular mechanisms to clinical management. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:1-10. [PMID: 39959033 PMCID: PMC11771269 DOI: 10.1016/j.livres.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2025]
Abstract
The liver has a strong regenerative capacity that ensures patient recovery after hepatectomy and liver transplantation. The portal system plays a crucial role in the dual blood supply to the liver, making it a significant factor in hepatic function. Several surgical strategies, such as portal vein ligation, associating liver partition and portal vein ligation for staged hepatectomy, and dual vein embolization, have highlighted the portal system's importance in liver regeneration. Following hepatectomy or liver transplantation, the hemodynamic properties of the portal system change dramatically, triggering regeneration via shear stress and the induction of hypoxia. However, excessive portal hyperperfusion can harm the liver and negatively affect patient outcomes. Furthermore, as the importance of the gut-liver axis has gradually been revealed, the effect of metabolites and cytokines from gut microbes carried by portal blood on liver regeneration has been acknowledged. From these perspectives, this review outlines the molecular mechanisms of the portal system's role in liver regeneration and summarizes therapeutic strategies based on the portal system intervention to promote liver regeneration.
Collapse
Affiliation(s)
- Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xun Qiu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhoucheng Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yawen Tan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marcos Vinicius Perini
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Chen Y, Meng L, Xu N, Chen H, Wei X, Lu D, Wang S, Xu X. Ten-eleven translocation-2-mediated macrophage activation promotes liver regeneration. Cell Commun Signal 2024; 22:95. [PMID: 38308318 PMCID: PMC10835877 DOI: 10.1186/s12964-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/23/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative capacity of the liver enables recovery after radical Hepatocellular carcinoma (HCC) resection. After resection, macrophages secrete interleukin 6 and hepatocyte growth factors to promote liver regeneration. Ten-eleven translocation-2 (Tet2) DNA dioxygenase regulates pro-inflammatory factor secretion in macrophages. In this study, we explored the role of Tet2 in macrophages and its function independent of its enzymatic activity in liver regeneration. METHODS The model of liver regeneration after 70% partial hepatectomy (PHx) is a classic universal model for studying reparative processes in the liver. Mice were euthanized at 0, 24, and 48 h after PHx. Enzyme-linked immunosorbent assays, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence analysis, and flow cytometry were performed to explore immune cell infiltration and liver regenerative capability. Molecular dynamics simulations were performed to study the interaction between Tet2 and signal transducer and activator of transcription 1 (Stat1). RESULTS Tet2 in macrophages negatively regulated liver regeneration in the partial hepatectomy mice model. Tet2 interacted with Stat1, inhibiting the expression of proinflammatory factors and suppressing liver regeneration. The Tet2 inhibitor attenuated the interaction between Stat1 and Tet2, enhanced Stat1 phosphorylation, and promoted hepatocyte proliferation. The proliferative function of the Tet2 inhibitor relied on macrophages and did not affect hepatocytes directly. CONCLUSION Our findings underscore that Tet2 in macrophages negatively regulates liver regeneration by interacting with Stat1. Targeting Tet2 in macrophages promotes liver regeneration and function after a hepatectomy, presenting a novel target to promote liver regeneration and function.
Collapse
Affiliation(s)
- Yiyuan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Meng
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuai Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Gao C, Wang Q, Ding Y, Kwong CHT, Liu J, Xie B, Wei J, Lee SMY, Mok GSP, Wang R. Targeted therapies of inflammatory diseases with intracellularly gelated macrophages in mice and rats. Nat Commun 2024; 15:328. [PMID: 38184609 PMCID: PMC10771422 DOI: 10.1038/s41467-023-44662-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition. In a rat model of collagen-induced arthritis, GMs alleviate the joint injury, and suppress the overall arthritis severity. Upon intravenous injection, GMs efficiently accumulate in the inflammatory lungs of acute pneumonia mice for anti-inflammatory therapy. Conveniently, GMs are amenable to lyophilization and can be stored at ambient temperatures for at least 1 month without loss of integrity and bio-activity. This intracellular gelation technology provides a universal platform for targeted inflammation neutralization treatment.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao, 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
| | - Greta S P Mok
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
20
|
Lao WL, Sang S, Huang LC, Yi SH, Guo MC, Dong HM, Zhou GZ, Chen ZH. Effect of ultrasound-guided stellate ganglion block on inflammatory cytokines and postoperative recovery after partial hepatectomy: a randomised clinical trial. BMC Anesthesiol 2024; 24:7. [PMID: 38166634 PMCID: PMC10759608 DOI: 10.1186/s12871-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Stellate ganglion block (SGB) has been shown to reduce perioperative complications in various surgeries. Because laparoscopic techniques and instruments have advanced during the past two decades, laparoscopic liver resection is being increasingly adopted worldwide. Lesser blood loss, fewer postoperative complications, and shorter postoperative hospital stays are the advantages of laparoscopic liver resection, as compared to conventional open surgery. There is an urgent need for an effective intervention to reduce perioperative complications and accelerate postoperative recovery. This study investigated the effect of ultrasound-guided SGB on enhanced recovery after laparoscopic partial hepatectomy. METHODS We compared patients who received SGB with 0.5% ropivacaine (group S) with those who received SGB with 0.9% saline (group N). A total of 58 patients with partial hepatectomy were enrolled (30 S) and (28 N). Before induction of anesthesia, SGB was performed with 0.5% ropivacaine in group S and 0.9% saline in group N. MAIN OUTCOME Comparison of serum inflammatory cytokines concentration at each time point. RESULTS Main outcome: When comparing IL-6 and IL-10 concentrations among groups, group S showed less variation over time compared to group N. For comparison between groups, the serum IL-6 concentration in group S was lower than that in group N at 6 and 24 h after operation (P < 0.01), and there was a significant linear relationship between serum IL-6 concentration at 24 h after operation and hospitalization situation. CONCLUSIONS Ultrasound-guided SGB can stabilize perioperative inflammatory cytokines plays a positive role in the enhanced recovery of patients after laparoscopic partial hepatectomy. The serum IL-6 level within 24 h after surgery may be used as a predictor of hospitalization. TRIAL REGISTRATION The study was registered at the ClinicalTrials.gov (Registration date: 13/09/2021; Trial ID: NCT05042583).
