1
|
Taheri E, Yilmaz Y, Ghorat F, Moslem A, Zali MR. Association of diet quality scores with risk of metabolic-associated fatty liver disease in Iranian population: a nested case-control study. J Diabetes Metab Disord 2025; 24:46. [PMID: 39816985 PMCID: PMC11729581 DOI: 10.1007/s40200-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
Background and aim A healthy diet has been recommended for non-alcoholic fatty liver disease (NAFLD). We aim to investigate the associations of diet quality indices with the risk of developingmetabolic-associated fatty liver disease (MAFLD). Methods We conducted this nested case-control study by recruiting 968 cases with MAFLD and 964 controls from the participants of the baseline phase of the Sabzevar Persian Cohort Study (SPCS). MAFLD was defined as having a fatty liver index ≥ 60 plus at least one of the following: overweight or obese, Type II diabetes mellitus, or evidence of metabolic dysregulation. Healthy Eating Index-2015 (HEI-2015) and Alternative Healthy Eating Index-2010 (AHEI-2010) were calculated from a validated food frequency questionnaire. We estimated the associations of HEI-2015 and AHEI-2010 with MAFLD risk using multivariable logistic regression. Results Among those in the highest relative to the lowest quintile of HEI-2015 and AHEI-2010, the multivariable-adjusted odds ratios (OR) were 0.45 (95% CI [confidence interval] 0.29-0.69; P trend = 0.002) and 0.55 (95% CI 0.35-0.85; P trend = 0.04), respectively. Conclusion The results of our study suggest that there is a significant associationbetween adherence to a healthy diet, indicated by a higher score of HEI or AHEI, and a reduced likelihood of developingMAFLD. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01544-x.
Collapse
Affiliation(s)
- Ehsaneh Taheri
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Fereshteh Ghorat
- Non-communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Alireza Moslem
- Department of Anesthesiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gachon F, Bugianesi E, Castelnuovo G, Oster H, Pendergast JS, Montagnese S. Potential bidirectional communication between the liver and the central circadian clock in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:15. [PMID: 40225783 PMCID: PMC11981938 DOI: 10.1038/s44324-025-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Most aspects of physiology and behaviour fluctuate every 24 h in mammals. These circadian rhythms are orchestrated by an autonomous central clock located in the suprachiasmatic nuclei that coordinates the timing of cellular clocks in tissues throughout the body. The critical role of this circadian system is emphasized by increasing evidence associating disruption of circadian rhythms with diverse pathologies. Accordingly, mounting evidence suggests a bidirectional relationship where disruption of rhythms by circadian misalignment may contribute to liver diseases while liver diseases alter the central clock and circadian rhythms in other tissues. Therefore, liver pathophysiology may broadly impact the circadian system and may provide a mechanistic framework for understanding and targeting metabolic diseases and adjust metabolic setpoints.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | | | | | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | | | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
Sun L, He Z, Li Y, Huo Z, Liu L. The relationship between nutrient intake, lifestyle, and non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus: Results from the National Health and Nutrition Examination Surveys 2007-2018. Clin Nutr ESPEN 2025; 66:446-453. [PMID: 39993562 DOI: 10.1016/j.clnesp.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE More than half of the individuals with type 2 diabetes mellitus (T2DM) are accompanied by Non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the relationship between nutrient intake, lifestyle, and the risk NAFLD in patients with T2DM. METHODS This study comprised 2110 adult patients with diabetes from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018. We employed weighted logistic regression to assess the associations between nutrient intake, lifestyle and NAFLD, while exploring potential non-linear relationships using restrictive cubic spline analysis. Additionally, we validated our findings through subgroup analyses and sensitivity analyses to ensure the robustness and reliability of our results. RESULT Out of 2110 diabetes patients, 1743 were diagnosed with NAFLD, and 53.43 % of them were male. After adjusting for potential confounders, we found a negative correlation between Vitamin K intake and the occurrence of NAFLD in patients with T2DM (OR = 0.885 [0.829, 0.959]). This dose-response relationship was further validated through stratification analysis by tertiles of vitamin K intake. Lycopene intake is identified as a risk factor for NAFLD in patients with T2DM. Specifically, for every 100 μg of lycopene ingested, there was a 0.2 % higher likelihood of NAFLD (OR = 1.002 [1.0001, 1.005], p < 0.05). Conversely, a 0.5 % reduction in NAFLD risk was observed with the same amount of lutein intake (OR = 0.995 [0.992, 0.999], p < 0.05). Furthermore, we also found that a high-quality diet can reduce the risk of NAFLD in patients with T2DM, with an odds ratio of 0.208 (0.101, 0.430). CONCLUSION Increasing intake of Vitamin K and lutein, reducing intake of lycopene, and improving dietary quality may lower the risk of NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Liangyuanhui Sun
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Gastroenterology, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China.
| | - Zhiqing He
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 519041, Guangdong, China.
| | - Yanbin Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Hong JG, Trotman J, Carbajal Y, Dey P, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Bhattacharya D, Wang S, Friedman SL, DeRossi C, Chu J. Mannose reduces fructose metabolism and reverses MASH in human liver slices and murine models in vivo. Hepatol Commun 2025; 9:e0671. [PMID: 40116750 PMCID: PMC11927666 DOI: 10.1097/hc9.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Fibrosis drives liver-related mortality in metabolic dysfunction-associated steatohepatitis (MASH), yet we have limited medical therapies to target MASH-fibrosis progression. Here we report that mannose, a simple sugar, attenuates MASH steatosis and fibrosis in 2 robust murine models and human liver slices. METHODS The well-validated fat-and-tumor MASH murine model for liver steatosis and fibrosis was employed. Mannose was supplied in the drinking water at the start ("Prevention" group) or at week 6 of the 12-week MASH regimen ("Therapy" group). The in vivo antifibrotic effects of mannose supplementation were tested in a second model of carbon tetrachloride (CCl4)-induced liver fibrosis. A quantitative and automated digital pathology approach was used to comprehensively assess steatosis and fibrosis phenotypes. Mannose was also tested in vitro in human and primary mouse hepatocytes conditioned with free fatty acids alone or with fructose, and human precision-cut liver slices from patients with end-stage MASH cirrhosis. RESULTS Oral mannose supplementation improved liver fibrosis in vivo in both fat-and-tumor MASH and CCl4 mouse models, as well as in human precision-cut liver slice MASH samples. Mannose also reduced liver steatosis in fat-and-tumor MASH mice, and in human and mouse hepatocytes in vitro. Ketohexokinase, the main enzyme in fructolysis, was decreased with mannose in whole mouse liver, cultured hepatocytes, and human precision-cut liver slices. Removal of fructose or overexpression of ketohexokinase each abrogated the antisteatotic effects of mannose. CONCLUSIONS This study identifies mannose as a novel therapeutic candidate for MASH that mitigates steatosis by dampening hepatocyte ketohexokinase expression and exerts independent antifibrotic effects in 2 mouse models and human liver tissue slices.
Collapse
Affiliation(s)
- John G. Hong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joshaya Trotman
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yvette Carbajal
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Poulomi Dey
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mariel Glass
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Victoria Sclar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Isaac L. Alter
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Peng Zhang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Liheng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Chen
- PharmaNest Inc., Princeton, New Jersey, USA
| | | | - Dipankar Bhattacharya
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuang Wang
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L. Friedman
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
5
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
He H, Zhu Y, Ji X, Pu S, Zheng H. The miR-22-5p/Clec4e axis has diagnostic potential in fructose-induced nonalcoholic fatty liver disease. Biochem Biophys Res Commun 2025; 753:151496. [PMID: 39978254 DOI: 10.1016/j.bbrc.2025.151496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is significantly influenced by microRNAs in its development and progression. This study aimed to identify microRNA profiles and RNA regulatory networks for NAFLD intervention. Mice were fed a high-fructose diet (HFrD) to induce NAFLD. Small RNA-seq and mRNA-seq were used to analyze liver microRNA and mRNA profiles of HFrD-fed versus normal chow-fed (Chow) mice. The differentially expressed genes (DEGs) and miRNAs (DE-miRNAs) were identified, followed by enrichment analysis. A protein‒protein interaction network of overlapping DEGs and DE-miRNA targets was constructed, along with a competing endogenous RNA (ceRNA) network. Mendelian randomization (MR) was performed to verify the causal relationship between top DEGs and NAFLD. The study identified 13 DE-miRNAs and 854 DEGs in the liver between HFrD mice and Chow mice. A Venn diagram revealed that 58 of the predicted target genes of the 13 DE-miRNAs were shared with the DEGs. Finally, 6 DE-miRNAs, 34 DEGs, and 20 predicted lncRNAs were selected to construct the ceRNA regulatory network. The upregulated DEG Clec4e, a target gene of miR-22-5p, was significantly correlated with the risk of NAFLD (OR: 1.41, 95 % CI: 1.04-1.92, P = 0.029) in the MR analysis, and RT-qPCR was applied to validate Clec4e expression in the livers of HFrD mice. Further, the dual-luciferase reporter assay confirmed that miR-22-5p could directly inhibit Clec4e expression by targeting its 3'-UTR. This study identified several novel miRNAs and genes as potential biomarkers of NAFLD. In particular, the miR-22-5p/Clec4e axis is a potential diagnostic target for NAFLD.
