1
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Fagoonee S, Weiskirchen R. MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies. Cells 2024; 13:1935. [PMID: 39682684 DOI: 10.3390/cells13231935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatobiliary cancers, such as hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are among the deadliest malignancies worldwide, leading to a significant number of cancer-related deaths. While bone metastases from these cancers are rare, they are highly aggressive and linked to poor prognosis. This review focuses on RNA-based molecular mechanisms that contribute to bone metastasis from hepatobiliary cancers. Specifically, the role of two key factors, microRNAs (miRNAs) and RNA-binding proteins (RBPs), which have not been extensively studied in the context of HCC and CCA, is discussed. These molecules often exhibit abnormal expression in hepatobiliary tumors, influencing cancer cell spread and metastasis by disrupting bone homeostasis, thereby aiding tumor cell migration and survival in the bone microenvironment. This review also discusses potential therapeutic strategies targeting these RNA-based pathways to reduce bone metastasis and improve patient outcomes. Further research is crucial for developing effective miRNA- and RBP-based diagnostic and prognostic biomarkers and treatments to prevent bone metastases in hepatobiliary cancers.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center "Guido Tarone", 10126 Turin, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Supradit K, Wongprasert K, Tangphatsornruang S, Yoocha T, Sonthirod C, Pootakham W, Thitapakorn V, Butthongkomvong K, Phanaksri T, Kunjantarachot A, Klongprateeppon H, Sattavacharavech P, Prasopdee S. microRNA profiling of exosomes derived from plasma and their potential as biomarkers for Opisthorchis viverrini-associated cholangiocarcinoma. Acta Trop 2024; 258:107362. [PMID: 39151716 DOI: 10.1016/j.actatropica.2024.107362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Cholangiocarcinoma (CCA) is a life-threatening disease that impacts patients worldwide. In Southeast Asian countries, the liver fluke Opisthorchis viverrini plays a major role in inducing carcinogenesis of the bile ducts. Due to its asymptomatic nature, O. viverrini infections are rarely treated, consequently leading to the development of advanced stages of CCA before diagnosis. Despite the current use of exosomal microRNAs (miRNA) as diagnostic biomarkers for the early detection of many types of cancer, the applications for miRNA remain limited with CCA. Circulating exosomes, membranous vesicles essential for intercellular communication, were found to contain unique miRNA. In this study, we conducted next-generation sequencing (Ion Torrent PGM) and bioinformatics to characterize and compare the contents of exosomal miRNA derived from the plasma of CCA patients, O. viverrini-infected patients, and healthy individuals, as well as to identify and validate key molecules as markers for screening the diagnosis of CCA and O. viverrini infection. The obtained results showed the success of using NGS technology in discovering exosomal miRNAs, specifically miR-194-5p and miR-192-5p, both of which were upregulated in the O. viverrini-infected group. Interestingly, miR-192-5p was upregulated while miR-194-5p was downregulated in CCA, suggesting their potential use as biomarkers for screening CCA and O. viverrini infection, especially in O. viverrini-endemic areas.
Collapse
Affiliation(s)
- Kittiya Supradit
- Department of Radiological technology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand; Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Veerachai Thitapakorn
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani, 12120, Thailand
| | | | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Anthicha Kunjantarachot
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | | | | | - Sattrachai Prasopdee
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand; Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Zheng YW, Yu SY, Li Z, Xu YT, Zhao WW, Jiang D, Chen HY, Xu JJ. High-Precision Single-Cell microRNA Therapy by a Functional Nanopipette with Sensitive Photoelectrochemical Feedback. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307067. [PMID: 37972263 DOI: 10.1002/smll.202307067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 11/19/2023]
Abstract
This work proposes the concept of single-cell microRNA (miR) therapy and proof-of-concept by engineering a nanopipette for high-precision miR-21-targeted therapy in a single HeLa cell with sensitive photoelectrochemical (PEC) feedback. Targeting the representative oncogenic miR-21, the as-functionalized nanopipette permits direct intracellular drug administration with precisely controllable dosages, and the corresponding therapeutic effects can be sensitively transduced by a PEC sensing interface that selectively responds to the indicator level of cytosolic caspase-3. The experimental results reveal that injection of ca. 4.4 × 10-20 mol miR-21 inhibitor, i.e., 26488 copies, can cause the obvious therapeutic action in the targeted cell. This work features a solution to obtain the accurate knowledge of how a certain miR-drug with specific dosages treats the cells and thus provides an insight into futuristic high-precision clinical miR therapy using personalized medicine, provided that the prerequisite single-cell experiments are courses of personalized customization.
