1
|
Gadour E. Lesson learnt from 60 years of liver transplantation: Advancements, challenges, and future directions. World J Transplant 2025; 15:93253. [PMID: 40104199 PMCID: PMC11612893 DOI: 10.5500/wjt.v15.i1.93253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past six decades, liver transplantation (LT) has evolved from an experimental procedure into a standardized and life-saving intervention, reshaping the landscape of organ transplantation. Driven by pioneering breakthroughs, technological advancements, and a deepened understanding of immunology, LT has seen remarkable progress. Some of the most notable breakthroughs in the field include advances in immunosuppression, a revised model for end-stage liver disease, and artificial intelligence (AI)-integrated imaging modalities serving diagnostic and therapeutic roles in LT, paired with ever-evolving technological advances. Additionally, the refinement of transplantation procedures, resulting in the introduction of alternative transplantation methods, such as living donor LT, split LT, and the use of marginal grafts, has addressed the challenge of organ shortage. Moreover, precision medicine, guiding personalized immunosuppressive strategies, has significantly improved patient and graft survival rates while addressing emergent issues, such as short-term complications and early allograft dysfunction, leading to a more refined strategy and enhanced post-operative recovery. Looking ahead, ongoing research explores regenerative medicine, diagnostic tools, and AI to optimize organ allocation and post-transplantation car. In summary, the past six decades have marked a transformative journey in LT with a commitment to advancing science, medicine, and patient-centered care, offering hope and extending life to individuals worldwide.
Collapse
Affiliation(s)
- Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa 36428, Saudi Arabia
- Internal Medicine, Zamzam University College, Khartoum 11113, Sudan
| |
Collapse
|
2
|
Brennan PN, MacMillan M, Manship T, Moroni F, Glover A, Troland D, MacPherson I, Graham C, Aird R, Semple SIK, Morris DM, Fraser AR, Pass C, McGowan NWA, Turner ML, Manson L, Lachlan NJ, Dillon JF, Kilpatrick AM, Campbell JDM, Fallowfield JA, Forbes SJ. Autologous macrophage therapy for liver cirrhosis: a phase 2 open-label randomized controlled trial. Nat Med 2025; 31:979-987. [PMID: 39794616 PMCID: PMC11922741 DOI: 10.1038/s41591-024-03406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Cirrhosis is a major cause of morbidity and mortality; however, there are no approved therapies except orthotopic liver transplantation. Preclinical studies showed that bone-marrow-derived macrophage injections reduce inflammation, resolve fibrosis and stimulate liver regeneration. In a multicenter, open-label, parallel-group, phase 2 randomized controlled trial ( ISRCTN10368050 ) in n = 51 adult patients with compensated cirrhosis and Model for End-Stage Liver Disease (MELD) score ≥10 and ≤17, we evaluated the efficacy of autologous monocyte-derived macrophage therapy (n = 27) compared to standard medical care (n = 24). The primary endpoint was the difference in baseline to day 90 change in MELD score (ΔMELD) between treatment and control groups (ΔΔMELD). Secondary endpoints included adverse clinical outcomes, non-invasive fibrosis biomarkers and health-related quality of life (HRQoL) at 90 d, 180 d and 360 d. The ΔΔMELD between day 0 and day 90 in the treatment group compared to controls was -0.87 (95% confidence interval: -1.79, 0.0; P = 0.06); therefore, the primary endpoint was not met. During 360-d follow-up, five of 24 participants in the control group developed a total of 10 severe adverse events, four of which were liver related, and three deaths (two liver related), whereas no liver-related severe adverse events or deaths occurred in the treatment group. Although no differences were observed in biomarkers or HRQoL, exploratory analysis showed anti-inflammatory serum cytokine profiles after macrophage infusion. This study reinforces the safety and potential efficacy of macrophage therapy in cirrhosis, supporting further investigation.
Collapse
Affiliation(s)
- Paul N Brennan
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mark MacMillan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Thomas Manship
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Alison Glover
- Scottish National Blood Transfusion Service (SNBTS), Edinburgh, UK
| | - Debbie Troland
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Iain MacPherson
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Catriona Graham
- Wellcome Trust Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Rhona Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Scott I K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David M Morris
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Chloe Pass
- Scottish National Blood Transfusion Service (SNBTS), Edinburgh, UK
| | - Neil W A McGowan
- Scottish National Blood Transfusion Service (SNBTS), Edinburgh, UK
| | - Marc L Turner
- Scottish National Blood Transfusion Service (SNBTS), Edinburgh, UK
| | - Lynn Manson
- Scottish National Blood Transfusion Service (SNBTS), Edinburgh, UK
| | | | - John F Dillon
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Jonathan A Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Ishikawa N, Watanabe Y, Maeda Y, Yoshida T, Kimura N, Abe H, Sakamaki A, Kamimura H, Yokoo T, Kamimura K, Tsuchiya A, Terai S. Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells. Regen Ther 2025; 28:509-516. [PMID: 39991509 PMCID: PMC11846928 DOI: 10.1016/j.reth.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/25/2025] Open
Abstract
INTRODUCTION Cirrhosis is a disease with poor prognosis that requires the development of a novel therapeutic approach alternative to liver transplantation. In this study, we focused on the placenta and aimed to clarify the effects of human placental extract (HPE) on cirrhosis. METHODS A mouse model of carbon tetrachloride-induced cirrhosis was used to evaluate the effect of HPE administration subcutaneously and compared with the control group (n = 8 for each group). In vitro and in vivo, real time-PCR and immunostaining were performed for HPE mechanistic analysis. Spatial transcriptomics was also performed for detailed analysis of the effect of HPE on cirrhosis. RESULTS HPE administration improved serum ALT levels compared to control mice. Furthermore, there was a decrease in the number of senescent cells in the liver and the mRNA levels of secrete senescence-associated secretory phenotype factors and Cdkn2a (p16). In vitro, HPE induced macrophage polarization to the anti-inflammatory M2 phenotype. Spatial transcriptomics was also performed to analyze the underlying anti-inflammatory mechanism. The results showed that HPE strongly polarized macrophages to the M2 phenotype, especially in macrophage-rich regions in the liver. Gene expression pathway analysis using spatial transcriptomics also revealed the possibility of improving senescent cell-derived inflammation via mitochondrial function. CONCLUSIONS HPE improves serum ALT levels via anti-inflammatory mechanisms in macrophages and senescent cells. HPE serves as a novel agent for cirrhosis treatment.
Collapse
Affiliation(s)
- Natsuki Ishikawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Yuichirou Maeda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Maher JJ. Not the end of the road for macrophage therapy in liver cirrhosis. Nat Med 2025; 31:735-736. [PMID: 39901047 DOI: 10.1038/s41591-025-03490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
5
|
Igarashi Y, Wada H, Muto M, Sone R, Hasegawa Y, Seino KI. Amelioration of liver fibrosis with autologous macrophages induced by IL-34-based condition. Inflamm Regen 2025; 45:2. [PMID: 39856797 PMCID: PMC11758727 DOI: 10.1186/s41232-025-00364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND For the treatment of liver fibrosis, several novel cell therapies have been proposed. Autologous macrophage therapy has been reported as one of the promising treatments. So far, most studies have used colony-stimulating factor 1 (CSF-1) to induce the differentiation of macrophage progenitor cells. The receptor for CSF-1, CSF-1R possesses another ligand, interleukin 34. However, the therapeutic capacity for liver fibrosis by interleukin 34-induced macrophages has not been evaluated. METHODS We have employed acute (bile duct ligation) and chronic (administration of carbon tetrachloride or thioacetamide) liver fibrosis models. Using these models, we evaluated the therapeutic capacity of macrophages induced by interleukin 34-based conditions. In most experiments, interleukin 4 was also added to the differentiation process to induce alternative-activated macrophages. As a mechanism analysis, we have examined liver inflammation and damage, the status of stellate cells, and the immunosuppressive capacity of the macrophages. Human macrophages were differentiated from CD14+ monocytes and analyzed. RESULTS In both acute and chronic liver damage experiments, interleukin 34-induced macrophages significantly ameliorated liver fibrosis. The addition of interleukin 4 to the differentiation process resulted in an increase of obtained macrophages and a bias to alternative activated macrophages (so-called M2). The alternative activated macrophages (M2-type) showed a reproducible therapeutic effect of liver fibrosis with a suppression of parameters of liver inflammation and damage, stellate cells, and T cell activation. Similar macrophages could be differentiated from human CD14+ monocytes in the presence of interleukin 34 plus interleukin 4, and a therapeutic effect was observed using a humanized mouse model. CONCLUSIONS Interleukin 34-induced macrophages, particularly when additionally stimulated with interleukin 4, significantly ameliorated the liver fibrosis.