Collapse
Affiliation(s)
- Wei-Long Lao
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
- Shaoxing University School of Medicine, Shaoxing, China
| | - Shuang Sang
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
- Shaoxing University School of Medicine, Shaoxing, China
| | - Li-Cai Huang
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
- Shaoxing University School of Medicine, Shaoxing, China
| | - Sheng-Hua Yi
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
| | - Mo-Chi Guo
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
| | - Hui-Min Dong
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China
| | - Guo-Zhong Zhou
- Clinical laboratory, Shaoxing People's Hospital, Shaoxing, China
| | - Zhong-Hua Chen
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing, China.
- Shaoxing University School of Medicine, Shaoxing, China.
| |
Collapse
|
21
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Gunes A, Schmitt C, Bilodeau L, Huet C, Belblidia A, Baldwin C, Giard JM, Biertho L, Lafortune A, Couture CY, Cheung A, Nguyen BN, Galun E, Bémeur C, Bilodeau M, Laplante M, Tang A, Faraj M, Estall JL. IL-6 Trans-Signaling Is Increased in Diabetes, Impacted by Glucolipotoxicity, and Associated With Liver Stiffness and Fibrosis in Fatty Liver Disease. Diabetes 2023; 72:1820-1834. [PMID: 37757741 PMCID: PMC10658070 DOI: 10.2337/db23-0171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Many people living with diabetes also have nonalcoholic fatty liver disease (NAFLD). Interleukin-6 (IL-6) is involved in both diseases, interacting with both membrane-bound (classical) and circulating (trans-signaling) soluble receptors. We investigated whether secretion of IL-6 trans-signaling coreceptors are altered in NAFLD by diabetes and whether this might associate with the severity of fatty liver disease. Secretion patterns were investigated with use of human hepatocyte, stellate, and monocyte cell lines. Associations with liver pathology were investigated in two patient cohorts: 1) biopsy-confirmed steatohepatitis and 2) class 3 obesity. We found that exposure of stellate cells to high glucose and palmitate increased IL-6 and soluble gp130 (sgp130) secretion. In line with this, plasma sgp130 in both patient cohorts positively correlated with HbA1c, and subjects with diabetes had higher circulating levels of IL-6 and trans-signaling coreceptors. Plasma sgp130 strongly correlated with liver stiffness and was significantly increased in subjects with F4 fibrosis stage. Monocyte activation was associated with reduced sIL-6R secretion. These data suggest that hyperglycemia and hyperlipidemia can directly impact IL-6 trans-signaling and that this may be linked to enhanced severity of NAFLD in patients with concomitant diabetes. ARTICLE HIGHLIGHTS IL-6 and its circulating coreceptor sgp130 are increased in people with fatty liver disease and steatohepatitis. High glucose and lipids stimulated IL-6 and sgp130 secretion from hepatic stellate cells. sgp130 levels correlated with HbA1c, and diabetes concurrent with steatohepatitis further increased circulating levels of all IL-6 trans-signaling mediators. Circulating sgp130 positively correlated with liver stiffness and hepatic fibrosis. Metabolic stress to liver associated with fatty liver disease might shift the balance of IL-6 classical versus trans-signaling, promoting liver fibrosis that is accelerated by diabetes.
Collapse
Affiliation(s)
- Aysim Gunes
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
| | - Clémence Schmitt
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Programmes de biologie moléculaire, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Bilodeau
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Catherine Huet
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Assia Belblidia
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Cindy Baldwin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Jeanne-Marie Giard
- Liver Unit, Centre hospitalier de l’Université de Montréal (CHUM), Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Biertho
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Annie Lafortune
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Christian Yves Couture
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Quebec City, Quebec, Canada
| | - Angela Cheung
- Gastroenterology and Hepatology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Bich N. Nguyen
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Chantal Bémeur
- Département de nutrition, Université de Montréal, Montreal, Quebec, Canada
- Labo HépatoNeuro, Centre de recherche du CHUM, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Liver Unit, Centre hospitalier de l’Université de Montréal (CHUM), Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Laplante
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - An Tang
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - May Faraj
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Département de nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Programmes de biologie moléculaire, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
25
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Beaudoin JJ, Clemens L, Miedel MT, Gough A, Zaidi F, Ramamoorthy P, Wong KE, Sarangarajan R, Battista C, Shoda LKM, Siler SQ, Taylor DL, Howell BA, Vernetti LA, Yang K. The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury. Int J Mol Sci 2023; 24:9692. [PMID: 37298645 PMCID: PMC10253699 DOI: 10.3390/ijms24119692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.