Collapse
Affiliation(s)
- You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
La Sala L, Carlini V, Conte C, Macas-Granizo MB, Afzalpour E, Martin-Delgado J, D'Anzeo M, Pedretti RFE, Naselli A, Pontiroli AE, Cappato R. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol Res 2024; 201:107083. [PMID: 38309383 DOI: 10.1016/j.phrs.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, 20138 Milan, Italy; Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Caterina Conte
- IRCCS MultiMedica, 20138 Milan, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | | | - Elham Afzalpour
- Dept. of Biomedical Sciences and Clinic, University of Milan, Milan, Italy
| | - Jimmy Martin-Delgado
- Hospital Luis Vernaza, Junta de Beneficiencia de Guayaquil, 090603 Guayaquil, Ecuador; Instituto de Investigacion e Innovacion en Salud Integral, Universidad Catolica de Santiago de Guayaquil, Guayaquil 090603, Ecuador
| | - Marco D'Anzeo
- AUO delle Marche, SOD Medicina di Laboratorio, Ancona, Italy
| | | | | | | | | |
Collapse
|
7
|
Wu Z, Jiang S, Chen Y. Non-coding RNA and Drug resistance in cholangiocarcinoma. Noncoding RNA Res 2024; 9:194-202. [PMID: 38125756 PMCID: PMC10730441 DOI: 10.1016/j.ncrna.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer with a dismal prognosis and limited resectability. Chemotherapy has demonstrated tremendous benefits for patients with advanced and inoperable cancer, but drug resistance poses a significant obstacle. Despite recent progress in cancer therapy, the mechanisms driving drug resistance are multifaceted and not completely comprehended. Non-coding RNA refers to RNA molecules that are endogenous and do not code for proteins. Particularly microRNAs, long non-coding RNAs, circular RNAs, are widely acknowledged to be involved in cancer initiation, proliferation, and metastasis. Recently, evidences suggests that abnormal expression of non-coding RNAs contributes to resistance to different type of cancer therapies in cholangiocarcinoma. This occurs via the rewiring of signaling pathways including the reduction of anticancer drugs, apoptosis, interaction between cholangiocarcinoma and tumor-infiltrating immune cells, and cancer stemness. Thus, our review aims to demonstrate the potential of targeting non-coding RNA to override drug resistance and summarize the molecular mechanisms of how non-coding RNA contributes to drug resistance in cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhaowei Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Shiming Jiang
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Yong Chen
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| |
Collapse
|
8
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Khaleel LA, Abdulameer SJ, Hadi AM, Merza MS, Zabibah RS, Ali A. Small but mighty: How microRNAs drive the deadly progression of cholangiocarcinoma. Pathol Res Pract 2023; 247:154565. [PMID: 37267725 DOI: 10.1016/j.prp.2023.154565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Cholangiocarcinoma, also referred to as CCA, is a highly complex epithelial malignancy that can impact various organs and regions of the body, including the perihilar, intrahepatic, and distal organs. This cancer is characterized by the malignant growth of the epithelial lining in the bile ducts, which spans the entire biliary tree and is accountable for disease progression. The current state of affairs concerning CCA is concerning, with poor prognoses, high recurrence rates, and dismal long-term survival rates significantly burden healthcare facilities worldwide. Studies have identified numerous signaling pathways and molecules involved in the development and progression of CCA, including microRNAs, an important class of non-coding RNAs that have the ability to modulate these cellular signaling pathways significantly. In addition, microRNAs may serve as an innovative target for developing novel therapeutic approaches for CCA. In this review, we explore the underlying mechanisms and signaling pathways implicated in the initiation and progression of CCA, focusing on the future direction of utilizing microRNAs as a promising treatment option for this challenging malignancy.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-maarif University College, Al-Anbar, Iraq
| | | | - Luay Ali Khaleel
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Muna S Merza
- Prosthetic dental Techniques Department, Al-Mustaqbal university College, Babylon, 51001, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
9
|
Circulating microRNAs in gallbladder cancer: Is serum assay of diagnostic value? Pathol Res Pract 2023; 242:154320. [PMID: 36682281 DOI: 10.1016/j.prp.2023.154320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The microRNAs (miRNAs) in circulation could serve as biomarkers for cancer detection. Gallbladder carcinoma (GBC) is mostly asymptomatic; therefore, using microRNAs (miRNAs) as an early diagnostic biomarker could be a valuable tool. We aimed to identify the tumor-associated miR-1, miR130, miR-146, miR-182, and miR-21expression in serum as a biomarker for early detection of GBC and identify their possible diagnostic role. The study group comprised of paired serum and tissue samples from 34 GBC, 19 cholecystitis (CC), 21 normal controls (uninflamed gall bladder), and additional 29 serum-only samples of GBC. Total RNA was isolated using a commercially available RNA isolation kit (Applied Biosystem, USA) and reverse transcribed using Advanced Taqman MicroRNA reverse transcription kit. The relative expression of miRNAs was analyzed using Quantitative real-time polymerase chain reaction. The diagnostic potential of these miRNAs was assessed by ROC analysis. In paired samples, the trend towards up and down regulation for miR-182, miR-21, miR-1, miR-130, and miR-146 was similar in both tissue and sera of GBC. The expression pattern of serum miR-1, miR130, and miR-146 gradually decreased from normal control (NC) to CC to GBC, while miR-21 and miR-182 gradually increased from NC to CC to GBC. The miR-1, miR-121, miR-182, and miR-146 significantly differed between CC vs. early stage and early stage vs. NC. Among these miRNAs, the sensitivity of miR-1 (85.71 %) was the highest, and the specificity of miR-21 was the highest (92.73 %). The combined sensitivity for miRNAs ranged from 73.13 % (CI: 60.90-83.24 %) to 98.63 % (CI: 89.0-99.61 %); however, the specificity was lower. In stage I&II vs. III&IV discrimination, the diagnostic sensitivity of miR-1 was highest (89.36 %, CI: 76.90-96.45). The two miRNAs, in combination, increase the diagnostic sensitivity. Circulating serum miRNAs may provide a new approach for clinical application. Panels of specific circulating miRNA, which require further validation, could be potential non-invasive diagnostic biomarkers for GBC in combination with abnormal radio diagnostic scans.