Collapse
Affiliation(s)
- Yuichi Igarashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Muto
- MEDINET Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Ryohei Sone
- MEDINET Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Yoshinori Hasegawa
- Laboratory of Gene Sequencing Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Candela ME, Addison M, Aird R, Man TY, Cartwright JA, Ashmore-Harris C, Kilpatrick AM, Starkey Lewis PJ, Drape A, Barnett M, Mitchell D, McLean C, McGowan N, Turner M, Dear JW, Forbes SJ. Cryopreserved human alternatively activated macrophages promote resolution of acetaminophen-induced liver injury in mouse. NPJ Regen Med 2025; 10:5. [PMID: 39843512 PMCID: PMC11754469 DOI: 10.1038/s41536-025-00393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Acute liver failure is a rapidly progressing, life-threatening condition most commonly caused by an overdose of acetaminophen (paracetamol). The antidote, N-acetylcysteine (NAC), has limited efficacy when liver injury is established. If acute liver damage is severe, liver failure can rapidly develop with associated high mortality rates. We have previously demonstrated that alternatively, activated macrophages are a potential therapeutic option to reverse acute liver injury in pre-clinical models. In this paper, we present data using cryopreserved human alternatively activated macrophages (hAAMs)-which represent a potential, rapidly available treatment suitable for use in the acute setting. In a mouse model of APAP-induced injury, peripherally injected cryopreserved hAAMs reduced liver necrosis, modulated inflammatory responses, and enhanced liver regeneration. hAAMs were effective even when administered after the therapeutic window for NAC. This cell therapy approach represents a potential treatment for APAP overdose when NAC is ineffective because liver injury is established.
Collapse
Affiliation(s)
- Maria Elena Candela
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Melisande Addison
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rhona Aird
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Tak-Yung Man
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Cartwright
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Candice Ashmore-Harris
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Philip J Starkey Lewis
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Drape
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - Mark Barnett
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - Donna Mitchell
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - Colin McLean
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - Neil McGowan
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| | - James W Dear
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, The Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
7
|
Humphries C, Addison ML, Dear JW, Forbes SJ. The emerging role of alternatively activated macrophages to treat acute liver injury. Arch Toxicol 2025; 99:103-114. [PMID: 39503878 PMCID: PMC11742291 DOI: 10.1007/s00204-024-03892-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Acute liver injury (ALI) has a clear requirement for novel therapies. One emerging option is the use of alternatively activated macrophages (AAMs); a distinct subtype of macrophage with a role in liver injury control and repair. In this comprehensive review, we provide an overview of the current limited options for ALI, and the potential advantages offered by AAMs. We describe the evidence supporting their use from in vitro studies, pre-clinical animal studies, and human clinical trials. We suggest why the first evidence for the clinical use of AAMs is likely to be found in acetaminophen toxicity, and discuss the specific evidence for AAM use in this population, as well as potential applications for AAMs in other patient populations. The key domains by which the performance of AAMs for the treatment of ALI will be assessed are identified, and remaining challenges to the successful delivery of AAMs to clinic are explored.
Collapse
Affiliation(s)
- Chris Humphries
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Melisande L Addison
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - James W Dear
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
8
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
9
|
Liu Y, Ye J, Fan Z, Wu X, Zhang Y, Yang R, Jiang B, Wang Y, Wu M, Zhou J, Meng J, Ge Z, Zhou G, Zhu Y, Xiao Y, Zheng M, Zhang S. Ginkgetin Alleviates Inflammation and Senescence by Targeting STING. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407222. [PMID: 39558862 PMCID: PMC11727237 DOI: 10.1002/advs.202407222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Indexed: 11/20/2024]
Abstract
Ginkgo biloba extract is reported to have therapeutic effects on aging-related disorders. However, the specific component responsible for this biological function and its mechanism of action remain largely unknown. This study finds that Ginkgetin, an active ingredient of Ginkgo biloba extract, can alleviate cellular senescence and improve pathologies in multiple tissues of aging mice. To reveal the molecular mechanism of Ginkgetin's anti-aging effect, a graph convolutional network-based drug "on-target" pathway prediction algorithm for prediction is employed. The results indicate that the cGAS-STING pathway may be a potential target for Ginkgetin. Subsequent cell biological and biophysical data confirmed that Ginkgetin directly binds to the carboxy-terminal domain of STING protein, thereby inhibiting STING activation and signal transduction. Furthermore, in vivo pharmacodynamic data showed that Ginkgetin effectively alleviates systemic inflammation in Trex1-/- mice and inhibits the abnormally activated STING signaling in aging mouse model. In summary, this study, utilizing an artificial intelligence algorithm combined with pharmacological methods, confirms STING serves as a critical target for Ginkgetin in alleviating inflammation and senescence. Importantly, this study elucidates the specific component and molecular mechanism underlying the anti-aging effect of Ginkgo biloba extract, providing a robust theoretical basis for its therapeutic use.
Collapse
Affiliation(s)
- Yadan Liu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zisheng Fan
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Lingang LaboratoryShanghai200031China
| | - Xiaolong Wu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yinghui Zhang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ruirui Yang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Bing Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yajie Wang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Min Wu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jingyi Zhou
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jingyi Meng
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Zhiming Ge
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Guizhen Zhou
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yuan Zhu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mingyue Zheng
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- University of Chinese Academy of SciencesBeijing100049China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Lingang LaboratoryShanghai200031China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Sulin Zhang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
10
|
Callejas BE, Sousa JA, Flannigan KL, Wang A, Higgins E, Herik AI, Li S, Rajeev S, Rosentreter R, Panaccione R, McKay DM. Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages. Am J Physiol Gastrointest Liver Physiol 2025; 328:G1-G16. [PMID: 39378308 DOI: 10.1152/ajpgi.00159.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.
Collapse
Affiliation(s)
- Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James A Sousa
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eve Higgins
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aydin I Herik
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shuhua Li
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Rosentreter
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
12
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Mao Y, Yao C, Zhang S, Zeng Q, Wang J, Sheng C, Chen S. Targeting fibroblast activation protein with chimeric antigen receptor macrophages. Biochem Pharmacol 2024; 230:116604. [PMID: 39489223 DOI: 10.1016/j.bcp.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Under the rapid advancement of chimeric antigen receptor T cell (CAR-T) technology, CAR-macrophages (CAR-Ms) are also being developed currently in the pre-clinical stage and have been shown to inhibit tumor growth in several mouse tumor models. Fibroblast activation protein (FAP) is a type II transmembrane serine protease, which is expressed in stromal fibroblasts of over 90 % of common human epithelial cancers and is upregulated in fibrotic diseases of the liver, lung and colon, etc. In this study, we firstly constructed FAP-CAR macrophages to target FAP+ cells through in vitro phagocytosis assays. In subsequent in vivo assays, we discovered that FAP-CAR-ΔZETA bone marrow-derived macrophages (BMDMs) rather than FAP-CAR BMDMs, exhibited a pronounced anti-tumor effect in mouse subcutaneous MC38 colon cancer model. In addition, FAP-CAR and FAP-CAR-ΔZETA BMDMs therapy could effectively improve CCl4-induced liver fibrosis in mice. Collectively, CAR-Ms targeting FAP demonstrated great therapeutic potential in cancer and liver fibrosis therapy.
Collapse
Affiliation(s)
- Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Shimeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Qi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
15
|
Borda M, Sierra R, Cantero MJ, Gómez Bustillo S, Fiore EJ, Giardelli G, Martino Garcet M, Rebottaro ML, Bayo Fina JM, Schiavone M, Rubione J, García MG, Montaner A, Mazzolini GD, Aquino JB. The antifibrotic potential of IMT504: modulation of GLAST + Wnt1 + bone marrow stromal progenitors and hepatic microenvironment. Stem Cell Res Ther 2024; 15:278. [PMID: 39227908 PMCID: PMC11373403 DOI: 10.1186/s13287-024-03896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.