Collapse
Affiliation(s)
- James J. Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lara Clemens
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Mark T. Miedel
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Albert Gough
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Fatima Zaidi
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Kari E. Wong
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Christina Battista
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lisl K. M. Shoda
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Scott Q. Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Brett A. Howell
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lawrence A. Vernetti
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| |
Collapse
|
27
|
Rafii P, Seibel C, Weitz HT, Ettich J, Minafra AR, Petzsch P, Lang A, Floss DM, Behnke K, Köhrer K, Moll JM, Scheller J. Cytokimera GIL-11 rescued IL-6R deficient mice from partial hepatectomy-induced death by signaling via non-natural gp130:LIFR:IL-11R complexes. Commun Biol 2023; 6:418. [PMID: 37061565 PMCID: PMC10105715 DOI: 10.1038/s42003-023-04768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common β receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Li R, Xiang C, Li Y, Nie Y. Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 2023; 177:1-8. [PMID: 36801268 DOI: 10.1016/j.yjmcc.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Inducing endogenous cardiomyocyte proliferation and heart regeneration is a promising strategy to treat ischemic heart failure. The immune response has recently been considered critical in cardiac regeneration. Thus, targeting the immune response is a potent strategy to improve cardiac regeneration and repair after myocardial infarction. Here we reviewed the characteristics of the relationship between the postinjury immune response and heart regenerative capacity and summarized the latest studies focusing on inflammation and heart regeneration to identify potent targets of the immune response and strategies in the immune response to promote cardiac regeneration.
Collapse
Affiliation(s)
- Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenying Xiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yixun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China.
| |
Collapse
|
29
|
Alieva AM, Butenko AV, Teplova NV, Reznik EV, Valiev RK, Skripnichenko EА, Sozykin AV, Nikitin IG. The role of interleukin-6 in the development of cardiovascular diseases: A review. CONSILIUM MEDICUM 2023. [DOI: 10.26442/20751753.2022.12.201948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Currently, the search and study of new biological markers that can provide early diagnosis of cardiovascular diseases, serve as a laboratory tool for assessing the effectiveness of treatment, or be used as prognostic markers and risk stratification criteria is ongoing. Our literature review indicates the potentially important diagnostic and prognostic value of assessing members of the interleukin-6 family. It is expected that further scientific and clinical studies will demonstrate the possibility of using members of the interleukin-6 family as an additional laboratory tool for the diagnosis, risk stratification and prediction of cardiovascular events in cardiac patients. It is necessary to evaluate in detail the possibilities of blockade of these interleukin-6 molecules in patients with cardiovascular diseases in vitro and in vivo.
Collapse
|
30
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
31
|
Zhang H, Zhang L, Wang Y, Zou J, Zhang T. Sarcopenia Predicts Prognosis of Patients Undergoing Liver Resection for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Nutr Cancer 2023; 75:776-784. [PMID: 36537813 DOI: 10.1080/01635581.2022.2159046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, several studies have investigated the impact of preoperative sarcopenia on the prognosis of patients with hepatocellular carcinoma (HCC) after liver resection, but their conclusions are controversial. Therefore, we performed a meta-analysis to evaluate the prognostic role of sarcopenia in HCC patients undergoing liver resection. PubMed, SinoMed, Embase, Cochrane Library, Medline, and Web of Science databases were systematically searched for all published literature on the prognostic value of preoperative sarcopenia in HCC patients undergoing liver resection. Pooled hazard ratios (HR), odds ratios (OR) and weighted mean differences (WMD) of the 95% confidence intervals (95% CI) were estimated using a fixed-effects or random-effects model. A total of 12 articles with 1,774 patients were included. The results of meta-analysis showed that sarcopenia would increase postoperative complications (OR = 1.30, 95%CI 1.03 ∼ 1.65, P = 0.03), prolong hospital stay (SMD = 0.22, 95%CI 0.05 ∼ 0.39, P = 0.01), and also be associated with shorter overall survival (OS) (HR = 1.69, 95%CI 1.09 ∼ 2.62, P = 0.02) and worse disease free survival (DFS) (HR = 1.54, 95%CI 1.23 ∼ 1.93, P < 0.01). Sarcopenia has an adverse effect on the prognosis of HCC patients undergoing liver resection.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Meishan People's Hospital, Meishan, Sichuan, China
| | - Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Meishan People's Hospital, Meishan, Sichuan, China
| | - Yi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Meishan People's Hospital, Meishan, Sichuan, China
| | - Ji Zou
- Department of Hepatobiliary and Pancreatic Surgery, Meishan People's Hospital, Meishan, Sichuan, China
| | - Ting Zhang
- Department of Gastroenterology, Meishan People's Hospital, Meishan, Sichuan, China
| |
Collapse
|
32
|
Garbers C, Rose-John S. Dissecting Interleukin-6 Classic and Trans-signaling in Inflammation and Cancer. Methods Mol Biol 2023; 2691:207-224. [PMID: 37355548 DOI: 10.1007/978-1-0716-3331-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.