Collapse
|
10
|
Circular RNAs in cholangiocarcinoma. Cancer Lett 2023; 553:215980. [PMID: 36336149 DOI: 10.1016/j.canlet.2022.215980] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with an adverse prognosis. Although its incidence is relatively low, early diagnosis is difficult due to the lack of specific symptoms. Current treatment options for CCA are limited, resulting in a low curative rate. Circular RNAs (circRNAs) have become a new research hotspot in recent years, and they are frequently dysregulated in CCA and may become therapeutic targets and prognostic biomarkers of CCA. Accumulating evidence has demonstrated that numerous dysregulated circRNAs are vital players in the etiopathogenesis of CCA. Aberrant expression of specific circRNAs was correlated with unfavourable clinical characteristics in CCA. Many studies have found that circRNAs are involved in the progression and development of CCA through various mechanisms, including competitive inhibition of miRNAs via the competing endogenous RNA (ceRNA) network, interaction with RNA-binding proteins (RBPs), activation of cancer-related signalling pathways, and regulation of proteins and peptides. Additionally, some circRNAs are involved in the inflammatory microenvironment of CCA and play a crucial role in chemotherapy drug resistance. Thus, they are essential for the early diagnosis and prediction of CCA, and more attention should be given to the roles and mechanisms of circRNAs in CCA. In this review, we summarize the abnormal expression of circRNAs in CCA and the specific inflammatory microenvironment involved, as well as the roles and mechanisms of circRNAs in the occurrence and development of CCA. We also review the latest knowle dge on circRNAs in CCA and discuss the challenges associated with the introduction of circRNAs into clinical practice and their potential clinical value.
Collapse
|
11
|
Zhan J, Liu Z, Liu R, Zhu JJ, Zhang J. Near-Infrared-Light-Mediated DNA-Logic Nanomachine for Bioorthogonal Cascade Imaging of Endogenous Interconnected MicroRNAs and Metal Ions. Anal Chem 2022; 94:16622-16631. [DOI: 10.1021/acs.analchem.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Ferris WF. The Role and Interactions of Programmed Cell Death 4 and its Regulation by microRNA in Transformed Cells of the Gastrointestinal Tract. Front Oncol 2022; 12:903374. [PMID: 35847932 PMCID: PMC9277020 DOI: 10.3389/fonc.2022.903374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Data from GLOBOCAN 2020 estimates that there were 19.3 million new cases of cancer and 10.0 million cancer-related deaths in 2020 and that this is predicted to increase by 47% in 2040. The combined burden of cancers of the gastrointestinal (GI) tract, including oesophageal-, gastric- and colorectal cancers, resulted in 22.6% of the cancer-related deaths in 2020 and 18.7% of new diagnosed cases. Understanding the aetiology of GI tract cancers should have a major impact on future therapies and lessen this substantial burden of disease. Many cancers of the GI tract have suppression of the tumour suppressor Programmed Cell Death 4 (PDCD4) and this has been linked to the expression of microRNAs which bind to the untranslated region of PDCD4 mRNA and either inhibit translation or target the mRNA for degradation. This review highlights the properties of PDCD4 and documents the evidence for the regulation of PDCD4 expression by microRNAs in cancers of the GI tract.
Collapse
|
13
|
Micro-RNA in Cholangiocarcinoma: Implications for Diagnosis, Prognosis, and Therapy. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile-duct cancers (BDC) are a group of solid tumors arising from the biliary tree. Despite their classification as rare cancers, the incidence of BDC is increasing worldwide. Poor prognosis is a common feature of this type of cancer and is mainly determined by the following factors: late diagnosis, lack of effective therapeutic approaches, and resistance to conventional treatments. In the past few years, next-generation sequencing technologies has allowed us to study the genome, exome, and transcriptome of BDC deeper, revealing a previously underestimated class of RNA: the noncoding RNA (ncRNA). MicroRNAs (miRNAs) are small ncRNAs that play an important regulatory role in gene expression. The aberrant expression of miRNAs and their pivotal role as oncogenes or tumor suppressors in biliary carcinogenesis has been widely described in BDC. Due to their ability to regulate multiple gene networks, miRNAs are involved in all cancer hallmarks, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing/accessing vasculature, activating invasion and metastasis, reprogramming cellular metabolism, and avoiding immune destruction. Their use as diagnostic, prognostic, and predictive biomarkers has been widely explored in several human cancers, including BDC. Furthermore, miRNA-based therapeutic strategies are currently the subject of numerous clinical trials that are providing evidence of their efficacy as potent anticancer agents. In this review, we will provide a detailed update of miRNAs affecting BDC, discussing their regulatory function in processes underlying the molecular pathology of BDC. Finally, an overview of their potential use as biomarkers or therapeutic tools in BDC will be further addressed.
Collapse
|
14
|
Qiu L, Weng G. The diagnostic value of serum miR-21 in patients with ovarian cancer: a systematic review and meta-analysis. J Ovarian Res 2022; 15:51. [PMID: 35501921 PMCID: PMC9059364 DOI: 10.1186/s13048-022-00985-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Objective There have been a variety of published studies on the expression of serum miR-21 in patients with ovarian cancer associated with the diagnostic value of ovarian cancer, but the conclusions are not clearly elucidated. This study aims to evaluate the value of serum miR-21 expression in the diagnosis of patients with ovarian cancer by meta-analysis. Methods Databases, such as PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and China WanFang, were searched for relevant studies upon the correlation between the expression of serum miR-21 and the diagnostic value of ovarian cancer from inception to March 7, 2022. Statistical analysis was performed using Stata 15.0 software. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated. The meta-regression analysis and subgroup analysis were used to explore the sources of heterogeneity. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) system was used to evaluate the quality of the included literature. Results A total of 6 articles were included in the meta-analysis. The results showed that the pooled sensitivity, specificity, PLR, NLR, and DOR were 0.81 (95%CI: 0.73–0.88), 0.82 (95%CI: 0.75–0.87), 4.51 (95%CI: 3.22–6.31), 0.23 (95%CI: 0.16–0.33), and 19.87 (95% CI: 11.27–35.03), respectively. The area under the summary receiver operating characteristic curve was 0.89 (95%CI: 0.85–0.91). No significant publication bias was found (P > 0.05). Conclusion Serum miR-21 has a good diagnostic value for ovarian cancer, which can be an ideal diagnostic biomarker for ovarian cancer. However, we should gingerly use miR-21 as a diagnostic reference standard, due to the limited number of included studies and heterogeneity.