Collapse
Affiliation(s)
- Haidong He
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Yifan Zhu
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Xiaoguo Ji
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Suying Pu
- Shanghai Xuhui District Dahua Hospital, Shanghai, 200237, China.
| | - Hui Zheng
- Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
7
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
8
|
Zhang L, Liu J, Miao Z, Zhou R, Wang H, Li X, Liu J, Zhang J, Yan J, Xie Z, Jiang H. The Association of Fructose Metabolism With Anesthesia/Surgery-Induced Lactate Production. Anesth Analg 2025; 140:710-722. [PMID: 39689012 DOI: 10.1213/ane.0000000000007350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND In elderly individuals, excessive lactate levels in the brain may be associated with the development of cognitive impairment after surgery, including delayed neurocognitive recovery (dNCR). Since the origin of this increased lactate is unknown, here we assessed associations between metabolic pathways and postoperative dNCR. METHODS This study included 43 patients (≥60 years old) who had surgery under general anesthesia. We also used a mouse model in which 20-month-old mice were exposed to sevoflurane to induce postoperative dNCR, while control mice were exposed to 40% oxygen. Mice in the control group and anesthesia/surgery group were injected with fructose or glucose intracerebroventricularly, or fructose metabolism inhibitor intraperitoneally. Barnes maze test and Y maze were used to measure cognitive function in mice. Metabolomics was used to measure metabolites in the serum of patients and the brains of mice after anesthesia/surgery. Isotope labeling and metabolic flux were used to analyze flow and distribution of specific metabolites in metabolic pathways. RESULTS Among 43 patients, 17 developed dNCR. Metabolomics showed significantly decreased postoperative serum fructose 1-phosphate levels in dNCR compared to nondNCR patients (mean difference [×10 4 ] = -0.164 ± 0.070; P = .024). Similar results were found in the brains of mice (mean difference = -1.669 ± 0.555; * P = .014). Isotope labeling and metabolic flux experiments in mice showed fructose but not glucose entered glycolysis, increasing lactate levels in the brain after anesthesia/surgery ( P < .05). Administration of intraperitoneal fructose inhibitors to mice effectively inhibited increased lactate levels in the brain (mean difference =96.0 ± 4.36, P = .0237) and cognitive dysfunction after anesthesia/surgery (mean difference =69.0 ± 3.94, P = .0237). In a small subsample, we also found anesthesia/surgery increased interleukin-6 (IL-6) levels in the brains of mice (mean difference =88.3 ± 3.44, P = .0237) and that IL-6 may function upstream in fructose activation. CONCLUSIONS These results suggest that anesthesia/surgery activates fructose metabolism, producing excessive lactate in the brain that is associated with postoperative cognitive impairment. Fructose metabolism is thus a potential therapeutic target for dNCR.
Collapse
Affiliation(s)
- Lei Zhang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengjie Miao
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhou
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jiehui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingya Zhang
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
10
|
Doffoel M, Chaffraix F, Chahard A, Gras D, Bonomi O, Bildstein C, Tripon S, Royant M, Meyer N. Prevalence of advanced hepatic fibrosis and individualization of associated risk factors by Bayesian analysis in MASLD patients in French cardio-metabolic health networks. PLoS One 2025; 20:e0316158. [PMID: 39883611 PMCID: PMC11781707 DOI: 10.1371/journal.pone.0316158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
The aim of this study was to determine the prevalence of advanced hepatic fibrosis and to individualize using Bayesian analysis its associated risk factors in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) being cared for in three Alsatian cardio-metabolic health networks in the North East of France. Overall, 712 patients aged ≥18 years with a female predominance were included into a prospective, cross-sectional, and observational study. Advanced fibrosis and severe steatosis were evaluated using transient elastography (FibroScan®). The proportion of MASLD patients was 80% and 84% in women and men (difference -4.2% [-10.0; 1.9]), respectively. Advanced fibrosis was observed in 11% of patients, being more common in men (16.9%) than women (7.5%) (difference 9.4 [4.3-15.0]). Severe steatosis was also more common in men (74.9%) than women (63.4%) (difference 11.4 [4.2-18.2]). Only three of the tested variables were likely associated with advanced fibrosis: gender (OR: 1.78 [1.17-2.68]; Pr [OR >1] = 1), T2DM (OR: 1.54 [1-2.37]; Pr [OR >1] = 0.97) and hypertriglyceridemia (OR: 1.49 [0.97-2.27]; Pr (OR >1) = 0.97). In conclusion, this study confirmed the usefulness of assessing hepatic fibrosis in patients with metabolic dysfunction. Therefore, access to FibroScan® should be facilitated in all cardio-metabolic health networks.
Collapse
Affiliation(s)
- Michel Doffoel
- Association de Lutte contre les Maladies du Foie ALMAF, Strasbourg, France
- Service Expert de Lutte contre les Hépatites Virales d’Alsace SELHVA, Pôle Pathologies Hépatiques et Digestives, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Chaffraix
- Association de Lutte contre les Maladies du Foie ALMAF, Strasbourg, France
- Service Expert de Lutte contre les Hépatites Virales d’Alsace SELHVA, Pôle Pathologies Hépatiques et Digestives, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- SOS Hépatites Alsace Lorraine, Strasbourg
| | - Archia Chahard
- Département de Santé Publique Santé au Travail et Hygiène Hospitalière, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Dominique Gras
- Réseau Diabète Obésité Maladies Cardiovasculaires REDOM, Pole APSA, Strasbourg, France
| | - Odile Bonomi
- Réseau de Cardio Prévention Obésité Alsace RCPO, Pole APSA, Saint-Nabor, France
| | | | - Simona Tripon
- Association de Lutte contre les Maladies du Foie ALMAF, Strasbourg, France
- Service Expert de Lutte contre les Hépatites Virales d’Alsace SELHVA, Pôle Pathologies Hépatiques et Digestives, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maude Royant
- Association de Lutte contre les Maladies du Foie ALMAF, Strasbourg, France
- Service Expert de Lutte contre les Hépatites Virales d’Alsace SELHVA, Pôle Pathologies Hépatiques et Digestives, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- Département de Santé Publique Santé au Travail et Hygiène Hospitalière, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Huang X, Zhang X, Hao X, Wang T, Wu P, Shen L, Yang Y, Wan W, Zhang K. Association of dietary quality and mortality in the non-alcoholic fatty liver disease and advanced fibrosis populations: NHANES 2005-2018. Front Nutr 2025; 12:1507342. [PMID: 39917744 PMCID: PMC11798782 DOI: 10.3389/fnut.2025.1507342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has emerged as a significant global health concern, with advanced fibrosis increasing mortality risks. Despite the abundance of dietary guidelines for managing NAFLD, the precise impact of diet quality on mortality among individuals with advanced fibrosis remains elusive. This study aims to explore the influence of five dietary quality indexes on mortality among NAFLD patients and advanced fibrosis patients. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2005 to 2018 to assess dietary quality based on the Alternate Mediterranean Diet (aMED), Healthy Eating Index-2020 (HEI-2020), Dietary Approach to Stop Hypertension (DASH), Alternate Healthy Eating Index (AHEI), and Dietary Inflammatory Index (DII). Weighted Cox proportional hazard regression models along with restricted cubic splines and subgroup analyses were employed in this study. Results The analysis encompassed 3,634 NAFLD patients. After a median follow-up of 89 months, it was found that higher scores on the aMED (HR 0.814, 95% CI 0.681-0.972), HEI-2020 (HR 0.984, 95% CI 0.972-0.997), DASH (HR 0.930, 95% CI 0.883-0.979), and AHEI (HR 0.980, 95% CI 0.966-0.995) were associated with lower mortality risks, while DII scores (HR 1.280, 95% CI 1.098-1.493) indicated an increased risk of mortality. Additionally, a nonlinear relationship was identified solely between AHEI scores and all-cause mortality in NAFLD patients. Notably, among patients with advanced fibrosis, HEI-2020 as a categorical variable (T3: HR 0.519, 95% CI 0.280-0.964), DASH as a continuous variable (continuous: HR 0.921, 95% CI 0.849-0.999), AHEI (continuous: HR 0.971, 95% CI 0.945-0.997; T2: HR 0.545, 95% CI 0.310-0.960; T3: HR 0.444, 95% CI 0.245-0.804), and DII (continuous: HR 1.311, 95% CI 1.121-1.534; T3: HR 2.772, 95% CI 1.477-5.202) exhibited significant associations with all-cause mortality. Subgroup analyses revealed an interaction between AHEI scores and sex among NAFLD patients, where higher AHEI scores correlated with lower all-cause mortality in females, but no such association was observed in males. For other dietary quality, subgroup analyses indicated that their relationships with mortality were robust. Conclusion Our study suggests that a high-quality diet could potentially mitigate mortality risk in both NAFLD and advanced fibrosis patients.