Collapse
Affiliation(s)
- Christoph Garbers
- Medical Faculty, Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany.
| | | |
Collapse
|
33
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
34
|
IL6 supports long-term expansion of hepatocytes in vitro. Nat Commun 2022; 13:7345. [PMID: 36446858 PMCID: PMC9708838 DOI: 10.1038/s41467-022-35167-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.
Collapse
|
35
|
YAN X, Shi JH, Xue JF, Guo WZ, Li B, Zhang SJ. PD-1/PD-L1 inhibition promotes hepatic regeneration in small-for-size liver following extended hepatectomy. Cytokine 2022; 159:156017. [DOI: 10.1016/j.cyto.2022.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
|
36
|
Wang J, Sun Q, Wu J, Tian W, Wang H, Liu H. Identification of four STAT3 isoforms and functional investigation of IL-6/JAK2/STAT3 pathway in blunt snout bream (Megalobrama amblycephala). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104484. [PMID: 35764161 DOI: 10.1016/j.dci.2022.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a major regulator of immune response and chronic inflammatory, which can be activated by interleukin-6 (IL-6). In mammals, STAT3 has multiple isoforms, and its function has been well studied. In teleost, a single stat3 has been cloned and identified in several species, but studies on its function are limited. In the present study, four stat3 isoforms including mastat3α1, mastat3α2, mastat3β1 and mastat3β2 were identified from blunt snout bream (Megalobrama amblycephala). The results of quantitative PCR (qPCR) showed that four mastat3 transcripts were ubiquitously expressed in all 10 tissues examined. After Aeromonas hydrophila challenge, the expression patterns of mastat3a1, mastat3a2 and mastat3β2 were similar, but significantly different from that of mastat3β1. In addition, western blot showed that rmaIL-6+rmasIL-6R (IL-6 trans-signaling) significantly up-regulated phosphorylation levels of the four maSTAT3 isoforms and mRNA levels of the il-10, il-11, tnf-a, socs3a and socs3b genes, while rmaIL-6 (IL-6 classical signaling) only significantly up-regulated phosphorylation levels of the two maSTAT3α isoforms and mRNA levels of the il-10, socs3a and socs3b genes. Meanwhile, overexpression or inhibition of JAK2 could significantly change the STAT3 phosphorylation. Finally, JAK2 and STAT3 inhibitors could significantly inhibit the up-regulation of il-10, il-11, tnf-a, socs3a and socs3b induced by rmaIL-6+rmasIL-6R or rmaIL-6. To sum up, this study reveals the functional distinctions and overlaps among the four maSTAT3 isoforms in blunt snout bream and reveals the differential regulation of IL-6 classical signaling and trans-signaling on downstream immune genes via the JAK2/STAT3 pathway, enriching our knowledge of fish's defense mechanisms against pathogens.
Collapse
Affiliation(s)
- Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wanping Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
37
|
Xu J, Chen P, Yu C, Shi Q, Wei S, Li Y, Qi H, Cao Q, Guo C, Wu X, Di G. Hypoxic bone marrow mesenchymal stromal cells‐derived exosomal
miR
‐182‐5p promotes liver regeneration via
FOXO1
‐mediated macrophage polarization. FASEB J 2022; 36:e22553. [DOI: 10.1096/fj.202101868rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Xu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Peng Chen
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Chaoqun Yu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Qiangqiang Shi
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Susu Wei
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Yaxin Li
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Hongzhao Qi
- Institute for Translational Medicine Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co.Ltd Qingdao China
| | - Chuanlong Guo
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Xianggen Wu
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guohu Di
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
38
|
Serum Interleukins as Potential Prognostic Biomarkers in HBV-Related Acute-on-Chronic Liver Failure. Mediators Inflamm 2022; 2022:7794890. [PMID: 36117587 PMCID: PMC9477565 DOI: 10.1155/2022/7794890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is relatively common in China and has complex pathogenesis, difficult clinical treatment, and poor prognosis. Immune status is an important factor affecting ACLF prognosis. Interleukins are a family of secreted lymphocyte factors that interact with a host of cell types including immune cells. These signaling molecules play important roles in transmitting information; regulating immune cells; mediating the activation, proliferation, and differentiation of T and B cells; and modulating inflammatory responses. Many studies have investigated the correlation between interleukin expression and the prognosis of HBV-ACLF. This review focuses on the potential use of interleukins as prognostic biomarkers in HBV-ACLF. References were mainly identified through PubMed and CNKI search, including relevant studies published until December 2021. We have summarized reports of several promising diagnostic interleukin biomarkers that predict susceptibility to HBV-ACLF. The use of biomarkers to understand early prognosis can help devise different therapeutic measures and improve patient survival. Ongoing research on prognostic biomarkers of HBV-ACLF is promising, and future preclinical and clinical studies are warranted.