Collapse
Affiliation(s)
- Maximiliano Borda
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María José Cantero
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Sofía Gómez Bustillo
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Esteban Juan Fiore
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Gianlucca Giardelli
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Matías Martino Garcet
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María Luz Rebottaro
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Juan Miguel Bayo Fina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Máximo Schiavone
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Julia Rubione
- Mechanisms and Therapeutic Innovation in Pain Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana Gabriela García
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Guillermo Daniel Mazzolini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Jorge Benjamín Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina.
| |
Collapse
|
16
|
Torabi S, Zarrabi M, Shekari F, Poorkazem H, Lotfinia M, Bencina S, Gramignoli R, Hassan M, Najimi M, Vosough M. Wharton's Jelly mesenchymal stem cell-derived extracellular vesicles induce liver fibrosis-resolving phenotype in alternatively activated macrophages. J Cell Mol Med 2024; 28:e18507. [PMID: 39288445 PMCID: PMC11407755 DOI: 10.1111/jcmm.18507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 09/19/2024] Open
Abstract
The potential of extracellular vesicles (EVs) isolated from mesenchymal stromal cells in guiding macrophages toward anti-inflammatory immunophenotypes, has been reported in several studies. In our study, we provided experimental evidence of a distinctive effect played by Wharton Jelly mesenchymal stromal cell-derived EVs (WJ-EVs) on human macrophages. We particularly analyzed their anti-inflammatory effects on macrophages by evaluating their interactions with stellate cells, and their protective role in liver fibrosis. A three-step gradient method was used to isolate monocytes from umbilical cord blood (UCB). Two subpopulations of WJ-EVs were isolated by high-speed (20,000 g) and differential ultracentrifugation (110,000 g). Further to their characterization, they were designated as EV20K and EV110K and incubated at different concentrations with UCB-derived monocytes for 7 days. Their anti-fibrotic effect was assessed by studying the differentiation and functional levels of generated macrophages and their potential to modulate the survival and activity of LX2 stellate cells. The EV20K triggers the polarization of UCB-derived monocytes towards a peculiar M2-like functional phenotype more effectively than the M-CSF positive control. The EV20K treated macrophages were characterized by a higher expression of scavenger receptors, increased phagocytic capacity and production level of interleukin-10 and transforming growth factor-β. Conditioned medium from those polarized macrophages attenuated the proliferation, contractility and activation of LX2 stellate cells. Our data show that EV20K derived from WJ-MSCs induces activated macrophages to suppress immune responses and potentially play a protective role in the pathogenesis of liver fibrosis by directly inhibiting HSC's activation.
Collapse
Affiliation(s)
- Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in MedicineMazandaran University of Medical SciencesSariIran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Majid Lotfinia
- Physiology Research CenterKashan University of Medical SciencesKashanIran
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden
- UOSD Cell FactoryIRCCS Istituto Giannina GasliniGenoaItaly
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine and Karolinska University HospitalKarolinska InstituteStockholmSweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research (IREC), UCLouvainBrusselsBelgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer Medicine, Institution for Laboratory Medicine and Karolinska University HospitalKarolinska InstituteStockholmSweden
| |
Collapse
|
17
|
Nautiyal N, Maheshwari D, Kumar D, Rao EP, Tripathi DM, Kumar S, Diwakar S, Bhardwaj M, Mohanty S, Baligar P, Kumari A, Bihari C, Biswas S, Sarin SK, Kumar A. Rejuvenating bone marrow hematopoietic reserve prevents regeneration failure and hepatic decompensation in animal model of cirrhosis. Front Immunol 2024; 15:1439510. [PMID: 39188716 PMCID: PMC11345600 DOI: 10.3389/fimmu.2024.1439510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background and aim Bone marrow stem cells (BM-SCs) and their progeny play a central role in tissue repair and regeneration. In patients with chronic liver failure, bone marrow (BM) reserve is severally compromised and they showed marked defects in the resolution of injury and infection, leading to liver failure and the onset of decompensation. Whether BM failure is the cause or consequence of liver failure during cirrhosis is not known. In this study, we aimed to determine the underlying relationship between BM failure and regeneration failure in cirrhosis. Methodology C57Bl/6(J) mice were used to develop chronic liver injury through intra-peritoneal administration of carbon tetrachloride (CCl4) for 15 weeks (0.1-0.5 ml/kg). Animals were sacrificed to study the transition of cirrhosis and BM defects. To restore the BM-SC reserve; healthy BM cells were infused via intra-BM infusion and assessed for changes in liver injury, regeneration, and BM-SC reserve. Results Using a CCl4-induced animal - model of cirrhosis, we showed the loss of BM-SCs reserve occurred before regeneration failure and the onset of non-acute decompensation. Intra-BM infusion of healthy BM cells induced the repopulation of native hematopoietic stem cells (HSCs) in cirrhotic BM. Restoring BM-HSCs reserve augments liver macrophage-mediated clearance of infection and inflammation dampens neutrophil-mediated inflammation, accelerates fibrosis regression, enhances hepatocyte proliferation, and delays the onset of non-acute decompensation. Conclusion These findings suggest that loss of BM-HSCs reserve underlies the compromised innate immune function of the liver, drives regeneration failure, and the onset of non-acute decompensation. We further provide the proof-of-concept that rejuvenating BM-HSC reserve can serve as a potential therapeutic approach for preventing regeneration failure and transition to decompensated cirrhosis.
Collapse
Affiliation(s)
- Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - E. Pranshu Rao
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sandeep Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sunidhi Diwakar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Bhardwaj
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - S. K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
18
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
19
|
Yu J, Gao Z, Han Q, Wang Z, Zhang W, Zhao J, Qiao S, Zou X, Huang F. Carboxymethyl chitosan-methacrylic acid gelatin hydrogel for wound healing and vascular regeneration. Biomed Mater 2024; 19:045032. [PMID: 38838692 DOI: 10.1088/1748-605x/ad5482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
At present, wound dressings in clinical applications are primarily used for superficial skin wounds. However, these dressings have significant limitations, including poor biocompatibility and limited ability to promote wound healing. To address the issue, this study used aldehyde polyethylene glycol as the cross-linking agent to design a carboxymethyl chitosan-methacrylic acid gelatin hydrogel with enhanced biocompatibility, which can promote wound healing and angiogenesis. The CSDG hydrogel exhibits acid sensitivity, with a swelling ratio of up to 300%. Additionally, it exhibited excellent resistance to external stress, withstanding pressures of up to 160 kPa and self-deformation of 80%. Compared to commercially available chitosan wound gels, the CSDG hydrogel demonstrates excellent biocompatibility, antibacterial properties, and hemostatic ability. Bothin vitroandin vivoresults showed that the CSDG hydrogel accelerated blood vessel regeneration by upregulating the expression of CD31, IL-6, FGF, and VEGF, thereby promoting rapid healing of wounds. In conclusion, this study successfully prepared the CSDG hydrogel wound dressings, providing a new approach and method for the development of hydrogel dressings based on natural macromolecules.
Collapse
Affiliation(s)
- Jingrong Yu
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhengkun Gao
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qingyue Han
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zi Wang
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenjie Zhang
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jie Zhao
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shan Qiao
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xinxin Zou
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Fengjie Huang
- School of life science and technology, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
20
|
Maeda Y, Watanabe Y, Ishikawa N, Yoshida T, Kimura N, Abe H, Sakamaki A, Kamimura H, Yokoo T, Kamimura K, Tsuchiya A, Terai S. Platelet-rich plasma-derived extracellular vesicles improve liver cirrhosis in mice. Regen Ther 2024; 26:1048-1057. [PMID: 39569343 PMCID: PMC11576940 DOI: 10.1016/j.reth.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Cirrhosis remains a significant clinical challenge due to its poor prognosis and limited treatment options, creating a high unmet medical need for the development of novel therapies. In this study, we analyzed the effects of a novel approach to treat cirrhosis using platelet-rich plasma-derived extracellular vesicles (PRPEV) in mice. METHODS PRPEV were collected from platelet-rich plasma using ultrafiltration, and their proteomes were analyzed. The carbon tetrachloride (CCl4)-induced cirrhosis model of mice was used to evaluate the effect of PRPEV administration and compared with the control group (n = 8). In vitro and in vivo mechanistic analyses of PRPEV administration were confirmed using real time-PCR and immunostaining. RESULTS Gene ontology analysis based on the proteome revealed that PRPEV contain many factors associated with EV and immune responses. In vitro, PRPEV polarize macrophages into an anti-inflammatory phenotype. Following PRPEV administration, there was a decrease in serum alanine aminotransferase levels and reduction in liver fibrosis, while mRNA levels of regenerative factors were upregulated and transforming growth factor β-1 was downregulated. Furthermore, the number of anti-inflammatory macrophages in the liver increased. CONCLUSIONS PRPEV may contribute to hepatocyte proliferation, anti-inflammation, and anti-fibrogenesis in the liver. This novel concept paves the way for cirrhosis treatment.