Collapse
Affiliation(s)
- Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuanyu Hao
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, Shenyang, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Park SH, Fadhul T, Conroy LR, Clarke HA, Sun RC, Wallenius K, Boucher J, O’Mahony G, Boianelli A, Persson M, Jung S, Jang C, Loria AS, Martinez GJ, Kipp ZA, Bates EA, Hinds TD, Divanovic S, Softic S. Knockdown of ketohexokinase versus inhibition of its kinase activity exert divergent effects on fructose metabolism. JCI Insight 2024; 9:e184396. [PMID: 39418102 PMCID: PMC11623947 DOI: 10.1172/jci.insight.184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Excessive fructose intake is a risk factor for the development of obesity and its complications. Targeting ketohexokinase (KHK), the first enzyme of fructose metabolism, has been investigated for the management of metabolic dysfunction-associated steatotic liver disease (MASLD). We compared the effects of systemic, small molecule inhibitor of KHK enzymatic activity with hepatocyte-specific, N-acetylgalactosamine siRNA-mediated knockdown of KHK in mice on an HFD. We measured KHK enzymatic activity, extensively quantified glycogen accumulation, performed RNA-Seq analysis, and enumerated hepatic metabolites using mass spectrometry. Both KHK siRNA and KHK inhibitor led to an improvement in liver steatosis; however, via substantially different mechanisms, KHK knockdown decreased the de novo lipogenesis pathway, whereas the inhibitor increased the fatty acid oxidation pathway. Moreover, KHK knockdown completely prevented hepatic fructolysis and improved glucose tolerance. Conversely, the KHK inhibitor only partially reduced fructolysis, but it also targeted triokinase, mediating the third step of fructolysis. This led to the accumulation of fructose-1 phosphate, resulting in glycogen accumulation, hepatomegaly, and impaired glucose tolerance. Overexpression of wild-type, but not kinase-dead, KHK in cultured hepatocytes increased hepatocyte injury and glycogen accumulation after treatment with fructose. The differences between KHK inhibition and knockdown are, in part, explained by the kinase-dependent and -independent effects of KHK on hepatic metabolism.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Pediatrics and Division of Pediatric Gastroenterology and
| | - Taghreed Fadhul
- Department of Pediatrics and Division of Pediatric Gastroenterology and
| | - Lindsey R. Conroy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Harrison A Clarke
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Biochemistry & Molecular Biology, Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, USA
| | - Ramon C. Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Biochemistry & Molecular Biology, Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, USA
| | - Kristina Wallenius
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Alessandro Boianelli
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Persson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunhee Jung
- Department of Biological Chemistry, School of Medicine; and Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine; and Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine; and Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Samir Softic
- Department of Pediatrics and Division of Pediatric Gastroenterology and
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Ramesh PR, Krishnan P, Prabu S, Srinivasan V, Niranjan V. Diagnosis and management of metabolic dysfunction- associated steatotic liver disease in South Asians- A clinical review. OBESITY PILLARS 2024; 12:100142. [PMID: 39498281 PMCID: PMC11532278 DOI: 10.1016/j.obpill.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024]
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed as nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of obesity and metabolic syndrome. It is mainly caused by insulin resistance. With the increased risk of visceral obesity in South Asians, the prevalence of MASLD is on the rise. The morbidity associated with MASLD and its complications, including hepatocellular carcinoma is projected to increase in this South Asian population. Methods In this narrative review we explore the diagnosis and management of MASLD in the South Asian population. We summarize the findings from the recent literature on the diagnostic methods and management options for MASLD in this population. Results Through our search we found no specific guidelines for the diagnosis and management of MASLD in the South Asian population. The existing general guidelines may not be applied to South Asian populations due to the differences in phenotype, genotype, social and cultural aspects. South Asian countries also have limited resources with the non-availability of newer pharmacotherapeutic agents. Conclusion The goal of this review is to guide obesity physicians and primary care providers to have a stepwise approach to treat patients at risk for MASLD with a main focus on interdisciplinary management most applicable to South Asian patients. More research is needed to formulate guidelines and algorithm that are specific for the South Asian population.
Collapse
Affiliation(s)
- Prajith Raj Ramesh
- Department of Gastroenterology and Hepatology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Priya Krishnan
- Department of Medicine, University of Louisville, Chief of Medicine, RRVAMC, University of Louisville, 550 South Jackson Street, 3rd Floor, Ste. A3K00, Louisville, KY, 40202, USA
| | - Samyuktha Prabu
- Department of Endocrinology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Varshini Srinivasan
- Department of Endocrinology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Varalakshmi Niranjan
- Department of Medicine, University of Connecticut, Farmington Avenue, Farmington, 06030, USA
| |
Collapse
|
14
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2024:10.1038/s41573-024-01084-2. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
15
|
Wang H, Yun Z, Li L, Wang H, Zeng H, Ran Y. Exploring causal associations between dietary intake and liver diseases: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40095. [PMID: 39533573 PMCID: PMC11557105 DOI: 10.1097/md.0000000000040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Previous evidence suggests that dietary intake can affect liver diseases; However, the causal relationship between dietary intake and liver diseases remains unclear. To investigate this, we conducted a bidirectional Mendelian randomization (MR) analysis to comprehensively assess the potential causal relationship between dietary intake and liver diseases. Two-sample bidirectional MR was performed based on genome-wide association studies summary data from the UK Biobank and FinnGen database. The primary analysis method for evaluating causal relationships was inverse-variance weighted. Supplementary analyses included MR-Egger and weighted median methods. Subsequently, sensitivity analyses were performed using Cochran Q test, MR-Egger intercept test, MR-PRESSO, RadialMR, and leave-one-out analysis to assess heterogeneity and horizontal pleiotropy. MR evidence indicated that genetically predicted poultry intake (adjusted odds ratio [OR] = 0.04, 95% confidence interval [CI] = 0.00-0.43, P = .007) and salad/raw vegetable intake (adjusted OR = 0.18, 95% CI = 0.04-0.83, P = .028) were directly associated with a reduced risk of cirrhosis. Conversely, there is no causal association between dietary intake and nonalcoholic fatty liver disease, alcoholic liver disease, or hepatocellular carcinoma. This study provides evidence supporting the impact of dietary intake on liver disease. Increased intake of poultry and salad/raw vegetables is associated with a reduced risk of cirrhosis. These findings can inform preventive and therapeutic strategies for cirrhosis.
Collapse
Affiliation(s)
- Hong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhangjun Yun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liling Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Hui Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Haotian Zeng
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Yun Ran
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
17
|
Pontikoglou CG, Filippatos TD, Matheakakis A, Papadaki HA. Steatotic liver disease in the context of hematological malignancies and anti-neoplastic chemotherapy. Metabolism 2024; 160:156000. [PMID: 39142602 DOI: 10.1016/j.metabol.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Charalampos G Pontikoglou
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Angelos Matheakakis
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece.
| |
Collapse
|
18
|
Huang JF, Chang TJ, Yeh ML, Shen FC, Tai CM, Chen JF, Huang YH, Hsu CY, Cheng PN, Lin CL, Hung CH, Chen CC, Lee MH, Lee CC, Lin CW, Liu SC, Yang HI, Chien RN, Kuo CS, Peng CY, Chang ML, Huang CF, Yang YS, Yang HC, Lin HC, Ou HY, Liu CJ, Tseng CH, Kao JH, Chuang WL, Huang CN, Chen PJ, Wang CY, Yu ML. Clinical care guidance in patients with diabetes and metabolic dysfunction-associated steatotic liver disease: A joint consensus. Hepatol Commun 2024; 8:e0571. [PMID: 39470335 PMCID: PMC11524742 DOI: 10.1097/hc9.0000000000000571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, affecting >30% of the global population. Metabolic dysregulation, particularly insulin resistance and its subsequent manifestation as type 2 diabetes mellitus, serves as the fundamental pathogenesis of metabolic liver disease. Clinical evidence of the recent nomenclature evolution is accumulating. The interaction and impacts are bidirectional between MASLD and diabetes in terms of disease course, risk, and prognosis. Therefore, there is an urgent need to highlight the multifaceted links between MASLD and diabetes for both hepatologists and diabetologists. The surveillance strategy, risk stratification of management, and current therapeutic achievements of metabolic liver disease remain the major pillars in a clinical care setting. Therefore, the Taiwan Association for the Study of the Liver (TASL), Taiwanese Association of Diabetes Educators, and Diabetes Association of the Republic of China (Taiwan) collaboratively completed the first guidance in patients with diabetes and MASLD, which provides practical recommendations for patient care.