Collapse
|
39
|
Yin G, Zeng W, Li R, Zeng M, Chen R, Liu Y, Jiang R, Wang Y. Glia Maturation Factor-β Supports Liver Regeneration by Remodeling Actin Network to Enhance STAT3 Proliferative Signals. Cell Mol Gastroenterol Hepatol 2022; 14:1123-1145. [PMID: 35953024 PMCID: PMC9606832 DOI: 10.1016/j.jcmgh.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Glia maturation factor-β (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1β. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.
Collapse
Affiliation(s)
- Guo Yin
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Weilan Zeng
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Manman Zeng
- Department of Gynecology, Women and Children's Hospital of Guangdong, Guangzhou, China
| | - Ronghua Chen
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaxue Liu
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ronglong Jiang
- Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China,Correspondence Address correspondence to: Yan Wang, MD, PhD, Biomedical Research Center, Southern Medical University, No 1023 Sha Tai Nan Avenue, Guangzhou 510515, China. fax: (86) 20-6164-7396.
| |
Collapse
|
40
|
Hany NM, Eissa S, Basyouni M, Hasanin AH, Aboul-Ela YM, Elmagd NMA, Montasser IF, Ali MA, Skipp PJ, Matboli M. Modulation of hepatic stellate cells by Mutaflor ® probiotic in non-alcoholic fatty liver disease management. J Transl Med 2022; 20:342. [PMID: 35907883 PMCID: PMC9338485 DOI: 10.1186/s12967-022-03543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-β, were estimated by ELISA. RESULTS Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-β effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Noha M. Hany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
- MASRI Research Institue, Ain Shams University, Cairo, Egypt
| | - Manal Basyouni
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| | - Amany H. Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M. Aboul-Ela
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa M. Abo Elmagd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F. Montasser
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud A. Ali
- Department of Molecular Microbiology, Military Medical Academy, Cairo, Egypt
| | - Paul J. Skipp
- Centre for Proteomic Research, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| |
Collapse
|
41
|
Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 2022; 7:158207. [PMID: 35708907 PMCID: PMC9431681 DOI: 10.1172/jci.insight.158207] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts, such as wound healing. We have found that hepatic stellate cells (HSCs) underwent senescence within 2 days after 2/3 partial hepatectomy (PHx) in young (2–3 months old) mice, and the elimination of these senescent cells by using the senolytic drug ABT263 or by using a genetic mouse model impaired liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype, which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces Yes-associated protein (YAP) activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restored liver regeneration in mice with senescent cell elimination, and the combination of both fully restored liver weight recovery. Furthermore, the matricellular protein central communication network factor 1 (CCN1, previously called CYR61) was rapidly elevated in response to PHx and induced HSC senescence. Knockin mice expressing a mutant CCN1 unable to bind integrin α6β1 were deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.
Collapse
Affiliation(s)
- Naiyuan Cheng
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ki-Hyun Kim
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Lester F Lau
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| |
Collapse
|
42
|
Wang J, Sun Q, Wang G, Wang H, Liu H. The effects of blunt snout bream (Megalobrama amblycephala) IL-6 trans-signaling on immunity and iron metabolism via JAK/STAT3 pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104372. [PMID: 35217123 DOI: 10.1016/j.dci.2022.104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic inflammatory cytokine, which plays a dual role in mammalian inflammation through both classical signaling (IL-6 binds to IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds to soluble IL-6R). However, the function of IL-6, especially the regulatory mechanism of IL-6 trans-signaling in immunity and iron metabolism remains largely unclear in teleost. Here, L8824 cells (Ctenopharyngodon idella hepatic cells) were stimulated with blunt snout bream (Megalobrama amblycephala) IL-6 combination with sIL-6R protein (rmaIL-6+rmasIL-6R/maIL-6 trans-signaling) or STAT3 inhibitor (c188-9), and RNA-sequencing, global transcriptional analyses. The enrichment analysis of GO and KEGG showed that maIL-6 trans-signaling is mainly involved in stress and inflammation response, and the activation of STAT3 is mainly related to cell proliferation, apoptosis and immune regulation. Furthermore, after treated L8824 cells with JAK2 inhibitors, it was found that the induction of IL-6 trans-signaling on the selected immune-related genes could be inhibited. These results implied that in early stage after rmaIL-6+rmasIL-6R treatment, the maIL-6 trans-signaling played an important role in the immune regulation through the JAK2/STAT3 pathway. By extending the rmaIL-6+rmasIL-6R treatment time, it was found that maIL-6 trans-signaling could promote the expression of iron metabolism related genes (ft, tf, tfr1, hamp and fpn1) in L8824 cells, indicating that maIL-6 trans-signaling may be involved in iron metabolism in the non-acute immune phase. Finally, after treated L8824 cells with JAK2 and STAT3 inhibitors, it was found that only tf and fpn1 were regulated by maIL-6 trans-signaling through the JAK2/STAT3 pathway. These findings provided novel insights into IL-6 trans-signaling regulatory mechanism in teleost, enriching our knowledge of fish immunity and iron metabolism.