Collapse
Affiliation(s)
- Yuichirou Maeda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Natsuki Ishikawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, Niigata University School of Medicine, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Future Medical Research Center for Exosome and Designer Cells (F-EDC), Niigata University, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Future Medical Research Center for Exosome and Designer Cells (F-EDC), Niigata University, Japan
| |
Collapse
|
21
|
Dai H, Zhu C, Huai Q, Xu W, Zhu J, Zhang X, Zhang X, Sun B, Xu H, Zheng M, Li X, Wang H. Chimeric antigen receptor-modified macrophages ameliorate liver fibrosis in preclinical models. J Hepatol 2024; 80:913-927. [PMID: 38340812 DOI: 10.1016/j.jhep.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms. METHODS uPAR expression was studied in patients with fibrosis/cirrhosis and in murine models of liver fibrosis, including mice treated with carbon tetrachloride, a 5-diethoxycarbonyl-1, 4-dihydrocollidine diet, or a high-fat/cholesterol/fructose diet. The safety and efficacy of CAR-Ms were evaluated in vitro and in vivo. RESULTS Adoptive transfer of CAR-Ms resulted in a significant reduction in liver fibrosis and the restoration of function in murine models of liver fibrosis. CAR-Ms modulated the hepatic immune microenvironment to recruit and modify the activation of endogenous immune cells to drive fibrosis regression. These CAR-Ms were able to recruit and present antigens to T cells and mount specific antifibrotic T-cell responses to reduce fibroblasts and liver fibrosis in mice. CONCLUSION Collectively, our findings demonstrate the potential of using macrophages as a platform for CAR technology to provide an effective treatment option for liver fibrosis. CAR-Ms might be developed for treatment of patients with liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis is an incurable condition that afflicts millions of people globally. Despite the clear clinical need, therapies for liver fibrosis are limited. Our findings provide the first preclinical evidence that chimeric antigen receptor (CAR)-macrophages (CAR-Ms) targeting uPAR can attenuate liver fibrosis and cirrhosis. We show that macrophages expressing this uPAR CAR exert a direct antifibrotic effect and elicit a specific T-cell response that augments the immune response against liver fibrosis. These findings demonstrate the potential of using CAR-Ms as an effective cell-based therapy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Ashmore-Harris C, Antonopoulou E, Finney SM, Vieira MR, Hennessy MG, Muench A, Lu WY, Gadd VL, El Haj AJ, Forbes SJ, Waters SL. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. NPJ Regen Med 2024; 9:19. [PMID: 38724586 PMCID: PMC11081951 DOI: 10.1038/s41536-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Melissa R Vieira
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Andreas Muench
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
23
|
Gao Y, Zhai W, Sun L, Du X, Wang X, Mulholland MW, Yin Y, Zhang W. Hepatic LGR4 aggravates cholestasis-induced liver injury in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G460-G472. [PMID: 38440827 PMCID: PMC11213478 DOI: 10.1152/ajpgi.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Current therapy for hepatic injury induced by the accumulation of bile acids is limited. Leucine-rich repeat G protein-coupled receptor 4 (LGR4), also known as GPR48, is critical for cytoprotection and cell proliferation. Here, we reported a novel function for the LGR4 in cholestatic liver injury. In the bile duct ligation (BDL)-induced liver injury model, hepatic LGR4 expression was significantly downregulated. Deficiency of LGR4 in hepatocytes (Lgr4LKO) notably decreased BDL-induced liver injury measured by hepatic necrosis, fibrosis, and circulating liver enzymes and total bilirubin. Levels of total bile acids in plasma and liver were markedly reduced in these mice. However, deficiency of LGR4 in macrophages (Lyz2-Lgr4MKO) demonstrated no significant effect on liver injury induced by BDL. Deficiency of LGR4 in hepatocytes significantly attenuated S1PR2 and the phosphorylation of protein kinase B (AKT) induced by BDL. Recombinant Rspo1 and Rspo3 potentiated the taurocholic acid (TCA)-induced upregulation in S1PR2 and phosphorylation of AKT in hepatocytes. Inhibition of S1PR2-AKT signaling by specific AKT or S1PR2 inhibitors blocked the increase of bile acid secretion induced by Rspo1/3 in hepatocytes. Our studies indicate that the R-spondins (Rspos)-LGR4 signaling in hepatocytes aggravates the cholestatic liver injury by potentiating the production of bile acids in a S1PR2-AKT-dependent manner.NEW & NOTEWORTHY Deficiency of LGR4 in hepatocytes alleviates BDL-induced liver injury. LGR4 in macrophages demonstrates no effect on BDL-induced liver injury. Rspos-LGR4 increases bile acid synthesis and transport via potentiating S1PR2-AKT signaling in hepatocytes.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Wenbo Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xueqian Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| |
Collapse
|
24
|
Chen Y, Wang J, Zhou N, Fang Q, Cai H, Du Z, An R, Liu D, Chen X, Wang X, Li F, Yan Q, Chen L, Du J. Protozoan-Derived Cytokine-Transgenic Macrophages Reverse Hepatic Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308750. [PMID: 38247166 PMCID: PMC10987136 DOI: 10.1002/advs.202308750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Macrophage therapy for liver fibrosis is on the cusp of meaningful clinical utility. Due to the heterogeneities of macrophages, it is urgent to develop safer macrophages with a more stable and defined phenotype for the treatment of liver fibrosis. Herein, a new macrophage-based immunotherapy using macrophages stably expressing a pivotal cytokine from Toxoplasma gondii, a parasite that infects ≈ 2 billion people is developed. It is found that Toxoplasma gondii macrophage migration inhibitory factor-transgenic macrophage (Mφtgmif) shows stable fibrinolysis and strong chemotactic capacity. Mφtgmif effectively ameliorates liver fibrosis and deactivates aHSCs by recruiting Ly6Chi macrophages via paracrine CCL2 and polarizing them into the restorative Ly6Clo macrophage through the secretion of CX3CL1. Remarkably, Mφtgmif exhibits even higher chemotactic potential, lower grade of inflammation, and better therapeutic effects than LPS/IFN-γ-treated macrophages, making macrophage-based immune therapy more efficient and safer. Mechanistically, TgMIF promotes CCL2 expression by activating the ERK/HMGB1/NF-κB pathway, and this event is associated with recruiting endogenous macrophages into the fibrosis liver. The findings do not merely identify viable immunotherapy for liver fibrosis but also suggest a therapeutic strategy based on the evolutionarily designed immunomodulator to treat human diseases by modifying the immune microenvironment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
- School of NursingAnhui Medical UniversityHefei230032China
| | - Jie Wang
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Nan Zhou
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Qi Fang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
| | - Haijian Cai
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Zhuoran Du
- Department of Clinical MedicineWannan Medical CollegeWuhu241002China
| | - Ran An
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Deng Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
| | - Xuepeng Chen
- GMU‐GIBH Joint School of Life SciencesThe Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhou510005China
| | - Xinxin Wang
- GMU‐GIBH Joint School of Life SciencesThe Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhou510005China
| | - Fangmin Li
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Qi Yan
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| | - Lijian Chen
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
| | - Jian Du
- Department of Biochemistry and Molecular BiologyResearch Center for Infectious DiseasesSchool of Basic Medical SciencesAnhui Medical UniversityHefei230032China
- The Provincial Key Laboratory of Zoonoses of High Institutions in AnhuiAnhui Medical UniversityHefei230032China
| |
Collapse
|
25
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Liu Y, Wang L. Extracellular vesicles targeting non-parenchymal cells: the therapeutical effect on liver fibrosis. EGASTROENTEROLOGY 2024; 2:e100040. [PMID: 39944750 PMCID: PMC11770438 DOI: 10.1136/egastro-2023-100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 04/12/2025]
Abstract
Liver fibrosis is the formation of a fibrous scar due to chronic liver disease including viral hepatitis, alcohol and non-alcoholic fatty liver disease. Without treatment, it will develop into cirrhosis and hepatocellular carcinoma. Up to now, there is no effective way to cure liver fibrosis. Extracellular vesicles (EVs) are biological nanoparticles with potential to be therapeutical agents or delivery tools. A lot of studies have demonstrated the therapeutical effect of EVs on liver fibrosis. In this review, we mainly pay attention to roles of liver non-parenchymal cells in pathology of fibrosis, the basic information about EVs and therapeutical effect on liver fibrosis of EVs when they act on non-parenchymal cells.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Hepatobiliary Surgery, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
27
|
Ping D, Peng Y, Hu X, Liu C. Macrophage cytotherapy on liver cirrhosis. Front Pharmacol 2023; 14:1265935. [PMID: 38161689 PMCID: PMC10757375 DOI: 10.3389/fphar.2023.1265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Macrophages, an essential cell population involved in mediating innate immunity in the host, play a crucial role on the development of hepatic cirrhosis. Extensive studies have highlighted the potential therapeutic benefits of macrophage therapy in treating hepatic cirrhosis. This review aims to provide a comprehensive overview of the various effects and underlying mechanisms associated with macrophage therapy in the context of hepatic cirrhosis.