Collapse
Affiliation(s)
- Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Ming Tai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Fu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University Faculty of Medicine, Taipei, Taiwan
- Healthcare and Services Center and Therapeutic and Research Center of Liver Cancer, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Ling Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chao-Hung Hung
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University Faculty of Medicine, Taipei, Taiwan
| | - Chun-Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Chih-Wen Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Sung-Chen Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatobiliary Disease, Linkou Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chin-Sung Kuo
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Department of Internal Medicine, Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Ling Chang
- Department of Gastroenterology and Hepatobiliary Disease, Linkou Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Sun Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Chih Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology & Hepatology, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ning Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Agarwal V, Das S, Kapoor N, Prusty B, Das B. Dietary Fructose: A Literature Review of Current Evidence and Implications on Metabolic Health. Cureus 2024; 16:e74143. [PMID: 39712814 PMCID: PMC11663027 DOI: 10.7759/cureus.74143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
With the increasing intake of dietary fructose, primarily from sucrose and sweetened beverages, metabolic illnesses such as type 2 diabetes mellitus, hypertension, fatty liver disease, dyslipidemia, and hyperuricemia have become more prevalent worldwide, and there is also growing concern about the development of malignancies. These negative health impacts have been validated in various meta-analyses and randomized controlled trials. In contrast, the naturally occurring fructose found in fruits and vegetables contains only a minimal amount of fructose and, when consumed in moderation, may be a healthier choice. This review focuses on the biology of fructose, including its dietary sources, the physiology of its metabolism, and the pathological basis of various disorders related to high dietary fructose intake.
Collapse
Affiliation(s)
- Vishal Agarwal
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sambit Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nitin Kapoor
- Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore, IND
| | - Binod Prusty
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Bijay Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
20
|
Hrncir T, Trckova E, Hrncirova L. Synergistic Effects of Fructose and Food Preservatives on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): From Gut Microbiome Alterations to Hepatic Gene Expression. Nutrients 2024; 16:3722. [PMID: 39519554 PMCID: PMC11547954 DOI: 10.3390/nu16213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem closely linked to dietary habits, particularly high fructose consumption. This study investigates the combined effects of fructose and common food preservatives (sodium benzoate, sodium nitrite, and potassium sorbate) on the development and progression of MASLD. Methods: We utilized a human microbiota-associated mouse model, administering 10% fructose with or without preservatives for 11 weeks. Liver histology, hepatic gene expression (microarray analysis), biochemical markers, cytokine profiles, intestinal permeability, and gut microbiome composition (16S rRNA and Internal Transcribed Spacer (ITS) sequencing) were evaluated. Results: Fructose and potassium sorbate synergistically induced liver pathology characterized by increased steatosis, inflammation and fibrosis. These histological changes were associated with elevated liver function markers and altered lipid profiles. The treatments also induced significant changes in both the bacterial and fungal communities and disrupted intestinal barrier function, leading to increased pro-inflammatory responses in the mesenteric lymph nodes. Liver gene expression analysis revealed a wide range of transcriptional changes induced by fructose and modulated by the preservative. Key genes involved in lipid metabolism, oxidative stress, and inflammatory responses were affected. Conclusions: Our findings highlight the complex interactions between dietary components, gut microbiota, and host metabolism in the development of MASLD. The study identifies potential risks associated with the combined consumption of fructose and preservatives, particularly potassium sorbate. Our data reveal new mechanisms that are involved in the development of MASLD and open up a new avenue for the prevention and treatment of MASLD through dietary interventions and the modulation of the microbiome.
Collapse
|
21
|
Akhgarjand C, Entezarian M, Samavat S, Tavakoli A, Anoushirvani A, Asghari G, Yusbashian E, Dehghan P, Mirmiran P, Imani H. The association of fructose and fiber consumption and physical activity with non-alcoholic fatty liver disease in children and adolescents: a cross-sectional study. BMC Nutr 2024; 10:140. [PMID: 39434194 PMCID: PMC11494766 DOI: 10.1186/s40795-024-00943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is emerging as the most prevalent liver disease in overweight and obese children. While no cure exists, dietary and lifestyle modifications have been shown to improve the condition. This study investigates the relationship between fructose and fiber consumption, physical activity, and NAFLD in children. METHODS A cross-sectional study was conducted on 378 overweight and obese children aged 6-13 years. NAFLD diagnosis was confirmed via ultrasound, and dietary intake was assessed using a 147-item food frequency questionnaire (FFQ). Physical activity was evaluated using the Modifiable Activity Questionnaire (MAQ). Multivariable logistic regression models were applied to determine the associations. RESULTS After excluding 53 participants due to incomplete data, 325 were included in the final analysis. The mean age was 9.2 ± 1.7 years, and 35% had NAFLD. No significant association was found between fructose intake and NAFLD (OR: 0.67, 95% CI: 0.35-1.29, P = 0.221). However, higher intake of legume fiber (OR: 0.48, 95% CI: 0.26-0.90, P = 0.03) and nut fiber (OR: 0.52, 95% CI: 0.28-0.95, P = 0.04) was significantly associated with a reduced risk of NAFLD. Physical activity showed a trend towards reduced NAFLD risk but was not statistically significant after adjustments (OR: 0.53, 95% CI: 0.22-1.04, P = 0.07). CONCLUSIONS While fructose intake was not significantly linked to NAFLD in this population, fiber from legumes and nuts appeared protective. Further prospective studies are needed to confirm these findings and clarify the role of physical activity in NAFLD prevention.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Entezarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Samavat
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliarash Anoushirvani
- Firoozabadi Clinical Research Development Unit (FACRDU), Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hemato-Oncology Ward, Firoozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Golaleh Asghari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emad Yusbashian
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooneh Dehghan
- Department of Imaging, Research Development Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Alturki MS. Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Mar Drugs 2024; 22:455. [PMID: 39452863 PMCID: PMC11509851 DOI: 10.3390/md22100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The increasing prevalence of metabolic diseases, including nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes, poses significant global health challenges. Ketohexokinase (KHK), an enzyme crucial in fructose metabolism, is a potential therapeutic target due to its role in these conditions. This study focused on the discovery of selective KHK inhibitors using in silico methods. We employed structure-based drug design (SBDD) and ligand-based drug design (LBDD) approaches, beginning with molecular docking to identify promising compounds, followed by induced-fit docking (IFD), molecular mechanics generalized Born and surface area continuum solvation (MM-GBSA), and molecular dynamics (MD) simulations to validate binding affinities. Additionally, shape-based screening was conducted to assess structural similarities. The findings highlight several potential inhibitors with favorable ADMET profiles, offering promising candidates for further development in the treatment of fructose-related metabolic disorders.
Collapse
Affiliation(s)
- Mansour S Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
23
|
Fu Y, Hua Y, Alam N, Liu E. Progress in the Study of Animal Models of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3120. [PMID: 39339720 PMCID: PMC11435380 DOI: 10.3390/nu16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as an alternative term to NAFLD. MASLD is a globally recognized chronic liver disease that poses significant health concerns and is frequently associated with obesity, insulin resistance, and hyperlipidemia. To better understand its pathogenesis and to develop effective treatments, it is essential to establish suitable animal models. Therefore, attempts have been made to establish modelling approaches that are highly similar to human diet, physiology, and pathology to better replicate disease progression. Here, we reviewed the pathogenesis of MASLD disease and summarised the used animal models of MASLD in the last 7 years through the PubMed database. In addition, we have summarised the commonly used animal models of MASLD and describe the advantages and disadvantages of various models of MASLD induction, including genetic models, diet, and chemically induced models, to provide directions for research on the pathogenesis and treatment of MASLD.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Yuxin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
| | - Naqash Alam
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
24
|
Serbis A, Polyzos SA, Paschou SA, Siomou E, Kiortsis DN. Diet, exercise, and supplements: what is their role in the management of the metabolic dysfunction-associated steatotic liver disease in children? Endocrine 2024; 85:988-1006. [PMID: 38519764 DOI: 10.1007/s12020-024-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD), is the main cause of chronic liver disease in children and adolescents. Indeed, epidemiological studies have shown that MASLD affects up to 40% of children with obesity. Despite the recent approval of medications that target weight loss in adolescents that could have benefits on pediatric MASLD, lifestyle interventions, such as diet and exercise, remain the mainstay of our therapeutic approach. More specifically, studies on diet alone have focused on the possible role of carbohydrate or fat restriction, albeit without a definite answer on the best approach. Weight loss after dietary intervention in children with obesity and MASLD has a beneficial effect, regardless of the diet used. In relation to the role of exercise in MASLD reversal, indirect evidence comes from studies showing that a sedentary lifestyle leading to poor fitness, and low muscle mass is associated with MASLD. However, research on the direct effect of exercise on MASLD in children is scarce. A combination of diet and exercise seems to be beneficial with several studies showing improvement in surrogate markers of MASLD, such as serum alanine aminotransferase and hepatic fat fraction, the latter evaluated with imaging studies. Several dietary supplements, such as vitamin E, probiotics, and omega-3 fatty acid supplements have also been studied in children and adolescents with MASLD, but with equivocal results. This review aims to critically present available data on the effects of lifestyle interventions, including diet, exercise, and dietary supplements, on pediatric MASLD, thus suggesting a frame for future research that could enhance our knowledge on pediatric MASLD management and optimize clinicians' approach to this vexing medical condition.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece.