Collapse
|
15
|
Chi Z, Wu Y, Chen L, Yang H, Khan MR, Busquets R, Huang N, Lin X, Deng R, Yang W, Huang J. CRISPR-Cas14a-integrated strand displacement amplification for rapid and isothermal detection of cholangiocarcinoma associated circulating microRNAs. Anal Chim Acta 2022; 1205:339763. [DOI: 10.1016/j.aca.2022.339763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
16
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
17
|
SAHA induce hippo pathway in CCA cells without increasing cell proliferation. Mol Biol Rep 2022; 49:3649-3656. [PMID: 35112301 DOI: 10.1007/s11033-022-07204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cholangiocarcinoma is a malignant tumor originating from bile duct epithelial cells. Since tumor metastasis is associated with poor prognosis and short-term survival of patients, there is an urgent need for alternative therapeutic approaches for CCA. Because of that reason, we aimed to investigate effect of SAHA which is known as HDAC inhibitor on extrahepatic cholangiocarcinoma cell line (TFK-1). METHODS Cell cycle was measured by Muse Cell Analyzer. YAP, TAZ, TGF-β protein levels were determined by western-blotting method. TEAD (1-3), TIMP2 and TIMP3 genes level were determined by real-time PCR analysis. RESULTS We have seen the positive effects of SAHA on the TFK-1 cell line as it reduces cell viability and arresting cells in the G0/G1 phase. We also observed the negative effects of SAHA, as it increases the expression levels of YAP, TAZ, TGF-β protein and TEAD (1-3) gene. We also found that SAHA reduced the expression levels of TIMP2 and TIMP3 in TFK-1 cells, but was not statistically significant. CONCLUSIONS Although observing its antiproliferative effects, these negative effects may be related to the cells being resistant to the drug or the remaining cells having a more aggressive phenotype. Therefore, we think that caution should be exercised in the use of this drug for CCA treatment.
Collapse
|
18
|
Ney A, Garcia-Sampedro A, Goodchild G, Acedo P, Fusai G, Pereira SP. Biliary Strictures and Cholangiocarcinoma - Untangling a Diagnostic Conundrum. Front Oncol 2021; 11:699401. [PMID: 34660269 PMCID: PMC8515053 DOI: 10.3389/fonc.2021.699401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is an uncommon and highly aggressive biliary tract malignancy with few manifestations until late disease stages. Diagnosis is currently achieved through a combination of clinical, biochemical, radiological and histological techniques. A number of reported cancer biomarkers have the potential to be incorporated into diagnostic pathways, but all lack sufficient sensitivity and specificity limiting their possible use in screening and early diagnosis. The limitations of standard serum markers such as CA19-9, CA125 and CEA have driven researchers to identify multiple novel biomarkers, yet their clinical translation has been slow with a general requirement for further validation in larger patient cohorts. We review recent advances in the diagnostic pathway for suspected CCA as well as emerging diagnostic biomarkers for early detection, with a particular focus on non-invasive approaches.
Collapse
Affiliation(s)
- Alexander Ney
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - George Goodchild
- St. Bartholomew's hospital, Barts Health NHS Trust, London, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Fusai
- Division of Surgery and Interventional Science - University College London, London, United Kingdom
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
19
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
20
|
Han JY, Ahn KS, Kim YH, Kim TS, Baek WK, Suh SI, Kang KJ. Circulating microRNAs as biomarkers in bile-derived exosomes of cholangiocarcinoma. Ann Surg Treat Res 2021; 101:140-150. [PMID: 34549037 PMCID: PMC8424434 DOI: 10.4174/astr.2021.101.3.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose In this pilot study, using next-generation sequencing and integrated messenger RNA (mRNA) sequencing, we investigated circulating microRNA (miRNA) expression profiling from bile-derived exosomes to identify dysregulated miRNA signatures and oncogenic pathways and determine their effects on targeted mRNAs in cholangiocarcinoma (CCA). Moreover, we explored the possibility that genetic analysis using bile-derived exosomes may replace gene analysis using tissue. Methods Bile was collected from a patient with perihilar CCA before curative resection. As a control, bile was collected from a patient with a common bile duct stone. Exosomes were isolated from the bile, and we performed next-generation miRNA sequencing using isolated exosomes. To evaluate miRNA-mRNA interactions, mRNA sequencing was performed using bile fluid in both patients. Results We identified 22 differentially expressed miRNAs. More than 65% of the predicted mRNA targets of those miRNAs were actually differentially expressed between control and CCA bile samples. In functional pathway analysis, targets of 22 miRNAs were primarily enriched in mitogen-activated protein kinase, platelet derived growth factor, vascular endothelial growth factor, epidermal growth factor receptor, and p53 signaling. In particular, in the functional assessment of miRNA-mRNA interactions, RAS pathways, including downstream pathways (PI3K-AKT-mTOR and RAS-RAF-MEK-ERK), were determined to be enriched. Conclusion Circulating miRNAs in bile-derived exosomes provide new information for the development of miRNA analysis in CCA. These miRNAs may represent the oncogenic characteristics of CCA tissue, enabling them to be used instead of tissue samples for the diagnosis of CCA. Further research investigating circulating miRNAs in bile exosomes may lead to more rational, targeted approaches to treatment.