Collapse
Affiliation(s)
- Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hu
- Department of Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
28
|
Tilg H, Adolph TE, Tacke F. Therapeutic modulation of the liver immune microenvironment. Hepatology 2023; 78:1581-1601. [PMID: 37057876 DOI: 10.1097/hep.0000000000000386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Inflammation is a hallmark of progressive liver diseases such as chronic viral or immune-mediated hepatitis, alcohol-associated liver disease, and NAFLD. Preclinical and clinical studies have provided robust evidence that cytokines and related cellular stress sensors in innate and adaptive immunity orchestrate hepatic disease processes. Unresolved inflammation and liver injury result in hepatic scarring, fibrosis, and cirrhosis, which may culminate in HCC. Liver diseases are accompanied by gut dysbiosis and a bloom of pathobionts, fueling hepatic inflammation. Anti-inflammatory strategies are extensively used to treat human immune-mediated conditions beyond the liver, while evidence for immunomodulatory therapies and cell therapy-based strategies in liver diseases is only emerging. The development and establishment of novel immunomodulatory therapies for chronic liver diseases has been dampened by several clinical challenges, such as invasive monitoring of therapeutic efficacy with liver biopsy in clinical trials and risk of DILI in several studies. Such aspects prevented advancements of novel medical therapies for chronic inflammatory liver diseases. New concepts modulating the liver immune environment are studied and eagerly awaited to improve the management of chronic liver diseases in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
29
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
30
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Liu H, Yang C, Gao Y, Zhang X, Wang M, Yu X, Wang W, Xie L, Tang P, Yin X, Bai C, Zhang L. Macrophage-based delivery of anti-fibrotic proteins alleviates bleomycin-induced pulmonary fibrosis in mice. Bioeng Transl Med 2023; 8:e10555. [PMID: 37693057 PMCID: PMC10486326 DOI: 10.1002/btm2.10555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by chronic, progressive, and fibrotic lung injury. Although remarkable progress has been made toward understanding the pathogenesis of PF, finding more effective treatments for this fatal disease remains a challenge. In this study, we describe an innovative macrophage-based approach to deliver anti-fibrotic protein to the lung and inhibit PF in a mouse model of bleomycin (BLM)-induced lung injury. We engineered macrophages to continuously secrete three types of proteins: interleukin-10, which prevents inflammation; TGFRcFc, a soluble truncated TGF-βR2 that blocks TGF-β; and CD147, which induces matrix metalloproteinases (MMPs) and causes collagen degradation. Infusing these engineered macrophages into the lungs of BLM-induced PF mouse models in an optimal pattern significantly ameliorated PF in mice. Specifically, the most effective therapeutic outcome was achieved by infusing IL-10-secreting macrophages on day 1, followed by TGFRcFc-secreting macrophages on day 7 and CD147-secreting macrophages on day 14 into the same mice after BLM treatment. Our data suggest that macrophage-based delivery of anti-fibrotic proteins to the lungs is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Huiying Liu
- College of Pulmonary and Critical Medicine, The 8th Medical CentreChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Cuiping Yang
- College of Pulmonary and Critical Medicine, The 8th Medical CentreChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Yun Gao
- College of Pharmaceutical and Biological EngineeringShenyang University of Chemical TechnologyShenyangLiaoningChina
| | - Xueli Zhang
- Department of PathologyThe 5th Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Min Wang
- Graduate School of Dalian Medical UniversityDalianLiaoningChina
| | - Xinting Yu
- Department of Respiratory and Critical Care Medicine307 Clinical College, Anhui Medical UniversityBeijingChina
| | - Weidong Wang
- Medical School of Chinese PLABeijingChina
- Research Center of BioengineeringThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| | - Lixin Xie
- College of Pulmonary and Critical Medicine, The 8th Medical CentreChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Ping Tang
- Department of RespiratoryShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Xiushan Yin
- College of Pharmaceutical and Biological EngineeringShenyang University of Chemical TechnologyShenyangLiaoningChina
- RocRock Biotechnology (Shenzhen) Co., Ltd.ShenzhenChina
| | - Changqing Bai
- Department of RespiratoryShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Luo Zhang
- Medical School of Chinese PLABeijingChina
- Research Center of BioengineeringThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
32
|
Liu R, Scimeca M, Sun Q, Melino G, Mauriello A, Shao C, Shi Y, Piacentini M, Tisone G, Agostini M. Harnessing metabolism of hepatic macrophages to aid liver regeneration. Cell Death Dis 2023; 14:574. [PMID: 37644019 PMCID: PMC10465526 DOI: 10.1038/s41419-023-06066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Liver regeneration is a dynamic and regulated process that involves inflammation, granulation, and tissue remodeling. Hepatic macrophages, abundantly distributed in the liver, are essential components that actively participate in each step to orchestrate liver regeneration. In the homeostatic liver, resident macrophages (Kupffer cells) acquire a tolerogenic phenotype and contribute to immunological tolerance. Following toxicity-induced damage or physical resection, Kupffer cells as well as monocyte-derived macrophages can be activated and promote an inflammatory process that supports the survival and activation of hepatic myofibroblasts and thus promotes scar tissue formation. Subsequently, these macrophages, in turn, exhibit the anti-inflammatory effects critical to extracellular matrix remodeling during the resolution stage. However, continuous damage-induced chronic inflammation generally leads to hepatic macrophage dysfunction, which exacerbates hepatocellular injury and triggers further liver fibrosis and even cirrhosis. Emerging macrophage-targeting strategies have shown efficacy in both preclinical and clinical studies. Increasing evidence indicates that metabolic rewiring provides substrates for epigenetic modification, which endows monocytes/macrophages with prolonged "innate immune memory". Therefore, it is reasonable to conceive novel therapeutic strategies for metabolically reprogramming macrophages and thus mediate a homeostatic or reparative process for hepatic inflammation management and liver regeneration.
Collapse
Affiliation(s)
- Rui Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qiang Sun
- Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 100071, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
33
|
Yao L, Hu X, Yuan M, Zhang Q, Liu P, Yang L, Dai K, Jiang Y. IGF2-NR4A2 Signaling Regulates Macrophage Subtypes to Attenuate Liver Cirrhosis. J Clin Transl Hepatol 2023; 11:787-799. [PMID: 37408817 PMCID: PMC10318280 DOI: 10.14218/jcth.2022.00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/18/2022] [Accepted: 11/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND AIMS Liver cirrhosis can lead to liver failure and eventually death. Macrophages are the main contributors to cirrhosis and have a bidirectional role in regulating matrix deposition and degradation. Macrophage-based cell therapy has been developed as an alternative to liver transplantation. However, there is insufficient evidence regarding its safety and efficacy. In this study, we aimed to explore the effect of combining insulin-like growth factor 2 (IGF2) with bone marrow-derived macrophages (BMDMs) to treat mice with liver cirrhosis. METHODS We assessed liver inflammation, fibrosis regression, liver function, and liver regeneration in mice with CCl4-induced cirrhosis and treated with BMDM only or IGF2 + BMDM. We performed in vitro experiments in which activated hepatic stellate cells (HSCs) were co-cultured with macrophages in the presence or absence of IGF2. The polarity of macrophages and the degree of inhibition of HSCs were examined. The effect of IGF2 on macrophages was also verified by the overexpression of IGF2. RESULTS Combining IGF2 with BMDM reduced liver inflammation and fibrosis and increased hepatocyte proliferation. Combining IGF2 with BMDM was more effective than using BMDM alone. In vitro experiments demonstrated that IGF2 inhibited HSCs activation by upregulating NR4A2 to promote the anti-inflammatory macrophages phenotype. IGF2 also increased the synthesis of matrix metalloproteinases (MMPs) by macrophages, which may explain why administering IGF2 combined with BMDM was more effective than administering BMDM only. CONCLUSIONS Our study provides a theoretical basis for the future use of BMDM-based cell therapy to treat liver cirrhosis.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lian Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Li X, Huai Q, Zhu C, Zhang X, Xu W, Dai H, Wang H. GDF15 Ameliorates Liver Fibrosis by Metabolic Reprogramming of Macrophages to Acquire Anti-Inflammatory Properties. Cell Mol Gastroenterol Hepatol 2023; 16:711-734. [PMID: 37499753 PMCID: PMC10520366 DOI: 10.1016/j.jcmgh.2023.