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios N Kiortsis
- Laboratory of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
25
|
Schenker RB, Machle CJ, Schmidt KA, Allayee H, Kohli R, Goran MI. Associations of dietary sugars with liver stiffness in Latino adolescents with obesity differ on PNPLA3 and liver disease severity. Liver Int 2024; 44:1768-1774. [PMID: 38634702 PMCID: PMC11251846 DOI: 10.1111/liv.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common paediatric liver disease. Latinos have high MASLD risk due to 50% prevalence of GG genotype of PNPLA3. Our primary aim was to evaluate associations between dietary carbohydrates/sugars and liver stiffness in Latino adolescents with obesity. Our secondary aim was to examine effect modification by (a) PNPLA3 genotype or (b) liver disease severity. Data were obtained from 114 Latino adolescents with obesity involved in two prior studies. No associations were seen between dietary carbohydrates/sugars and liver stiffness in the group as a whole. In subjects with GG genotype of PNPLA3, total sugar, fructose, sucrose, and glucose were associated with liver stiffness. Positive relationships between carbohydrate, total sugar, and sucrose and liver stiffness were stronger in those with MASLD and fibrosis compared to those with healthy livers and MASLD without fibrosis.
Collapse
Affiliation(s)
- Rachel B Schenker
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Christopher J Machle
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Kelsey A Schmidt
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, California, USA
| | - Rohit Kohli
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Michael I Goran
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
27
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
28
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
29
|
Vairetti M, Colucci G, Ferrigno A. Innovative Molecular Targets and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) 3.0. Int J Mol Sci 2024; 25:4010. [PMID: 38612820 PMCID: PMC11012541 DOI: 10.3390/ijms25074010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this Special Issue is to provide an update on the diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD), which is the most prevalent liver disease worldwide; however, there are still no specific treatment agents [...].
Collapse
Affiliation(s)
- Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giuseppe Colucci
- Division of Gastroenterology and Hepatology, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy;
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
30
|
Armandi A, Bugianesi E. Dietary and pharmacological treatment in patients with metabolic-dysfunction associated steatotic liver disease. Eur J Intern Med 2024; 122:20-27. [PMID: 38262842 DOI: 10.1016/j.ejim.2024.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD) is a disease spectrum encompassing liver injury with progressive severity, tightly connected to the metabolic syndrome. Management of MASLD mostly relies on lifestyle change aiming at improving metabolic homeostasis and insulin resistance. A Mediterranean-like dietary pattern and individualized lifestyle interventions are the cornerstone of MASLD treatment. A careful evaluation of alcohol intake and active treatment of all metabolic co-morbidities are recommended. In the MASLD spectrum, the population with liver inflammation and enhanced fibrogenesis (MASH - Metabolic-dysfunction associated steatohepatitis) can progress to advanced liver disease and has been addressed as "at-risk MASH", eligible to pharmacological treatment according to FDA and EMA. Currently there is a robust therapeutic pipeline across a variety of new targets to resolve MASH or reverse fibrosis, or both. Some of these therapies have beneficial effects that extend beyond the liver, such as effects on glycaemic control, lipid profile and weight loss. For "at-risk" MASH, reversal of fibrosis by one stage or resolution of MASH with no worsening in fibrosis as a surrogate end-point will need to be accompanied by overall survival benefits. In this review, we summarize the current evidence on lifestyle interventions in MASLD as well as pharmacological approaches for fibrosing MASH that have progressed to phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Italy.
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Italy
| |
Collapse
|
31
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Chooi YC, Zhang QA, Magkos F, Ng M, Michael N, Wu X, Volchanskaya VSB, Lai X, Wanjaya ER, Elejalde U, Goh CC, Yap CPL, Wong LH, Lim KJ, Velan SS, Yaligar J, Muthiah MD, Chong YS, Loo EXL, Eriksson JG. Effect of an Asian-adapted Mediterranean diet and pentadecanoic acid on fatty liver disease: the TANGO randomized controlled trial. Am J Clin Nutr 2024; 119:788-799. [PMID: 38035997 DOI: 10.1016/j.ajcnut.2023.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Weight loss is the most effective treatment for nonalcoholic fatty liver disease (NAFLD). There is evidence that the Mediterranean diets rich in unsaturated fatty acids and fiber have beneficial effects on weight homeostasis and metabolic risk factors in individuals with NAFLD. Studies have also shown that higher circulating concentrations of pentadecanoic acid (C15:0) are associated with a lower risk for NAFLD. OBJECTIVES To examine the effects of a Mediterranean-like, culturally contextualized Asian diet rich in fiber and unsaturated fatty acids, with or without C15:0 supplementation, in Chinese females with NAFLD. METHODS In a double-blinded, parallel-design, randomized controlled trial, 88 Chinese females with NAFLD were randomly assigned to 1 of the 3 groups for 12 wk: diet with C15:0 supplementation (n = 31), diet without C15:0 supplementation (n = 28), or control (habitual diet and no C15:0 supplementation, n = 29). At baseline and after the intervention, body fat percentage, intrahepatic lipid content, muscle and abdominal fat, liver enzymes, cardiometabolic risk factors, and gut microbiome were assessed. RESULTS In the intention-to-treat analysis, weight reductions of 4.0 ± 0.5 kg (5.3%), 3.4 ± 0.5 kg (4.5%), and 1.5 ± 0.5 kg (2.1%) were achieved in the diet-with-C15:0, diet without-C15:0, and the control groups, respectively. The proton density fat fraction (PDFF) of the liver decreased by 33%, 30%, and 10%, respectively. Both diet groups achieved significantly greater reductions in body weight, liver PDFF, total cholesterol, gamma-glutamyl transferase, and triglyceride concentrations compared with the control group. C15:0 supplementation reduced LDL-cholesterol further, and increased the abundance of Bifidobacterium adolescentis. Fat mass, visceral adipose tissue, subcutaneous abdominal adipose tissue (deep and superficial), insulin, glycated hemoglobin, and blood pressure decreased significantly in all groups, in parallel with weight loss. CONCLUSION Mild weight loss induced by a Mediterranean-like diet adapted for Asians has multiple beneficial health effects in females with NAFLD. C15:0 supplementation lowers LDL-cholesterol and may cause beneficial shifts in the gut microbiome. TRIAL REGISTRATION NUMBER This trial was registered at the clinicaltrials.gov as NCT05259475.
Collapse
Affiliation(s)
- Yu Chung Chooi
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Qinze Arthur Zhang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Maisie Ng
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xiaorong Wu
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | | | - Xianning Lai
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - Elvy Riani Wanjaya
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - Untzizu Elejalde
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - Chew Chan Goh
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - Clara Poh Lian Yap
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - Long Hui Wong
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore.
| | - Kevin Junliang Lim
- WIL@NUS Corporate Laboratory, National University of Singapore (NUS), Center for Translational Medicine, Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jadegoud Yaligar
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mark Dhinesh Muthiah
- Department of Gastroenterology and Hepatology, National University Health System, Singapore; National University Centre for Organ Transplantation, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Paediatrics and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
33
|
Gao P, Chang C, Liang J, Du F, Zhang R. Embryonic Amoxicillin Exposure Has Limited Impact on Liver Development but Increases Susceptibility to NAFLD in Zebrafish Larvae. Int J Mol Sci 2024; 25:2744. [PMID: 38473993 DOI: 10.3390/ijms25052744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Amoxicillin is commonly used in clinical settings to target bacterial infection and is frequently prescribed during pregnancy. Investigations into its developmental toxicity and effects on disease susceptibility are not comprehensive. Our present study examined the effects of embryonic amoxicillin exposure on liver development and function, especially the effects on susceptibility to non-alcoholic fatty liver disease (NAFLD) using zebrafish as an animal model. We discovered that embryonic amoxicillin exposure did not compromise liver development, nor did it induce liver toxicity. However, co-treatment of amoxicillin and clavulanic acid diminished BESP expression, caused bile stasis and induced liver toxicity. Embryonic amoxicillin exposure resulted in elevated expression of lipid synthesis genes and exacerbated hepatic steatosis in a fructose-induced NAFLD model, indicating embryonic amoxicillin exposure increased susceptibility to NAFLD in zebrafish larvae. In summary, this research broadens our understanding of the risks of amoxicillin usage during pregnancy and provides evidence for the impact of embryonic amoxicillin exposure on disease susceptibility in offspring.