Collapse
Affiliation(s)
- Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Guowen Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
43
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Xie G, Song Y, Li N, Zhang Z, Wang X, Liu Y, Jiao S, Wei M, Yu B, Wang Y, Wang H, Qu A. Myeloid peroxisome proliferator-activated receptor α deficiency accelerates liver regeneration via IL-6/STAT3 pathway after 2/3 partial hepatectomy in mice. Hepatobiliary Surg Nutr 2022; 11:199-211. [PMID: 35464270 DOI: 10.21037/hbsn-20-688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Background Liver regeneration is a fundamental process for sustained body homeostasis and liver function recovery after injury. Emerging evidence demonstrates that myeloid cells play a critical role in liver regeneration by secreting cytokines and growth factors. Peroxisome proliferator-activated receptor α (PPARα), the target of clinical lipid-lowering fibrate drugs, regulates cell metabolism, proliferation, and survival. However, the role of myeloid PPARα in partial hepatectomy (PHx)-induced liver regeneration remains unknown. Methods Myeloid-specific PPARa-deficient (Ppara Mye-/-) mice and the littermate controls (Ppara fl/fl) were subjected to sham or 2/3 PHx to induce liver regeneration. Hepatocyte proliferation and mitosis were assessed by immunohistochemical (IHC) staining for 5-bromo-2'-deoxyuridine (BrdU) and Ki67 as well as hematoxylin and eosin (H&E) staining. Macrophage and neutrophil infiltration into livers were reflected by IHC staining for galectin-3 and myeloperoxidase (MPO) as well as flow cytometry analysis. Macrophage migration ability was evaluated by transwell assay. The mRNA levels for cell cycle or inflammation-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by Western blotting. Results Ppara Mye-/- mice showed enhanced hepatocyte proliferation and mitosis at 32 h after PHx compared with Ppara fl/fl mice, which was consistent with increased proliferating cell nuclear antigen (Pcna) mRNA and cyclinD1 (CYCD1) protein levels in Ppara Mye-/- mice at 32 h after PHx, indicating an accelerated liver regeneration in Ppara Mye-/- mice. IHC staining showed that macrophages and neutrophils were increased in Ppara Mye-/- liver at 32 h after PHx. Livers of Ppara Mye-/- mice also showed an enhanced infiltration of M1 macrophages at 32 h after PHx. In vitro, Ppara-deficient bone marrow-derived macrophages (BMDMs) exhibited markedly enhanced migratory capacity and upregulated M1 genes Il6 and Tnfa but downregulated M2 gene Arg1 expressions. Furthermore, the phosphorylation of STAT3, a key transcript factor mediating IL6-promoted hepatocyte survival and proliferation, was reinforced in the liver of Ppara Mye-/- mice after PHx. Conclusions This study provides evidence that myeloid PPARα deficiency accelerates PHx-induced liver regeneration via macrophage polarization and consequent IL-6/STAT3 activation, thus providing a potential target for manipulating liver regeneration.
Collapse
Affiliation(s)
- Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Na Li
- Department of Endocrinology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ming Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
45
|
Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, Xu Y, Yu J, Zhang J, Zhao M, Xu S, Pan W, Yin Z, Ye J, Wan J. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:818890. [PMID: 35402550 PMCID: PMC8983865 DOI: 10.3389/fcvm.2022.818890] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the main causes of human mortality. Cytokines play crucial roles in the development of cardiovascular disease. Interleukin (IL)-6 family members are a series of cytokines, including IL-6, IL-11, IL-30, IL-31, OSM, LIF, CNTF, CT-1, CT-2, and CLC, that regulate multiple biological effects. Experimental and clinical evidence shows that IL-6 family members are closely related to cardiovascular diseases such as atherosclerosis, hypertension, aortic dissection, cardiac fibrosis, and cardiomyopathy. This review mainly discusses the role of IL-6 family members in cardiovascular disease for the sake of identifying possible intervention targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
46
|
Goikoetxea‐Usandizaga N, Serrano‐Maciá M, Delgado TC, Simón J, Fernández Ramos D, Barriales D, Cornide M, Jiménez M, Pérez‐Redondo M, Lachiondo‐Ortega S, Rodríguez‐Agudo R, Bizkarguenaga M, Zalamea JD, Pasco ST, Caballero‐Díaz D, Alfano B, Bravo M, González‐Recio I, Mercado‐Gómez M, Gil‐Pitarch C, Mabe J, Gracia‐Sancho J, Abecia L, Lorenzo Ó, Martín‐Sanz P, Abrescia NGA, Sabio G, Rincón M, Anguita J, Miñambres E, Martín C, Berenguer M, Fabregat I, Casado M, Peralta C, Varela‐Rey M, Martínez‐Chantar ML. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology 2022; 75:550-566. [PMID: 34510498 PMCID: PMC9300136 DOI: 10.1002/hep.32149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.