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis/cirrhosis is significant health burden worldwide, resulting in liver failure or cancer and accounting for many deaths each year. The pathogenesis of liver fibrosis is very complex, which makes treatment challenging. Growth differentiation factor 15 (GDF15), a cysteine knot protein belonging to the transforming growth factor β (TGF-β) superfamily, has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes. However, paucity of literature is available about GDF15 function in liver fibrosis. This study aimed to investigate the immunomodulatory role and therapeutic potential of GDF15 in progression of hepatic fibrosis. METHODS GDF15 expression was studied in patients with fibrosis/cirrhosis and in 2 murine models of liver fibrosis, including mice treated with CCl4 or DDC diet. GDF15 involvement in the pathogenesis of liver fibrosis was assessed in Gdf15 knockout mouse using both CCl4 and DDC diet experimental models. We used the CCl4 and/or DDC diet-induced liver fibrosis model to examine the antifibrotic and anti-inflammatory effects of AAV8-mediated GDF15 overexpression in hepatocytes or recombinant mouse GDF15. RESULTS GDF15 expression is decreased in the liver of animal models and patients with liver fibrosis/cirrhosis compared with those without liver disease. In vivo studies showed that GDF15 deficiency aggravated CCl4 and DDC diet-induced liver fibrosis, while GDF15 overexpression mediated by AAV8 or its recombinant protein alleviated CCl4 and/or DDC diet-induced liver fibrosis. In Gdf15 knockout mice, the intrahepatic microenvironment that developed during fibrosis showed relatively more inflammation, as demonstrated by enhanced infiltration of monocytes and neutrophils and increased expression of proinflammatory factors, which could be diminished by AAV8-mediated GDF15 overexpression in hepatocytes. Intriguingly, GDF15 exerts its effects by reprogramming the metabolic pathways of macrophages to acquire an oxidative phosphorylation-dependent anti-inflammatory functional fate. Furthermore, adoptive transfer of GDF15-preprogrammed macrophages to mouse models of liver fibrosis induced by CCl4 attenuated inflammation and alleviated the progression of liver fibrosis. CONCLUSION GDF15 ameliorates liver fibrosis via modulation of liver macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest that GDF15 is a potentially attractive therapeutic target for the treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Colli A, Fraquelli M, Prati D, Casazza G. Granulocyte colony-stimulating factor with or without stem or progenitor cell or growth factors infusion for people with compensated or decompensated advanced chronic liver disease. Cochrane Database Syst Rev 2023; 6:CD013532. [PMID: 37278488 PMCID: PMC10243114 DOI: 10.1002/14651858.cd013532.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Advanced chronic liver disease is characterised by a long compensated phase followed by a rapidly progressive 'decompensated' phase, which is marked by the development of complications of portal hypertension and liver dysfunction. Advanced chronic liver disease is considered responsible for more than one million deaths annually worldwide. No treatment is available to specifically target fibrosis and cirrhosis; liver transplantation remains the only curative option. Researchers are investigating strategies to restore liver functionality to avoid or slow progression towards end-stage liver disease. Cytokine mobilisation of stem cells from the bone marrow to the liver could improve liver function. Granulocyte colony-stimulating factor (G-CSF) is a 175-amino-acid protein currently available for mobilisation of haematopoietic stem cells from the bone marrow. Multiple courses of G-CSF, with or without stem or progenitor cell or growth factors (erythropoietin or growth hormone) infusion, might be associated with accelerated hepatic regeneration, improved liver function, and survival. OBJECTIVES To evaluate the benefits and harms of G-CSF with or without stem or progenitor cell or growth factors (erythropoietin or growth hormone) infusion, compared with no intervention or placebo in people with compensated or decompensated advanced chronic liver disease. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two trial registers (October 2022) together with reference-checking and web-searching to identify additional studies. We applied no restrictions on language and document type. SELECTION CRITERIA We only included randomised clinical trials comparing G-CSF, independent of the schedule of administration, as a single treatment or combined with stem or progenitor cell infusion, or with other medical co-interventions, with no intervention or placebo, in adults with chronic compensated or decompensated advanced chronic liver disease or acute-on-chronic liver failure. We included trials irrespective of publication type, publication status, outcomes reported, or language. DATA COLLECTION AND ANALYSIS We followed standard Cochrane procedures. All-cause mortality, serious adverse events, and health-related quality of life were our primary outcomes, and liver disease-related morbidity, non-serious adverse events, and no improvement of liver function scores were our secondary outcomes. We undertook meta-analyses, based on intention-to-treat, and presented results using risk ratios (RR) for dichotomous outcomes and the mean difference (MD) for continuous outcomes, with 95% confidence intervals (CI) and I2 statistic values as a marker of heterogeneity. We assessed all outcomes at maximum follow-up. We determined the certainty of evidence using GRADE, evaluated the risk of small-study effects in regression analyses, and conducted subgroup and sensitivity analyses. MAIN RESULTS We included 20 trials (1419 participants; sample size ranged from 28 to 259), which lasted between 11 and 57 months. Nineteen trials included only participants with decompensated cirrhosis; in one trial, 30% had compensated cirrhosis. The included trials were conducted in Asia (15), Europe (four), and the USA (one). Not all trials provided data for our outcomes. All trials reported data allowing intention-to-treat analyses. The experimental intervention consisted of G-CSF alone or G-CSF plus any of the following: growth hormone, erythropoietin, N-acetyl cysteine, infusion of CD133-positive haemopoietic stem cells, or infusion of autologous bone marrow mononuclear cells. The control group consisted of no intervention in 15 trials and placebo (normal saline) in five trials. Standard medical therapy (antivirals, alcohol abstinence, nutrition, diuretics, β-blockers, selective intestinal decontamination, pentoxifylline, prednisolone, and other supportive measures depending on the clinical status and requirement) was administered equally to the trial groups. Very low-certainty evidence suggested a decrease in mortality with G-CSF, administered alone or in combination with any of the above, versus placebo (RR 0.53, 95% CI 0.38 to 0.72; I2 = 75%; 1419 participants; 20 trials). Very low-certainty evidence suggested no difference in serious adverse events (G-CSF alone or in combination versus placebo: RR 1.03, 95% CI 0.66 to 1.61; I2 = 66%; 315 participants; three trials). Eight trials, with 518 participants, reported no serious adverse events. Two trials, with 165 participants, used two components of the quality of life score for assessment, with ranges from 0 to 100, where higher scores indicate better quality of life, with a mean increase from baseline of the physical component summary of 20.7 (95% CI 17.4 to 24.0; very low-certainty evidence) and a mean increase from baseline of the mental component summary of 27.8 (95% CI 12.3 to 43.3; very low-certainty evidence). G-CSF, alone or in combination, suggested a beneficial effect on the proportion of participants who developed one or more liver disease-related complications (RR 0.40, 95% CI 0.17 to 0.92; I2 = 62%; 195 participants; four trials; very low-certainty evidence). When we analysed the occurrences of single complications, there was no suggestion of a difference between G-CSF, alone or in combination, versus control, in participants in need of liver transplantation (RR 0.85, 95% CI 0.39 to 1.85; 692 participants; five trials), in the development of hepatorenal syndrome (RR 0.65, 95% CI 0.33 to 1.30; 520 participants; six trials), in the occurrence of variceal bleeding (RR 0.68, 95% CI 0.37 to 1.23; 614 participants; eight trials), and in the development of encephalopathy (RR 0.56, 95% CI 0.31 to 1.01; 605 participants; seven trials) (very low-certainty evidence). The same comparison suggested that G-CSF reduces the development of infections (including sepsis) (RR 0.50, 95% CI 0.29 to 0.84; 583 participants; eight trials) and does not improve liver function scores (RR 0.67, 95% CI 0.53 to 0.86; 319 participants; two trials) (very low-certainty evidence). AUTHORS' CONCLUSIONS G-CSF, alone or in combination, seems to decrease mortality in people with decompensated advanced chronic liver disease of whatever aetiology and with or without acute-on-chronic liver failure, but the certainty of evidence is very low because of high risk of bias, inconsistency, and imprecision. The results of trials conducted in Asia and Europe were discrepant; this could not be explained by differences in participant selection, intervention, and outcome measurement. Data on serious adverse events and health-related quality of life were few and inconsistently reported. The evidence is also very uncertain regarding the occurrence of one or more liver disease-related complications. We lack high-quality, global randomised clinical trials assessing the effect of G-CSF on clinically relevant outcomes.