Collapse
Affiliation(s)
- Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fen Du
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
34
|
Lodge M, Scheidemantle G, Adams VR, Cottam MA, Richard D, Breuer D, Thompson P, Shrestha K, Liu X, Kennedy A. Fructose regulates the pentose phosphate pathway and induces an inflammatory and resolution phenotype in Kupffer cells. Sci Rep 2024; 14:4020. [PMID: 38369593 PMCID: PMC10874942 DOI: 10.1038/s41598-024-54272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.
Collapse
Affiliation(s)
- Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Victoria R Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel Richard
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Denitra Breuer
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Peter Thompson
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, USA
| | - Kritika Shrestha
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Zhong H, Dong J, Zhu L, Mao J, Dong J, Zhao Y, Zou Y, Guo M, Ding G. Non-alcoholic fatty liver disease: pathogenesis and models. Am J Transl Res 2024; 16:387-399. [PMID: 38463579 PMCID: PMC10918142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease characterized by a massive accumulation of lipids in the liver, with a continuous progression of simple steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Non-alcoholic fatty liver disease is associated with obesity, insulin resistance, and metabolic syndrome; it is a severe public health risk and is currently the most common liver disease of the world. In addition to the fatty infiltration of the liver in non-alcoholic fatty liver disease patients, the field of liver transplantation faces similar obstacles. NAFLD and NASH primarily involve lipotoxicity, inflammation, oxidative stress, and insulin resistance. However, the precise mechanisms and treatments remain unclear. Therapeutic approaches encompass exercise, weight control, as well as treatments targeting antioxidants and anti-inflammatory pathways. The role of animal models in research has become crucial as a key tool to explore the molecular mechanisms and potential treatments for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Here, we summarized the current understanding of the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis and discussed animal models commonly used in recent years.
Collapse
Affiliation(s)
- Hanxiang Zhong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Jiayong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Liye Zhu
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Jiaxi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Junfeng Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Yuanyu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - You Zou
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Guoshan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| |
Collapse
|
36
|
De Vito F, Suraci E, Marasco R, Luzza F, Andreozzi F, Sesti G, Fiorentino TV. Association between higher duodenal levels of the fructose carrier glucose transporter-5 and nonalcoholic fatty liver disease and liver fibrosis. J Intern Med 2024; 295:171-180. [PMID: 37797237 DOI: 10.1111/joim.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND An increased dietary fructose intake has been shown to exert several detrimental metabolic effects and contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An augmented intestinal abundance of the fructose carriers glucose transporter-5 (GLUT-5) and glucose transporter-2 (GLUT-2) has been found in subjects with obesity and type 2 diabetes. Herein, we investigated whether elevated intestinal levels of GLUT-5 and GLUT-2, resulting in a higher dietary fructose uptake, are associated with NAFLD and its severity. METHODS GLUT-5 and GLUT-2 protein levels were assessed on duodenal mucosa biopsies of 31 subjects divided into 2 groups based on ultrasound-defined NAFLD presence who underwent an upper gastrointestinal endoscopy. RESULTS Individuals with NAFLD exhibited increased duodenal GLUT-5 protein levels in comparison to those without NAFLD, independently of demographic and anthropometric confounders. Conversely, no difference in duodenal GLUT-2 abundance was observed amongst the two groups. Univariate correlation analyses showed that GLUT-5 protein levels were positively related with body mass index, waist circumference, fasting and 2 h post-load insulin concentrations, and insulin resistance (IR) degree estimated by homeostatic model assessment of IR (r = 0.44; p = 0.02) and liver IR (r = 0.46; p = 0.03) indexes. Furthermore, a positive relationship was observed between duodenal GLUT-5 abundance and serum uric acid concentrations (r = 0.40; p = 0.05), a product of fructose metabolism implicated in NAFLD progression. Importantly, duodenal levels of GLUT-5 were positively associated with liver fibrosis risk estimated by NAFLD fibrosis score. CONCLUSION Increased duodenal GLUT-5 levels are associated with NAFLD and liver fibrosis. Inhibition of intestinal GLUT-5-mediated fructose uptake may represent a strategy for prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
37
|
Medina-Julio D, Ramírez-Mejía MM, Cordova-Gallardo J, Peniche-Luna E, Cantú-Brito C, Mendez-Sanchez N. From Liver to Brain: How MAFLD/MASLD Impacts Cognitive Function. Med Sci Monit 2024; 30:e943417. [PMID: 38282346 PMCID: PMC10836032 DOI: 10.12659/msm.943417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease or metabolic dysfunction-associated steatotic liver disease (MAFLD/MASLD), is a common chronic liver condition affecting a substantial global population. Beyond its primary impact on liver function, MAFLD/MASLD is associated with a myriad of extrahepatic manifestations, including cognitive impairment. The scope of cognitive impairment within the realm of MAFLD/MASLD is a matter of escalating concern. Positioned as an intermediate stage between the normal aging process and the onset of dementia, cognitive impairment manifests as a substantial challenge associated with this liver condition. Insights from studies underscore the presence of compromised executive function and a global decline in cognitive capabilities among individuals identified as being at risk of progressing to liver fibrosis. Importantly, this cognitive impairment transcends mere association with metabolic factors, delving deep into the intricate pathophysiology characterizing MAFLD/MASLD. The multifaceted nature of cognitive impairment in the context of MAFLD/MASLD is underlined by a spectrum of factors, prominently featuring insulin resistance, lipotoxicity, and systemic inflammation as pivotal contributors. These factors interplay within the intricate landscape of MAFLD/MASLD, fostering a nuanced understanding of the links between hepatic health and cognitive function. By synthesizing the available evidence, exploring potential mechanisms, and assessing clinical implications, the overarching aim of this review is to contribute to a more complete understanding of the impact of MAFLD/MASLD on cognitive function.
Collapse
Affiliation(s)
- David Medina-Julio
- Department of Internal Medicine, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana M Ramírez-Mejía
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
| | - Emilio Peniche-Luna
- High Academic Performance Program (PAEA), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Carlos Cantú-Brito
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Departament of Neurology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| |
Collapse
|
38
|
Hong JG, Carbajal Y, Trotman J, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Friedman SL, DeRossi C, Chu J. Mannose Supplementation Curbs Liver Steatosis and Fibrosis in Murine MASH by Inhibiting Fructose Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576067. [PMID: 38293175 PMCID: PMC10827199 DOI: 10.1101/2024.01.17.576067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) can progress to cirrhosis and liver cancer. There are no approved medical therapies to prevent or reverse disease progression. Fructose and its metabolism in the liver play integral roles in MASH pathogenesis and progression. Here we focus on mannose, a simple sugar, which dampens hepatic stellate cell activation and mitigates alcoholic liver disease in vitro and in vivo . In the well-validated FAT-MASH murine model, oral mannose supplementation improved both liver steatosis and fibrosis at low and high doses, whether administered either at the onset of the model ("Prevention") or at week 6 of the 12-week MASH regimen ("Reversal"). The in vivo anti-fibrotic effects of mannose supplementation were validated in a second model of carbon tetrachloride-induced liver fibrosis. In vitro human and mouse primary hepatocytes revealed that the anti-steatotic effects of mannose are dependent on the presence of fructose, which attenuates expression of ketohexokinase (KHK), the main enzyme in fructolysis. KHK is decreased with mannose supplementation in vivo and in vitro, and overexpression of KHK abrogated the anti-steatotic effects of mannose. Our study identifies mannose as a simple, novel therapeutic candidate for MASH that mitigates metabolic dysregulation and exerts anti-fibrotic effects.