Collapse
Affiliation(s)
- Jin-Yi Han
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Keun Soo Ahn
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Yong Hoon Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Tae-Seok Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Koo Jeong Kang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
21
|
The Role of microRNAs in Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22147627. [PMID: 34299246 PMCID: PMC8306241 DOI: 10.3390/ijms22147627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial–mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.
Collapse
|
22
|
Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70:784-795. [PMID: 33127832 DOI: 10.1136/gutjnl-2020-322526] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
A High-Accuracy Model Based on Plasma miRNAs Diagnoses Intrahepatic Cholangiocarcinoma: A Single Center with 1001 Samples. Diagnostics (Basel) 2021; 11:diagnostics11040610. [PMID: 33805513 PMCID: PMC8066692 DOI: 10.3390/diagnostics11040610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant cancer. More than 70% of patients are diagnosed at an advanced stage. The aim of this study was to evaluate the diagnostic value of plasma miR-21, miR-122, and CA19-9, hoping to establish a novel model to improve the accuracy for diagnosing iCCA. Materials and methods: Plasma miR-21 and miR-122 were detected in 359 iCCA patients and 642 controls (healthy, benign liver lesions, other malignant liver tumors). All 1001 samples were allocated to training cohort (n = 668) and validation cohort (n = 333) in a chronological order. A logistic regression model was applied to combine these markers. Area under the receiver operating characteristic curve (AUC) was used as an accuracy index to evaluate the diagnostic performance. Results: Plasma miR-21 and miR-122 were significantly higher in iCCA patients than those in controls. Higher plasma miR-21 level was significantly correlated with larger tumor size (p = 0.030). A three-marker model was constructed by using miR-21, miR-122 and CA19-9, which showed an AUC of 0.853 (95% CI: 0.824–0.879; sensitivity: 73.0%, specificity: 87.4%) to differentiate iCCA from controls. These results were subsequently confirmed in the validation cohort with an AUC of 0.866 (0.825–0.901). The results were similar for diagnosing early (stages 0–I) iCCA patients (AUC: 0.848) and CA19-9negative iCCA patients (AUC: 0.795). Conclusions: We established a novel three-marker model with a high accuracy based on a large number of participants to differentiate iCCA from controls. This model showed a great clinical value especially for the diagnosis of early iCCA and CA19-9negative iCCA.
Collapse
|
24
|
Merdrignac A, Papoutsoglou P, Coulouarn C. Long Noncoding RNAs in Cholangiocarcinoma. Hepatology 2021; 73:1213-1226. [PMID: 32865244 DOI: 10.1002/hep.31534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Aude Merdrignac
- InsermUniv RennesNuMeCan (Nutrition Metabolisms and Cancer)UMR_S 1241CHU Rennes, F-35000RennesFrance
| | | | | |
Collapse
|
25
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|
26
|
Ahn KS, Kang KJ. Molecular heterogeneity in intrahepatic cholangiocarcinoma. World J Hepatol 2020; 12:1148-1157. [PMID: 33442444 PMCID: PMC7772740 DOI: 10.4254/wjh.v12.i12.1148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous primary liver cancer, and currently there exist only a few options of targeted therapy. Histopathologically, iCCA is sub-classified according to morphology (mass forming type, periductal infiltrating type, and intraductal growing type) and histology (small duct type and large duct type). According to different histopathological types, clinical features such as risk factors and prognosis vary. Recent developments in genomic profiling have revealed several molecular markers for poor prognosis and activation of oncogenic pathways. Exploration of molecular characteristics of iCCA in each patient is a major challenge in a clinical setting, and there is no effective molecular-based targeted therapy. However, several recent studies suggested molecular-based subtypes with corresponding clinical and pathological features. Even though the subtypes have not yet been validated, it is possible that molecular features can be predicted based on clinicopathological characteristics and that this could be used for a more rational approach to integrative clinical and molecular subclassification and targeted therapy. In this review, we explored the genomic landscape of iCCA and attempted to find relevance between clinicopathologic and molecular features in molecular subtypes in several published studies. The results reveal future directions that may lead to a rational approach to the targeted therapy.
Collapse
Affiliation(s)
- Keun Soo Ahn
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Koo Jeong Kang
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea
| |
Collapse
|
27
|
Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020; 13:E12. [PMID: 33375055 PMCID: PMC7792779 DOI: 10.3390/cancers13010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biliary tract cancer (BTC) is characterised by poor prognosis and low overall survival in patients. This is generally due to minimal understanding of its pathogenesis, late diagnosis and limited therapeutics in preventing or treating BTC patients. Non-coding RNA (ncRNA) are small RNAs (mRNA) that are not translated to proteins. ncRNAs were considered to be of no importance in the genome, but recent studies have shown they play essential roles in biology and oncology such as transcriptional repression and degradation, thus regulating mRNA transcriptomes. This has led to investigations into the role of ncRNAs in the pathogenesis of BTC, and their clinical implications. In this review, the mechanisms of action of ncRNA are discussed and the role of microRNAs in BTC is summarised. The scope of this review will be limited to miRNA as they have been shown to play the most significant roles in BTC progression. There is huge potential in miRNA-based biomarkers and therapeutics in BTC, but more studies, research and technological advancements are required before it can be translated into clinical practice for patients.