Collapse
Affiliation(s)
- Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Haematology, Ospedale Alessandro Manzoni, Lecco, Italy
| | - Giovanni Casazza
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
37
|
Watanabe Y, Abe H, Kimura N, Arao Y, Ishikawa N, Yuichiro M, Setsu T, Sakamaki A, Kamimura H, Yokoo T, Kamimura K, Tsuchiya A, Terai S. Navitoclax improves acute-on-chronic liver failure by eliminating senescent cells in mice. Hepatol Res 2023; 53:460-472. [PMID: 36628578 DOI: 10.1111/hepr.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/12/2023]
Abstract
AIM Acute-on-chronic liver failure (ACLF), a disease with poor prognosis, is reportedly caused by cellular senescence due to mitochondrial dysfunction. In this study, we described and analyzed the underlying mechanism of a novel approach for ACLF using ABT263/navitoclax (Navi) that selectively eliminates senescent cells. METHODS Irradiation-induced senescent hepatocytes were used for in vitro evaluation of the effects of Navi on ACLF (n = 6 for each group). Lipopolysaccharide- and carbon tetrachloride-induced ACLF mouse model was used for in vivo evaluation of the effects of Navi administration compared with the control using one-way or two-way analysis of variance, followed by Student's t-test or Kruskal-Wallis test. The effects on the senescence-associated secretory phenotype (n = 8 for each group) and mitochondrial functions, including adenosine triphosphate concentration and membrane potential (n = 8 for each group), were investigated using real-time polymerase chain reaction, immunohistochemistry, and enzyme analysis. RESULTS Navi eliminated irradiation-induced senescent hepatocytes in vitro, leading to non-senescent hepatocyte proliferation. Navi eliminated senescent cells in the liver in vivo, resulting in downregulation of mRNA expression of senescence-associated secretory phenotype factors, a decrease of liver enzymes, and upregulated proliferation of non-senescent cells in the liver. Regarding mitochondrial functional assessment in the liver, adenosine triphosphate concentration and membrane potential were upregulated after Navi administration in vitro and in vivo. CONCLUSIONS Navi may ameliorate ACLF damage by eliminating senescent cells in the liver, downregulating senescence-associated secretory phenotype factors, and upregulating mitochondrial functions. We believe that this novel approach using Navi will pave the way for ACLF treatment.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshihisa Arao
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Natsuki Ishikawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maeda Yuichiro
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
38
|
Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol 2023:S0168-8278(23)00218-0. [PMID: 37061196 DOI: 10.1016/j.jhep.2023.03.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Successful development of treatments for non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH) has been challenging. Because NASH and fibrosis lead to NAFLD progression towards cirrhosis and to clinical outcomes, approaches have either sought to attenuate metabolic dysregulation and cell injury, or directly target the inflammation and fibrosis that ensue. Targets for reducing the activation of inflammatory cascades include nuclear receptor agonists (thyroid hormone receptor-beta, e.g. resmetirom, peroxisome proliferator-activated receptor [PPAR], e.g. lanifibranor, farnesoid X receptor [FXR], e.g. obeticholic acid), modulators of lipotoxicity (e.g. aramchol, acetyl-CoA carboxylase inhibitors) or modification of genetic variants (e.g. PNPLA3 gene silencing). Extrahepatic inflammatory signals from circulation, adipose tissue or gut are targets of hormonal agonists (e.g. glucagon-like peptide-1 [GLP-1] like semaglutide, fibroblast growth factor [FGF]-19 or FGF21), microbiota or lifestyle (weight loss, diet, exercise) interventions. Stress signals and hepatocyte death activate immune responses engaging innate (macrophages, lymphocytes) and adaptive (auto-aggressive T-cells) mechanisms. Therapies seek to blunt immune cell activation, recruitment (chemokine receptor inhibitors) and responses (e.g. galectin 3 inhibition, anti-platelet drugs). The disease-driving pathways of NASH converge to elicit fibrosis, which is reversible. The activation of hepatic stellate cells (HSC) into matrix-producing myofibroblasts can be inhibited by antagonizing soluble factors (e.g. integrins, cytokines), cellular crosstalk (e.g. with macrophages), and agonizing nuclear receptor signaling (e.g. FXR or PPAR agonists). In advanced fibrosis, cell therapy with restorative macrophages or reprogrammed T-cells (e.g., CAR T) may accelerate repair through HSC deactivation or killing, or by enhancing matrix degradation. Heterogeneity of disease - either due to genetics or divergent disease drivers - is an obstacle to defining effective drugs for all patients with NASH that will be incrementally overcome.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, United States.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
39
|
TWEAK/Fn14 Signalling Regulates the Tissue Microenvironment in Chronic Pancreatitis. Cancers (Basel) 2023; 15:cancers15061807. [PMID: 36980694 PMCID: PMC10046490 DOI: 10.3390/cancers15061807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.
Collapse
|
40
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
41
|
Human Neutrophil α-Defensins 1–3 Are Upregulated in the Microenvironment of Fibrotic Liver. Medicina (B Aires) 2023; 59:medicina59030496. [PMID: 36984497 PMCID: PMC10058849 DOI: 10.3390/medicina59030496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Objectives: Neutrophil infiltration is an established signature of Non-Alcoholic Fatty Liver Disease (NAFLD) and Steatohepatitis (NASH). The most abundant neutrophilic peptide, alpha-defensin, is considered a new evolving risk factor in the inflammatory milieu, intimately involved in lipid mobilization. Our objective is to assess for potential association between alpha-defensin immunostains and NAFLD severity. Materials and Methods: We retrospectively investigated the liver biopsies of NAFLD/NASH patients, obtained at Hillel Yaffe Medical center between the years 2012 and 2016. Patients’ characteristics were recorded, including relevant blood tests at the time of biopsy. Each biopsy was semi-quantitatively scored using NAFLD Activity Score (NAS) and NASH fibrosis stage. The biopsies were immunostained for alpha-defensin. The precipitation of alpha-defensin was correlated to NAS and fibrosis. Results: A total of 80 biopsies were evaluated: male ratio 53.2%, mean age 44.9 ± 13.2 years, 54 had fibrosis grades 0–2, and 26 were grade 3–4. Conventional metabolic risk factors were more frequent in the high-grade fibrosis group. Immunostaining for alpha-defensin disclosed higher intensity (a.u.) in grade 3–4 fibrosis relative to grades 0–2, 25% vs. 6.5%, p < 0.05, respectively. Moreover, alpha-defensin staining was nicely co-localized with fibrosis. Conclusions: In our group of NASH/NAFLD patients, higher metabolic risk profile was associated with higher fibrosis grade. Immunostaining for alpha-defensin showed patchy intense staining concordant with high fibrosis, nicely co-localized with histological fibrosis. Whether alpha-defensin is a profibrotic risk factor or merely risk marker for fibrosis must be clarified in future studies.
Collapse
|
42
|
Zahmatkesh E, Khoshdel Rad N, Hossein-Khannazer N, Mohamadnejad M, Gramignoli R, Najimi M, Malekzadeh R, Hassan M, Vosough M. Cell and cell-derivative-based therapy for liver diseases: current approaches and future promises. Expert Rev Gastroenterol Hepatol 2023; 17:237-249. [PMID: 36692130 DOI: 10.1080/17474124.2023.2172398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION According to the recent updates from World Health Organization, liver diseases are the 12th most common cause of mortality. Currently, orthotopic liver transplantation (OLT) is the most effective and the only treatment for end-stage liver diseases. Owing to several shortcomings like finite numbers of healthy organ donors, lifelong immunosuppression, and complexity of the procedure, cell and cell-derivatives therapies have emerged as a potential therapeutic alternative for liver diseases. Various cell types and therapies have been proposed and their therapeutic effects evaluated in preclinical or clinical studies, including hepatocytes, hepatocyte-like cells (HLCs) derived from stem cells, human liver stem cells (HLSCs), combination therapies with various types of cells, organoids, and implantable cell-biomaterial constructs with synthetic and natural polymers or even decellularized extracellular matrix (ECM). AREAS COVERED In this review, we highlighted the current status of cell and cell-derivative-based therapies for liver diseases. Furthermore, we discussed future prospects of using HLCs, liver organoids, and their combination therapies. EXPERT OPINION Promising application of stem cell-based techniques including iPSC technology has been integrated into novel techniques such as gene editing, directed differentiation, and organoid technology. iPSCs offer promising prospects to represent novel therapeutic strategies and modeling liver diseases.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohamadnejad
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Reza Malekzadeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Abstract
AIM Fibrosis is a common pathological feature of most types of chronic liver injuries. There is no specific treatment for liver fibrosis at present. The liver microenvironment, which fosters the survival and activity of liver cells, plays an important role in maintaining the normal structure and physiological function of the liver. The aim of this review is to deeply understand the role of the liver microenvironment in the dynamic and complicated development of liver fibrosis. METHODS After searching in Elsevier ScienceDirect, PubMed and Web of Science databases using 'liver fibrosis' and 'microenvironment' as keywords, studies related to microenvironment in liver fibrosis was compiled and examined. RESULTS The homeostasis of the liver microenvironment is disrupted during the development of liver fibrosis, affecting liver cell function, causing various types of cell reactions, and changing the cell-cell and cell-matrix interactions, eventually affecting fibrosis formation. CONCLUSION Liver microenvironment may be important for identifying potential therapeutic targets, and restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.KEY MESSAGESThe homeostasis of the liver microenvironment is disrupted in liver fibrosis;A pro-fibrotic microenvironment is formed during the development of liver fibrosis;Restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.