Collapse
|
39
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
40
|
Qiu R, Fonseca K, Bergman A, Lin J, Tess D, Newman L, Fahmy A, Useckaite Z, Rowland A, Vourvahis M, Rodrigues D. Study of the ketohexokinase inhibitor PF-06835919 as a clinical cytochrome P450 3A inducer: Integrated use of oral midazolam and liquid biopsy. Clin Transl Sci 2024; 17:e13644. [PMID: 38108609 PMCID: PMC10766059 DOI: 10.1111/cts.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 12/19/2023] Open
Abstract
PF-06835919, a ketohexokinase inhibitor, presented as an inducer of cytochrome P450 3A4 (CYP3A4) in vitro (human primary hepatocytes), and static mechanistic modeling exercises predicted significant induction in vivo (oral midazolam area under the plasma concentration-time curve [AUC] ratio [AUCR] = 0.23-0.79). Therefore, a drug-drug interaction study was conducted to evaluate the effect of multiple doses of PF-06835919 (300 mg once daily × 10 days; N = 10 healthy participants) on the pharmacokinetics of a single oral midazolam 7.5 mg dose. The adjusted geometric means for midazolam AUC and its maximal plasma concentration were similar following co-administration with PF-06835919 (vs. midazolam administration alone), with ratios of the adjusted geometric means (90% confidence interval [CI]) of 97.6% (90% CI: 79.9%-119%) and 98.9% (90% CI: 76.4%-128%), respectively, suggesting there was minimal effect of PF-06835919 on midazolam pharmacokinetics. Lack of CYP3A4 induction was confirmed after the preparation of subject plasma-derived small extracellular vesicles (sEVs) and conducting proteomic and activity (midazolam 1'-hydroxylase) analysis. Consistent with the midazolam AUCR observed, the CYP3A4 protein expression fold-induction (geometric mean, 90% CI) was low in liver (0.9, 90% CI: 0.7-1.2) and non-liver (0.9, 90% CI: 0.7-1.2) sEVs (predicted AUCR = 1.0, 90% CI: 0.9-1.2). Likewise, minimal induction of CYP3A4 activity (geometric mean, 90% CI) in both liver (1.1, 90% CI: 0.9-1.3) and non-liver (0.9, 90% CI: 0.5-1.5) sEVs was evident (predicted AUCR = 0.9, 90% CI: 0.6-1.4). The results showcase the integrated use of an oral CYP3A probe (midazolam) and plasma-derived sEVs to assess a drug candidate as inducer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alia Fahmy
- Flinders UniversityAdelaideSouth AustraliaAustralia
| | | | | | | | | |
Collapse
|
41
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Moreira RO, Valerio CM, Villela-Nogueira CA, Cercato C, Gerchman F, Lottenberg AMP, Godoy-Matos AF, Oliveira RDA, Brandão Mello CE, Álvares-da-Silva MR, Leite NC, Cotrim HP, Parisi ER, Silva GF, Miranda PAC, Halpern B, Pinto Oliveira C. Brazilian evidence-based guideline for screening, diagnosis, treatment, and follow-up of metabolic dysfunction-associated steatotic liver disease (MASLD) in adult individuals with overweight or obesity: A joint position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM), Brazilian Society of Hepatology (SBH), and Brazilian Association for the Study of Obesity and Metabolic Syndrome (Abeso). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230123. [PMID: 38048417 DOI: 10.20945/2359-4292-2023-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Nonalcoholic fatty liver disease (NAFLD), is one of the most common hepatic diseases in individuals with overweight or obesity. In this context, a panel of experts from three medical societies was organized to develop an evidence-based guideline on the screening, diagnosis, treatment, and follow-up of MASLD. Material and methods A MEDLINE search was performed to identify randomized clinical trials, meta-analyses, cohort studies, observational studies, and other relevant studies on NAFLD. In the absence of studies on a certain topic or when the quality of the study was not adequate, the opinion of experts was adopted. Classes of Recommendation and Levels of Evidence were determined using prespecified criteria. Results Based on the literature review, 48 specific recommendations were elaborated, including 11 on screening and diagnosis, 9 on follow-up,14 on nonpharmacologic treatment, and 14 on pharmacologic and surgical treatment. Conclusion A literature search allowed the development of evidence-based guidelines on the screening, diagnosis, treatment, and follow-up of MASLD in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil,
- Faculdade de Medicina de Valença,Centro Universitário de Valença, Valença, RJ, Brasil
- Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Cynthia Melissa Valerio
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Cristiane Alves Villela-Nogueira
- Departamento de Clínica Médica, Faculdade de Medicina e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Cintia Cercato
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Gerchman
- Programa de Pós-graduação em Ciências Médicas (Endocrinologia), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Divisão de Endocrinologia e Metabolismo, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Ana Maria Pita Lottenberg
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | | | - Carlos Eduardo Brandão Mello
- Departamento de Clínica Médica e da Disciplina de Gastroenterologia Clínica e Cirúrgica, Escola de Medicina e Cirurgia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Departamento de Clínica Médica e Serviço de Hepatologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mãrio Reis Álvares-da-Silva
- Serviço de Gastroenterologia, Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nathalie Carvalho Leite
- Serviço de Clínica Médica e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Edison Roberto Parisi
- Disciplina de Gastroenterologia e Hepatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Giovanni Faria Silva
- Departamento de Clínica Médica da Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil
| | | | - Bruno Halpern
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudia Pinto Oliveira
- Laboratório de Investigação Médica (LIM07), Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
44
|
Naghizadeh MM, Osati S, Homayounfar R, Masoudi-Nejad A. Food co-consumption network as a new approach to dietary pattern in non-alcoholic fatty liver disease. Sci Rep 2023; 13:20703. [PMID: 38001137 PMCID: PMC10673913 DOI: 10.1038/s41598-023-47752-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Dietary patterns strongly correlate with non-alcoholic fatty liver disease (NAFLD), which is a leading cause of chronic liver disease in developed societies. In this study, we introduce a new definition, the co-consumption network (CCN), which depicts the common consumption patterns of food groups through network analysis. We then examine the relationship between dietary patterns and NAFLD by analyzing this network. We selected 1500 individuals living in Tehran, Iran, cross-sectionally. They completed a food frequency questionnaire and underwent scanning via the FibroScan for liver stiffness, using the CAP score. The food items were categorized into 40 food groups. We reconstructed the CCN using the Spearman correlation-based connection. We then created healthy and unhealthy clusters using the label propagation algorithm. Participants were assigned to two clusters using the hypergeometric distribution. Finally, we classified participants into two healthy NAFLD networks, and reconstructed the gender and disease differential CCNs. We found that the sweet food group was the hub of the proposed CCN, with the largest cliques of size 5 associated with the unhealthy cluster. The unhealthy module members had a significantly higher CAP score (253.7 ± 47.8) compared to the healthy module members (218.0 ± 46.4) (P < 0.001). The disease differential CCN showed that in the case of NAFLD, processed meat had been co-consumed with mayonnaise and soft drinks, in contrast to the healthy participants, who had co-consumed fruits with green leafy and yellow vegetables. The CCN is a powerful method for presenting food groups, their consumption quantity, and their interactions efficiently. Moreover, it facilitates the examination of the relationship between dietary patterns and NAFLD.
Collapse
Affiliation(s)
- Mohammad Mehdi Naghizadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran
| | - Saeed Osati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
45
|
Lampignano L, Tatoli R, Donghia R, Bortone I, Castellana F, Zupo R, Lozupone M, Panza F, Conte C, Sardone R. Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects. Nutr Metab Cardiovasc Dis 2023; 33:2233-2241. [PMID: 37541928 DOI: 10.1016/j.numecd.2023.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population. METHODS AND RESULTS We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks. CONCLUSION This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.
Collapse
Affiliation(s)
| | - Rossella Tatoli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | | | - Roberta Zupo
- Department of Interdisciplinary Medicine, University "Aldo Moro", Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| |
Collapse
|
46
|
Nagai K, Nagai K, Iwaki M, Kobayashi T, Nogami A, Oka M, Saito S, Yoneda M. Frontiers of Collaboration between Primary Care and Specialists in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review. Life (Basel) 2023; 13:2144. [PMID: 38004284 PMCID: PMC10672694 DOI: 10.3390/life13112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is the most common liver disease. It has a rapidly growing patient population owing to the increasing prevalence of obesity and type 2 diabetes. Patients with MASLD are primarily treated by family physicians when fibrosis is absent or mild and by gastroenterologists/hepatologists when fibrosis is more advanced. It is imperative that a system for the appropriate treatment and surveillance of hepatocellular carcinoma be established in order to ensure that highly fibrotic cases are not overlooked among the large number of MASLD patients. Family physicians should check for viral hepatitis, autoimmune hepatitis, alcoholic liver disease, and drug-induced liver disease, and should evaluate fibrosis using NIT; gastroenterologists/hepatologists should perform liver biopsy, ultrasound elastography (260 units in Japan as of October 2023), and MR elastography (35 units in Japan as of October 2023). This review presents the latest findings in MASLD and the role, accuracy, and clinical use of NIT. It also describes the collaboration between Japanese primary care and gastroenterologists/hepatologists in Japan in the treatment of liver diseases, including MASLD.
Collapse
Affiliation(s)
- Koki Nagai
- Gastroenterology Division, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajyuku, Totsuka-ku, Yokohama 245-8575, Japan;
| | - Kazuki Nagai
- Nagai Clinic, 1-7-25 Yokodai, Isogo-ku, Yokohama 235-0045, Japan;
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan; (M.I.); (T.K.); (A.N.)
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan; (M.I.); (T.K.); (A.N.)