Collapse
Affiliation(s)
- Nduka Ofoeyeno
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | | | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 Y0N, UK
| |
Collapse
|
28
|
Zhirong Z, Qiaojian Z, Chunjing X, Shengchen W, Jiahe L, Zhaoyi L, Shu L. Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J Cell Physiol 2020; 236:4024-4035. [PMID: 33151563 DOI: 10.1002/jcp.30145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Organic selenium has antioxidation and disease treatment effects. To explore the mechanisms of how methionine selenium alleviates necroptosis in the liver and whether this process is related to microRNA (miRNA) and the mitogen-activated protein kinase (MAPK) pathway, an animal model of methionine selenium and the lipopolysaccharide (LPS) interaction was established. The morphology, inflammatory factor (tumor necrosis factor-α [TNF-α]), necroptosis-related genes (RIP1, RIP3, MLKL, and caspase 8), MAPK pathway-related genes (JNK, ERK, and p38, p-JNK, p-ERK, and p-p38), gga-miR-155, TRAF3 (predicted target of gga-miR-155), and oxidative stress-related indicators (SOD, MDA, CAT, GSH, and GSH-Px) were analyzed from the perspective of the miR-155/TRAF3/MAPK axis to elucidate the mechanism of methionine selenium on the LPS-induced necroptosis mechanism in the chicken liver. The current results suggested that methionine selenium antagonizes oxidative stress, inflammation, and the MAPK pathway, thereby antagonizing the occurrence of necroptosis through multiple mechanisms. At the same time, methionine selenium affects miR-155/TRAF3/MAPK signaling, reduces miR-155 expression, and upregulates TRAF3 expression to inhibit necroptosis. This information provided new ideas and a theoretical basis for the practical application of methionine selenium, and it also enriched the study of miRNAs in birds and provided a reference for comparative medicine.
Collapse
Affiliation(s)
- Zhao Zhirong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Qiaojian
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xu Chunjing
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Wang Shengchen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Jiahe
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Liu Zhaoyi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Shu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
29
|
Chen KH, Pan MJ, Jargalsaikhan Z, Ishdorj TO, Tseng FG. Development of Surface-Enhanced Raman Scattering (SERS)-Based Surface-Corrugated Nanopillars for Biomolecular Detection of Colorectal Cancer. BIOSENSORS 2020; 10:E163. [PMID: 33142781 PMCID: PMC7692079 DOI: 10.3390/bios10110163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
In this paper, a nanobiosensor with surface-enhanced Raman scattering (SERS) capability is introduced for highly sensitive miRNA detection in colorectal cancer. This sensor was designed and fabricated by employing a nanoshielding mechanism from nanopolystyrene beads to resist reactive ion etching and allow anisotropic electrochemical etching, producing high-aspect-ratio, surface-corrugated nanopillars (SiNPs) on a silicon wafer to create extensive hot spots along the nanopillars for improved SERS signals. SERS enhancements were correlated with nanorange roughness, indicating that hot spots along the pillars were the crucial factor to improve the SERS effect. We achieved the detection capability of a trace amount of R6G (10-8 M), and the SERS signal enhancement factor (EF) was close to 1.0 × 107 on surface-corrugated gold SiNPs. miRNA samples were also demonstrated on this sensor with good sensitivity and specificity. The target molecule miR-21-Cy5 was easily monitored through Raman spectrum variation with a PCR-comparable concentration at around 100 pM with clear nucleotide-specific Raman signals, which is also suitable for biomolecule sensing.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, HsinChu 30013, Taiwan;
| | - Meng-Ju Pan
- Engineering and System Science Dept., National Tsing Hua University, HsinChu 30013, Taiwan;
| | - Zoljargal Jargalsaikhan
- School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar 13341-0048, Mongolia; (Z.J.); (T.-O.I.)
| | - Tseren-Onolt Ishdorj
- School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar 13341-0048, Mongolia; (Z.J.); (T.-O.I.)
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, HsinChu 30013, Taiwan;
- Engineering and System Science Dept., National Tsing Hua University, HsinChu 30013, Taiwan;
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, HsinChu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
30
|
Carotenuto P, Hedayat S, Fassan M, Cardinale V, Lampis A, Guzzardo V, Vicentini C, Scarpa A, Cascione L, Costantini D, Carpino G, Alvaro D, Ghidini M, Trevisani F, Te Poele R, Salati M, Ventura S, Vlachogiannis G, Hahne JC, Boulter L, Forbes SJ, Guest RV, Cillo U, Said‐Huntingford I, Begum R, Smyth E, Michalarea V, Cunningham D, Rimassa L, Santoro A, Roncalli M, Kirkin V, Clarke P, Workman P, Valeri N, Braconi C. Modulation of Biliary Cancer Chemo-Resistance Through MicroRNA-Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology 2020; 72:982-996. [PMID: 31879968 PMCID: PMC7590111 DOI: 10.1002/hep.31094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Changes in single microRNA (miRNA) expression have been associated with chemo-resistance in biliary tract cancers (BTCs). However, a global assessment of the dynamic role of the microRNome has never been performed to identify potential therapeutic targets that are functionally relevant in the BTC cell response to chemotherapy. APPROACH AND RESULTS High-throughput screening (HTS) of 997 locked nucleic acid miRNA inhibitors was performed in six cholangiocarcinoma cell lines treated with cisplatin and gemcitabine (CG) seeking changes in cell viability. Validation experiments were performed with mirVana probes. MicroRNA and gene expression was assessed by TaqMan assay, RNA-sequencing, and in situ hybridization in four independent cohorts of human BTCs. Knockout of microRNA was achieved by CRISPR-CAS9 in CCLP cells (MIR1249KO) and tested for effects on chemotherapy sensitivity in vitro and in vivo. HTS revealed that MIR1249 inhibition enhanced chemotherapy sensitivity across all cell lines. MIR1249 expression was increased in 41% of cases in human BTCs. In validation experiments, MIR1249 inhibition did not alter cell viability in untreated or dimethyl sulfoxide-treated cells; however, it did increase the CG effect. MIR1249 expression was increased in CD133+ biliary cancer cells freshly isolated from the stem cell niche of human BTCs as well as in CD133+ chemo-resistant CCLP cells. MIR1249 modulated the chemotherapy-induced enrichment of CD133+ cells by controlling their clonal expansion through the Wnt-regulator FZD8. MIR1249KO cells had impaired expansion of the CD133+ subclone and its enrichment after chemotherapy, reduced expression of cancer stem cell markers, and increased chemosensitivity. MIR1249KO xenograft BTC models showed tumor shrinkage after exposure to weekly CG, whereas wild-type models showed only stable disease over treatment. CONCLUSIONS MIR1249 mediates resistance to CG in BTCs and may be tested as a target for therapeutics.