Collapse
Affiliation(s)
- Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - David Fernández Ramos
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria E. Cornide
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Mónica Jiménez
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Sofia Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Rubén Rodríguez‐Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maider Bizkarguenaga
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Samuel T. Pasco
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Daniel Caballero‐Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
| | - Benedetta Alfano
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Irene González‐Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria Mercado‐Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Clàudia Gil‐Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jon Mabe
- Electronics and Communications Unit, IK4‐TeknikerEibarSpain
| | - Jordi Gracia‐Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Liver Vascular Biology Research GroupIDIBAPSBarcelonaSpain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Immunology, Microbiology and Parasitology Department, Medicine and Nursing FacultyUniversity of the Basque CountryLeioaSpain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular PathologyIIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) NetworkMadridSpain
| | - Paloma Martín‐Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Cell Signalling and Metabolism DepartmentInstituto de Investigaciones Biomédicas “Alberto Sols,” CSIC‐UAMMadridSpain
| | - Nicola G. A. Abrescia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesStress Kinases in Diabetes, Cancer and BiochemistryMadridSpain
| | - Mercedes Rincón
- Department of MedicineImmunobiology DivisionUniversity of VermontBurlingtonVermontUSA
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Eduardo Miñambres
- Transplant Coordination Unit, Marqués de Valdecilla University Hospital–IDIVAL, Cantabria UniversitySantanderSpain
| | - César Martín
- Biofisika Institute, Centro Superior de Investigaciones Científicas, and Department of Biochemisty, Faculty of Science and TechnologyUniversity of Basque CountryLeioaSpain
| | - Marina Berenguer
- Liver UnitHospital Universitario y Politécnico La FeValenciaSpain
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
- Faculty of Medicine and Health SciencesUniversity of BarcelonaL’HospitaletBarcelonaSpain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Experimental Metabolic Pathology DepartmentInstituto de Biomedicina de ValenciaIBV‐CSICValenciaSpain
| | - Carmen Peralta
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Varela‐Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - María Luz Martínez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| |
Collapse
|
47
|
Wang J, Sun Q, Zhang J, Wang H, Liu H. Classical Signaling and Trans-Signaling Pathways Stimulated by Megalobrama amblycephala IL-6 and IL-6R. Int J Mol Sci 2022; 23:ijms23042019. [PMID: 35216135 PMCID: PMC8880141 DOI: 10.3390/ijms23042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a multipotent cytokine. IL-6 plays a dual role in inflammation through both classical signaling (IL-6 binds membrane IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds soluble IL-6R). However, the regulation of IL-6 activity, especially the regulation of signaling pathways and downstream genes mediated by IL-6 trans-signaling, remains largely unclear in teleost. Grass carp (Ctenopharyngodon idellus) hepatic (L8824) cells, kidney (CIK) cells, and primary hepatocytes were used as test models in this study. First, the biological activity of recombinant blunt snout bream (Megalobrama amblycephala) IL-6 (rmaIL-6) and sIL-6R (rmasIL-6R) was verified by quantitative PCR (qPCR) and western blot. The western blot results showed that rmaIL-6 significantly upregulated signal transducer and activator of transcription 3 (STAT3) phosphorylation in L8824 cells and primary hepatocytes, while rmaIL-6 in combination with rmasIL-6R (rmaIL-6+rmasIL-6R) significantly upregulated STAT3 phosphorylation in all types of cells. Furthermore, maIL-6 and maIL-6+rmasIL-6R could only induce extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation in L8824 cells and CIK cells, respectively. Therefore, IL-6 mainly acts by activating the janus kinase (JAK)/STAT3 pathway rather than the mitogen-activated protein kinase (MEK)/ERK pathway. Finally, the activation of the JAK2/STAT3 pathway was shown to be essential for the generation of socs3a and socs3b induced by IL-6 trans-signaling after treatment by JAK2/STAT3 pathway inhibitors (c188-9 and TG101348). These findings provide functional insights into IL-6 classical signaling and trans-signaling regulatory mechanisms in teleost, enriching our knowledge of fish immunology.
Collapse
Affiliation(s)
- Jixiu Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qianhui Sun
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jian Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
48
|
Tao J, Chen Y, Zhuang Y, Wei R, Getachew A, Pan T, Yang F, Li Y. Inhibition of Hedgehog Delays Liver Regeneration through Disrupting the Cell Cycle. Curr Issues Mol Biol 2022; 44:470-482. [PMID: 35723318 PMCID: PMC8928988 DOI: 10.3390/cimb44020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Liver regeneration is a complicated biological process orchestrated by various liver resident cells. Hepatic cell proliferation and reconstruction of the hepatic architecture involve multiple signaling pathways. It has been reported that the Hh signal is involved in liver regeneration. However, the signal transduction pathways and cell types involved are ill studied. This study aimed to investigate hedgehog signal response cell types and the specific molecular mechanism involved in the process of liver regeneration. Partial hepatectomy (PH) of 70% was performed on ICR (Institute of Cancer Research) mice to study the process of liver regeneration. We found that the hedgehog signal was activated significantly after PH, including hedgehog ligands, receptors and intracellular signaling molecules. Ligand signals were mainly expressed in bile duct cells and non-parenchymal hepatic cells, while receptors were expressed in hepatocytes and some non-parenchymal cells. Inhibition of the hedgehog signal treated with vismodegib reduced the liver regeneration rate after partial hepatectomy, including inhibition of hepatic cell proliferation by decreasing Cyclin D expression and disturbing the cell cycle through the accumulation of Cyclin B. The current study reveals the important role of the hedgehog signal and its participation in the regulation of hepatic cell proliferation and the cell cycle during liver regeneration. It provides new insight into the recovery of the liver after liver resection.