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan; (M.I.); (T.K.); (A.N.)
| | - Masanao Oka
- OkaMedical, 1-19-18-3F Kamiookanishi, Kounan-ku, Yokohama 233-0002, Japan;
| | - Satoru Saito
- Sanno Hospital, 8-10-16 Akasaka, Minato-ku, Tokyo 107-0052, Japan;
| | - Masato Yoneda
- Gastroenterology Division, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajyuku, Totsuka-ku, Yokohama 245-8575, Japan;
| |
Collapse
|
47
|
Zhu G, Li J, Lin X, Zhang Z, Hu T, Huo S, Li Y. Discovery of a Novel Ketohexokinase Inhibitor with Improved Drug Distribution in Target Tissue for the Treatment of Fructose Metabolic Disease. J Med Chem 2023; 66:13501-13515. [PMID: 37766386 DOI: 10.1021/acs.jmedchem.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Excessive fructose absorption and its subsequent metabolisms are implicated in nonalcoholic fatty liver disease, obesity, and insulin resistance in humans. Ketohexokinase (KHK) is a primary enzyme involved in fructose metabolism via the conversion of fructose to fructose-1-phosphate. KHK inhibition might be a potential approach for the treatment of metabolic disorders. Herein, a series of novel KHK inhibitors were designed, synthesized, and evaluated. Among them, compound 14 exhibited more potent activity than PF-06835919 based on the rat KHK inhibition assay in vivo, and higher drug distribution concentration in the liver. Its good absorption, distribution, metabolism, and excretion and pharmacokinetic properties make it a promising clinical candidate.
Collapse
Affiliation(s)
- Guodong Zhu
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Jiao Li
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Xiaoyan Lin
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Zhen Zhang
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Tao Hu
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Shuhua Huo
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Yunfei Li
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| |
Collapse
|
48
|
Schwenger KJP, Ghorbani Y, Rezaei K, Fischer SE, Jackson TD, Okrainec A, Allard JP. Relationship between dietary intake components and hepatic fibrosis in those with obesity before and 1 year after bariatric surgery. Nutrition 2023; 114:112095. [PMID: 37437418 DOI: 10.1016/j.nut.2023.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease is highly prevalent in the bariatric population but not all patients develop liver fibrosis. Considering that fibrosis may affect clinical outcomes, it is important to assess and treat contributing factors. In this population, it is not clear whether dietary intake is a contributor. The objective was to determine the relationship between dietary intake components and liver fibrosis before and 1 y after Roux-en-Y gastric bypass (RYGB). METHODS This was a prospective cross-sectional (n = 133) study conducted between 2013 and 2022. In addition, a subgroup of 44 patients were followed for 1 y post-RYGB. Anthropometrics, biochemical measurements, and 3-d food records and liver biopsies were obtained presurgery and, in a subgroup of patients, as for the cohort, 1 y post-RYGB. RESULTS In the cross-sectional study, 78.2% were female, with a median age of 48 y and body mass index of 46.8 kg/m2; 33.8% had type 2 diabetes mellitus and 57.1% had metabolic syndrome. In a multivariate analysis, age (odds ratio; 95% CI) (1.076; 1.014-1.141), alanine transaminase (1.068; 1.025-1.112), calorie intake (1.001; 1.000-1.002), and dietary copper (0.127; 0.022-0.752) were independently associated with fibrosis (<0.05). At 1 y post-RYGB, no independent risk factors were associated with persistent fibrosis. CONCLUSIONS In bariatric patients before surgery, higher age, alanine transaminase, and total calorie and lower copper intakes were independent risk factors associated with liver fibrosis. These relationships were no longer observed after RYGB, likely due to the effect of surgery on weight and similar postsurgery diet among patients.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kuorosh Rezaei
- Toronto General Hospital, University Health Network, Toronto, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Lima WJDM, Pontes JCXD, Figueiredo LSD, Araújo RDS, Paiva Sousa MCD, Aquino JDS, Castro RDD, Alves AF. Obesity influences the development of bisphosphonate-induced osteonecrosis in Wistar rats. J Appl Oral Sci 2023; 31:e20230133. [PMID: 37792808 PMCID: PMC10547385 DOI: 10.1590/1678-7757-2023-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is characterized by bone exposure for more than eight weeks in patients who have used or been treated with antiresorptive or antiangiogenic drugs, without a history of radiation therapy or metastatic diseases in the jaws. Obesity is associated with changes in periodontal tissues and oral microbiota that are linked to bone alterations. This study aimed to analyze the influence of obesity on the development of bisphosphonate-induced osteonecrosis. The experiment randomly and simply divided 24 male Wistar rats (Rattus norvegicus) into four groups: healthy, with osteonecrosis, obese, and obese with osteonecrosis (n=6 per group). Osteonecrosis was induced through weekly intraperitoneal injection for eight weeks at a dose of 250 µg/kg of zoledronic acid in a 4 mg/5 mL solution, combined with trauma (exodontia). Obesity was induced through a high glycaemic index diet. Each group was qualitatively and quantitatively evaluated regarding the development of models and pathological anatomy of the lesions. The results were expressed in mean percentage and standard deviation and statistically analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test, with a significance level of 5% (p<0.05) to establish differences found between the groups. Animals in the osteonecrosis group and the obese with osteonecrosis group presented larger necrosis areas (averages: 172.83±18,19 µm2 and 290.33±15,77 µm2, respectively) (p<0,0001). Bone sequestration, hepatic steatosis, and increased adipocyte size were observed in the obese group (average: 97.75±1.91 µm2) and in the obese with osteonecrosis group (average: 98.41±1.56 µm2), indicating greater tissue damage in these groups (p<0,0001). All parameters analyzed (through histological, morphometric, and murinometric analyses) increased for the obese and obese with osteonecrosis groups, suggesting a possible influence of obesity on the results. However, further studies are needed to confirm the role of obesity in the possible exacerbation of osteonecrosis and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Wilson José de Miranda Lima
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, João Pessoa, Paraíba, Brasil
| | - Jannerson Cesar Xavier de Pontes
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, João Pessoa, Paraíba, Brasil
| | - Ludmila Silva de Figueiredo
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, João Pessoa, Paraíba, Brasil
| | - Rubens da Silva Araújo
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | | | - Jailane de Souza Aquino
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Nutrição,João Pessoa, Paraíba, Brasil
| | - Ricardo Dias de Castro
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, João Pessoa, Paraíba, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Clínica e Odontologia Social, João Pessoa, Paraíba, Brasil
| | - Adriano Francisco Alves
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, João Pessoa, Paraíba, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Fisiologia e Patologia, João Pessoa, Paraíba, Brasil
| |
Collapse
|
50
|
Xiao S, Chen Z, Mai T, Cai J, Chen Y, Tang X, Gou R, Luo T, He K, Li T, Qin J, Zhang Z, Li Y. Analysis of the association between dietary patterns and nonalcoholic fatty liver disease in a county in Guangxi. BMC Gastroenterol 2023; 23:309. [PMID: 37704944 PMCID: PMC10500788 DOI: 10.1186/s12876-023-02864-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND This study aims to investigate the relationship between different dietary patterns and non-alcoholic fatty liver disease (NAFLD). METHODS Residents over 30 years old in the ecological longevity cohort in Gongcheng Yao Autonomous County, Guangxi Province were the research objects selected from 2018 to 2019. Physical examination, baseline population survey, and food frequency questionnaire (FFQ) survey were conducted. Dietary patterns were analyzed by factor analysis. Influencing factors of NAFLD were analyzed by multiple logistic regression. RESULTS NAFLD was diagnosed in 241 of 2664 participants based on ultrasonography, and the detection rate was 9.0%. Factor analysis yielded a total of three dietary patterns, namely, traditional Chinese, Western, and cereal-potato dietary patterns. Results of multivariate logistic regression analysis showed that after adjusting for confounding factors, participants in the highest quartile of the Western dietary pattern exhibited a higher prevalence of NAFLD (OR = 2.799; 95% CI: 1.620-4.837; p < 0.05) than participants in the lowest quartile. Participants in the highest quartile of the cereal-potato pattern exhibited a decreased risk of NAFLD compared with those in the lowest quartile (OR = 0.581; 95% CI: 0.371-0.910, p < 0.05). The traditional Chinese patterns did not show any association with the risk of NAFLD. CONCLUSIONS The Western dietary pattern increases the risk of NAFLD, whereas the cereal-potato dietary pattern reduces the risk of NAFLD. It is important for the prevention and control of NAFLD to adhere to the cereal-potato dietary.
Collapse
Affiliation(s)
- Song Xiao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Ziqi Chen
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Yulu Chen
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Xu Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, Guangxi province, 530021, PR China
| | - Ruoyu Gou
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Tingyu Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Kailian He
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Tingjun Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, Guangxi province, 530021, PR China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China.
| | - You Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, 541199, China.
| |
Collapse
|