Collapse
|
31
|
Zare Chavoshy H, Ghasemi R. Fabrication of a novel fluorescent polyacrylonitrile electrospun nanofiber for DNA-based optical biosensing of microRNA-21. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab96b5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
In this study, an optical platform based on fluorescent nanofiber was developed for detection of microRNA-21 as a biomarker of cancerous cells. The fluorescent polyacrylonitrile nanofiber was fabricated using electrospinning method. The surfaces of nanofiber were treated by NaOH to convert nitrile groups to carboxyl moieties. Activation of these carboxyl groups by EDC-sulfo NHS coupling agents was done and then the covalent bonding between COOH groups of nanofiber and –NH2 groups of amino-probe was formed. The results of SEM, XRD, FTIR, and fluorescence microscopy confirmed that the process of fluorescent nanofiber synthesis was successfully performed. Hybridization of probe and microRNA-21 showed that the capture efficiency of this fluorescent nanofiber was 1 pmol μl−1 and these nanofibers have the potential to be used as optical sensors for detection of microRNA-21.
Collapse
|
32
|
Gu C, Luo Y, Zhang S, Xu J, Zhang J, Ju H, Liu J, Zhang L, Zhang Y, Wu L, Xie E, Xu T, Pan S. MAb NJ001 inhibits lung adenocarcinoma invasiveness by directly regulating TIMP-3 promoter activity via FOXP1 binding sites. Thorac Cancer 2020; 11:2630-2638. [PMID: 32744429 PMCID: PMC7471035 DOI: 10.1111/1759-7714.13593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background Previously, we developed a monoclonal antibody (mAb) NJ001 that binds to the antigen SP70 in human non‐small cell lung cancer (NSCLC) cells and showed it could inhibit lung adenocarcinoma (AD) growth. Here, we investigated the effect and mechanisms of NJ001 in lung AD metastasis. Methods Human lung AD cells (SPC‐A1 and A549) were treated with different concentrations of mAb NJ001, and the effects of NJ001 on cell migration and invasive activity were investigated using wound‐healing and Matrigel assays, respectively. The molecular mechanism of this inhibition was explored by microarrays, qRT‐PCR, western blot, luciferase assays and electrophoretic mobility shift assays (EMSA). Results MAb NJ001 markedly suppressed lung AD cell migration; and the invasiveness of SPC‐A1 and A549 cells treated with mAb NJ001 was diminished by 65%. Tissue inhibitor of matrix metalloproteinase‐3 (TIMP‐3) was highly expressed in SPC‐A1 cells treated with mAb NJ001, whereas knockdown of TIMP‐3 by shRNA significantly increased SPC‐A1 and A549 invasiveness. MAb NJ001 affects lung AD by inhibiting TIMP‐3 through direct transcriptional regulation of FOXP1 binding sites in the TIMP‐3 promoter region, as shown in luciferase assays and EMSA. Conclusions MAb NJ001 inhibits invasiveness and metastasis in lung AD through the FOXP1 binding sites in the TIMP‐3 promoter region. It may have clinical applications in preventing and treating metastatic lung AD.
Collapse
Affiliation(s)
- Chunrong Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Ying Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Huanyu Ju
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jingping Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Lixia Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Yan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Lei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Erfu Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
33
|
Galangin Inhibits Cholangiocarcinoma Cell Growth and Metastasis through Downregulation of MicroRNA-21 Expression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5846938. [PMID: 32626749 PMCID: PMC7306077 DOI: 10.1155/2020/5846938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Galangin, a natural flavonoid product derived from the root of galangal, is emerging as a promising anticancer agent against multiple cancers. Yet, whether it also has antitumor effects on cholangiocarcinoma (CCA) and the underlying mechanism is still unknown. Herein, we demonstrate that galangin exhibits multiple antitumor effects on CCA cells including decreases cell viability; inhibits proliferation, migration, and invasion; and induces apoptosis. Moreover, those phenotypic changes are associated with downregulated microRNA-21 (miR-21) expression. To support, overexpression of miR-21 blocks galangin-mediated antisurvival and metastasis effects on CCA cells. Mechanically, galangin increases the expression of phosphatase and tensin homolog (PTEN), a direct target of miR-21, resulting in decreased phosphorylation of AKT, a protein kinase which plays a critical role in controlling survival and apoptosis. In contrast, overexpression of miR-21 abrogates galangin-regulated PTEN expression and AKT phosphorylation. Taken together, these findings indicate that galangin inhibits CCA cell proliferation and metastasis and induces cell apoptosis through a miR-21-dependent manner, and galangin may provide a novel potential therapeutic adjuvant to treat CCA.