Collapse
Affiliation(s)
- Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Ruzhi Wei
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
- Correspondence: ; Tel.: +86-(020)-3201-5207
| |
Collapse
|
49
|
Dai Z, Wang X, Peng R, Zhang B, Han Q, Lin J, Wang J, Lin J, Jiang M, Liu H, Lee TH, Lu KP, Zheng M. Induction of IL-6Rα by ATF3 enhances IL-6 mediated sorafenib and regorafenib resistance in hepatocellular carcinoma. Cancer Lett 2022; 524:161-171. [PMID: 34687791 DOI: 10.1016/j.canlet.2021.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and its derivative regorafenib are the first- and second-line targeted drugs for advanced HCC, respectively. Although both drugs improve overall survival, drug resistance remains the major barrier to their full efficacy. Thus, strategies to enhance sorafenib and regorafenib efficacy against HCC are solely needed. Interleukin-6 receptor alpha (IL-6Rα) is the receptor of IL-6, a multi-functional cytokine, which plays key roles in liver-regeneration, inflammation and development of hepatocellular carcinoma (HCC). Here we show the expression of IL-6Rα was induced in response to sorafenib. Depletion of IL-6Rα abolished IL-6 induced STAT3 phosphorylation at 705th tyrosine and tumor growth of HCC cells under sorafenib treatment. Mechanistically, activating transcription factor 3 (ATF3) was induced in response to sorafenib and subsequently bound to the promoter of IL-6Rα, leading to its transcriptional activation. Depletion of ATF3 or its upstream transcription factor, ATF4, attenuated IL-6Rα induction and IL-6 mediated sorafenib resistance. The ATF4-ATF3-IL-6Rα cascade is also activated by regorafenib. Furthermore, blockade of IL-6Rα with the FDA approved IL-6Rα antibody drug, Sarilumab, drastically attenuated both sorafenib and regorafenib resistance in patient-derived xenograft (PDX) tumors, where human IL-6 could be detected by a novel in situ hybridization technique, named RNAscope. Together, our data reveal that ATF3-mediated IL-6Rα up-regulation promotes both sorafenib and regorafenib resistance in HCC, and targeting IL-6Rα represents a novel therapeutic strategy to enhance sorafenib/regorafenib efficacy for advanced HCC treatment.
Collapse
Affiliation(s)
- Zichan Dai
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Xiaohan Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Rangxin Peng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Binghui Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Qi Han
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Jie Lin
- Shengli Clinical Medical College, Fujian Medical University & Department of Pathology, Fujian Provincial Hospital, Fujian, PR China
| | - Jichuang Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fujian, PR China
| | - Mingting Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Kun Ping Lu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Min Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China; Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China.
| |
Collapse
|
50
|
Minafra AR, Chadt A, Rafii P, Al-Hasani H, Behnke K, Scheller J. Interleukin 6 receptor is not directly involved in regulation of body weight in diet-induced obesity with and without physical exercise. Front Endocrinol (Lausanne) 2022; 13:1028808. [PMID: 36387898 PMCID: PMC9647089 DOI: 10.3389/fendo.2022.1028808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 12/01/2022] Open
Abstract
High level of interleukin 6 (IL-6), released by adipocytes in an obesity-induced, low grade inflammation state, is a regulator of insulin resistance and glucose tolerance. IL-6 has also regenerative, anti-inflammatory and anti-diabetogenic functions, when secreted as myokine by skeletal muscles during physical exercise. IL-6 mainly activates cells via two different receptor constellations: classic and trans-signalling, in which IL-6 initially binds to membrane-bound receptor (IL-6R) or soluble IL-6 receptor (sIL-6R) before activating signal transducing gp130 receptor. Previously, we generated transgenic soluble IL-6 receptor +/+ (sIL-6R+/+) mice with a strategy that mimics ADAM10/17 hyperactivation, reflecting a situation in which only IL-6 trans-signalling is active, whereas classic signalling is completely abrogated. In this study, we metabolically phenotyped IL-6R deficient mice (IL-6R-KO), sIL-6R+/+ mice and wild-type littermates fed either a standard chow (SD) or a high-fat diet (HFD) in combination with a 6-weeks treadmill exercise protocol. All mice were subjected to analyses of body weight and body composition, determination of blood glucose and insulin level under fasting conditions, as well as determination of substrate preference by indirect calorimetry. Neither classic IL-6 nor trans-signalling do influence the outcome of diet-induced obesity, insulin sensitivity and glycaemic control. Furthermore, IL-6R deficiency is not impairing the beneficial effect of physical exercise. We conclude that the IL-6R does not play a requisite role in regulation of body weight and glucose metabolism in diet-induced obese mice.
Collapse
Affiliation(s)
- Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research Deutsches Zentrum für Diabetesforschung e.V. (DZD), Partner Düsseldorf, München, Neuherberg, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research Deutsches Zentrum für Diabetesforschung e.V. (DZD), Partner Düsseldorf, München, Neuherberg, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- *Correspondence: Jürgen Scheller,
| |
Collapse
|