Collapse
Affiliation(s)
- Ying Meng
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tong Zhao
- Department of Orthopedics, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Zhengyi Zhang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Han B, Liu Q, Su X, Zhou L, Zhang B, Kang H, Ning J, Li C, Zhao B, Niu Y, Chen W, Chen L, Zhang R. The role of PP2A /NLRP3 signaling pathway in ambient particulate matter 2.5 induced lung injury. CHEMOSPHERE 2022; 307:135794. [PMID: 35926746 DOI: 10.1016/j.chemosphere.2022.135794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) exposure has been linked to pulmonary fibrosis. However, the key signaling pathways remained unclear. In the present study, we applied a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit) to identify the key signaling pathways involved in PM2.5-induced pulmonary fibrosis. PP2A Aα-/- homozygote mice and matched wild-type (WT) littermates were exposed to filtered air (FA), unfiltered air (UA), and concentrated PM2.5 (CA) in a real-ambient PM exposure system for 8 weeks and 16 weeks, respectively. The mice exposed to PM2.5 displayed a progressive inflammation and pulmonary fibrosis. Moreover, the expressions of NLRP3, pro-caspase-1, caspase-1, ASC and IL-1β were increased in mice lung following PM2.5 exposure, indicating PM2.5 exposure caused pulmonary inflammation by the NLRP3 pathways activation. Furthermore, the effects of PM exposure on pulmonary inflammation, pulmonary fibrosis, oxidative stress, and pulmonary function damage were significantly enhanced in PP2A-/- mice compared to WT mice, indicating the role of PP2A in the regulation of pulmonary injury induced by PM exposure. In vitro study confirmed that PP2A was involved in the PM2.5-induced inflammation response and NLRP3 inflammasome activation. Importantly, we identified PP2A regulated the activation of NLRP3 pathways by direct dephosphorylating IRE1α in response to PM2.5 exposure. Taken together, our results demonstrated that PP2A-IRE1α-NLRP3 signaling pathway played a crucial role in regulating the inflammation response, triggering the lung fibrogenesis upon PM2.5 exposure. Our findings provide new insights into regulatory role of PP2A in human diseases upon the PM exposure.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Hui Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
45
|
Abstract
The efficacy of implanted biomaterials is largely dependent on the response of the host's immune and stromal cells. Severe foreign body response (FBR) can impede the integration of the implant into the host tissue and compromise the intended mechanical and biochemical function. Many features of FBR, including late-stage fibrotic encapsulation of implants, parallel the formation of fibrotic scar tissue after tissue injury. Regenerative organisms like zebrafish and salamanders can avoid fibrosis after injury entirely, but FBR in these research organisms is rarely investigated because their immune competence is much lower than humans. The recent characterization of a regenerative mammal, the spiny mouse (Acomys), has inspired us to take a closer look at cellular regulation in regenerative organisms across the animal kingdom for insights into avoiding FBR in humans. Here, we highlight how major features of regeneration, such as blastema formation, macrophage polarization, and matrix composition, can be modulated across a range of regenerative research organisms to elucidate common features that may be harnessed to minimize FBR. Leveraging a deeper understanding of regenerative biology for biomaterial design may help to reduce FBR and improve device integration and performance.
Collapse
Affiliation(s)
- Sunaina Sapru
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Michele N Dill
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
46
|
Khurana A, Navik U, Allawadhi P, Yadav P, Weiskirchen R. Spotlight on liver macrophages for halting liver disease progression and injury. Expert Opin Ther Targets 2022; 26:707-719. [PMID: 36202756 DOI: 10.1080/14728222.2022.2133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
INTRODUCTION Over the past two decades, understanding of hepatic macrophage biology has provided astounding details of their role in the progression and regression of liver diseases. The hepatic macrophages constitute resident macrophages, Kupffer cells, and circulating bone marrow monocyte-derived macrophages, which play a diverse role in liver injury and repair. Imbalance in the macrophage population leads to pathological consequences and is responsible for the initiation and progression of acute and chronic liver injuries. Further, distinct populations of hepatic macrophages and their high heterogeneity make their complex role enigmatic. The unique features of distinct phenotypes of macrophages have provided novel biomarkers for defining the stages of liver diseases. The distinct mechanisms of hepatic macrophages polarization and recruitment have been at the fore front of research. In addition, the secretome of hepatic macrophages and their immune regulation has provided clinically relevant therapeutic targets. AREAS COVERED Herein we have highlighted the current understanding in the area of hepatic macrophages, and their role in the progression of liver injury. EXPERT OPINION It is essential to ascertain the physiological and pathological role of evolutionarily conserved distinct macrophage phenotypes in different liver diseases before viable approaches may see a clinical translation.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak - 124001, Haryana, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| |
Collapse
|
47
|
Schonfeld M, Villar MT, Artigues A, Weinman SA, Tikhanovich I. Arginine Methylation of Integrin Alpha-4 Prevents Fibrosis Development in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:39-59. [PMID: 36191854 PMCID: PMC9672451 DOI: 10.1016/j.jcmgh.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) comprises a spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. We aimed to study the role of protein arginine methyltransferase 6 (PRMT6), a new regulator of liver function, in ALD progression. METHODS Prmt6-deficient mice and wild-type littermates were fed Western diet with alcohol in the drinking water for 16 weeks. Mice fed standard chow diet or Western diet alone were used as a control. RESULTS We found that PRMT6 expression in the liver is down-regulated in 2 models of ALD and negatively correlates with disease severity in mice and human liver specimens. Prmt6-deficient mice spontaneously developed liver fibrosis after 1 year and more advanced fibrosis after high-fat diet feeding or thioacetamide treatment. In the presence of alcohol Prmt6 deficiency resulted in a dramatic increase in fibrosis development but did not affect lipid accumulation or liver injury. In the liver PRMT6 is primarily expressed in macrophages and endothelial cells. Transient replacement of knockout macrophages with wild-type macrophages in Prmt6 knockout mice reduced profibrotic signaling and prevented fibrosis progression. We found that PRMT6 decreases profibrotic signaling in liver macrophages via methylation of integrin α-4 at R464 residue. Integrin α-4 is predominantly expressed in infiltrating monocyte derived macrophages. Blocking monocyte infiltration into the liver with CCR2 inhibitor reduced fibrosis development in knockout mice and abolished differences between genotypes. CONCLUSIONS Taken together, our data suggest that alcohol-mediated loss of Prmt6 contributes to alcohol-associated fibrosis development through reduced integrin methylation and increased profibrotic signaling in macrophages.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Maria T Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas; Liver Center, University of Kansas Medical Center, Kansas City, Kansas; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
48
|
Activated Hepatic Stellate Cells Promote the M1 to M2 Macrophage Transformation and Liver Fibrosis by Elevating the Histone Acetylation Level. DISEASE MARKERS 2022; 2022:9883831. [PMID: 36133436 PMCID: PMC9484931 DOI: 10.1155/2022/9883831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Liver fibrosis results from the formation of fibrous scars of hepatic stellate cells by various chronic liver diseases. Considering that the liver is the most important metabolic organ in the human body, exploring the metabolic characteristics of liver fibrosis is expected to discover new markers and therapeutic targets. In this study, we first used mouse model to verify that both lactate content and histone acetylation levels were significantly increased in hepatic fibrosis mice. At the same time, it was confirmed that activated hepatic stellate cells (HSCs) cocultured with M1 macrophages can promote their transformation into M2 macrophages in hepatic stellate cell line and primary hepatic stellate cells. In addition, the addition of lactic acid to the medium in which M1 cells are cultured can promote their transformation into M2 macrophages. Therefore, we concluded that activated HSCs can promote the transformation of M1 to M2 macrophages through lactate accumulation, thereby causing liver fibrosis.
Collapse
|
49
|
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L, Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13:999179. [PMID: 36147340 PMCID: PMC9486102 DOI: 10.3389/fphar.2022.999179] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the “guide” to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.
Collapse
Affiliation(s)
- Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya Ding
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| |
Collapse
|
50
|
Gao CC, Bai J, Han H, Qin HY. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022; 13:968879. [PMID: 35990625 PMCID: PMC9389038 DOI: 10.3389/fimmu.2022.968879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a highly conserved wound healing response to liver injury, characterized by excessive deposition of extracellular matrix (ECM) in the liver which might lead to loss of normal functions. In most cases, many types of insult could damage hepatic parenchymal cells like hepatocytes and/or cholangiocytes, and persistent injury might lead to initiation of fibrosis. This process is accompanied by amplified inflammatory responses, with immune cells especially macrophages recruited to the site of injury and activated, in order to orchestrate the process of wound healing and tissue repair. In the liver, both resident macrophages and recruited macrophages could activate interstitial cells which are responsible for ECM synthesis by producing a variety of cytokines and chemokines, modulate local microenvironment, and participate in the regulation of fibrosis. In this review, we will focus on the main pathological characteristics of liver fibrosis, as well as the heterogeneity on origin, polarization and functions of hepatic macrophages in the setting of liver fibrosis and their underlying mechanisms, which opens new perspectives for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hong-Yan Qin,
| |
Collapse
|