Collapse
|
34
|
Lv Y, Wang Z, Zhao K, Zhang G, Huang S, Zhao Y. Role of noncoding RNAs in cholangiocarcinoma (Review). Int J Oncol 2020; 57:7-20. [PMID: 32319584 DOI: 10.3892/ijo.2020.5047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour originating from biliary epithelial cells, and is increasing in incidence. Radical surgery is the main treatment. However, the pathogenesis of CCA is unclear. Noncoding RNAs (ncRNAs) are non‑protein‑coding RNAs produced by genomic transcription that include microRNAs (miRNAs), circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs). They play important roles in gene expression, epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also serve key roles in cancer development. Numerous studies have been carried out on ncRNAs, and associated publications have shown that ncRNAs are closely associated with the physiological and pathological mechanisms of CCA. The findings of these studies can provide new insights into the diagnosis, treatment and prognosis of CCA. The present review summarizes the pathophysiological mechanisms of different types of ncRNAs, including miRNAs, circRNAs and lncRNAs in CCA, and their applications in the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Zhenzhen Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Kun Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Guokun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Yongfu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| |
Collapse
|
35
|
Guo L, Zhang Y, Yin Z, Ji Y, Yang G, Qian B, Li S, Wang J, Liang T, Li C, Li X. Screening and identification of genes associated with cell proliferation in cholangiocarcinoma. Aging (Albany NY) 2020; 12:2626-2646. [PMID: 32040444 PMCID: PMC7041743 DOI: 10.18632/aging.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/12/2020] [Indexed: 11/25/2022]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor with poor prognosis, is a malignant cancer with increasing incidence and mortality rates. It is important to survey crucial genes in CCA to find and design potential drug targets, especially for those genes associated with cell proliferation that is a key biological process in tumorgenesis. Herein, we surveyed genes associated with cell proliferation via a comprehensive pan-cancer analysis. Candidate genes were further analyzed using multiple approaches, including cross-analysis from diverse molecular levels, examination of potential function and interactions, and additional experimental validation. We primarily screened 15 potential genes based on 11 validated genes, and these 26 genes were further examined to delineate their biological functions and potential roles in cancer treatment. Several of them were involved synthetically lethal genetic interactions, especially for RECQL4, TOP2A, MKI67 and ASPM, indicating their potential roles in drug design and cancer treatment. Further experimental validation indicated that some genes were significantly upregulated in several cancer cell lines, implying their important roles in tumorigenesis. Our study identifies some genes associated with cell proliferation, which may be potential future targets in molecular targeted therapy.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaya Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guowei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bowen Qian
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sunjing Li
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Carpino G, Overi D, Melandro F, Grimaldi A, Cardinale V, Di Matteo S, Mennini G, Rossi M, Alvaro D, Barnaba V, Gaudio E, Mancone C. Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clin Proteomics 2019; 16:37. [PMID: 31687002 PMCID: PMC6821022 DOI: 10.1186/s12014-019-9257-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a malignancy that arises from the intrahepatic biliary tree, showing high mortality rates due to its late clinical presentation and limited treatment options. iCCA is characterized by a dense, reactive desmoplastic stroma marked by a dramatic accumulation of extracellular matrix (ECM). Although recent results strongly suggest a relationship between increasing desmoplastic stroma and the enhanced malignant behaviour of iCCA, the importance of ECM proteins in the pathogenesis of iCCA still have to be addressed. Methods iCCA ECM fibrillar structural organization was characterized by histological analysis. ECM proteome profiles from decellularized iCCA and surrounding noncancerous tissues were analysed by nLC coupled to MALDI-TOF/TOF analysis. Results iCCA tissues displayed high levels of collagen fibers and low abundance of reticular and elastic fibers, suggesting stiffness and loss of polarity. The ECM proteome profiles of iCCA samples, when compared to those obtained from the surrounding noncancerous tissues showed a dismantling of the basement membrane, a reduced angiogenesis and a downregulation of oncosuppressive activity. In particular, we focused on the effects of the overexpression of collagen type III alpha 1 chain (COL3A1) in iCCA, thus providing evidences that COL3A1 promotes iCCA cells migration and is a component of tumor-associated aligned collagen. Conclusions Overall, this study contributes to the understanding of molecular basis underlying desmoplasia in iCCA and indicates the type III collagen as a promising therapeutic target.
Collapse
Affiliation(s)
- Guido Carpino
- 1Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Diletta Overi
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Fabio Melandro
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Alessio Grimaldi
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Cardinale
- 5Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sabina Di Matteo
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Gianluca Mennini
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Massimo Rossi
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Domenico Alvaro
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Barnaba
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Eugenio Gaudio
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Carmine Mancone
- 7Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
37
|
Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster. Sci Rep 2019; 9:15616. [PMID: 31666604 PMCID: PMC6821846 DOI: 10.1038/s41598-019-52197-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are known to play essential role in the gene expression regulation in cancer. In our research, next-generation sequencing technology was applied to explore the abnormal miRNA expression of oral squamous cell carcinoma (OSCC) in Chinese hamster. A total of 3 novel miRNAs (Novel-117, Novel-118, and Novel-135) and 11 known miRNAs (crg-miR-130b-3p, crg-miR-142-5p, crg-miR-21-3p, crg-miR-21-5p, crg-miR-542-3p, crg-miR-486-3p, crg-miR-499-5p, crg-miR-504, crg-miR-34c-5p, crg-miR-34b-5p and crg-miR-34c-3p) were identified. We conducted functional analysis, finding that 340 biological processes, 47 cell components, 46 molecular functions were associated with OSCC. Meanwhile the gene expression of Caspase-9, Caspase-3, Bax, and Bcl-2 were determined by qRT-PCR and the protein expression of PTEN and p-AKT by immunohistochemistry. Our research proposed further insights to the profiles of these miRNAs and provided a basis for investigating the regulatory mechanisms involved in oral cancer research.
Collapse
|
38
|
Jiang PY, Zhu XJ, Jiang RA, Zhang YN, Liu L, Yang XF. MicroRNAs derived from urinary exosomes act as novel biomarkers in the diagnosis of intrahepatic cholestasis of pregnancy. Am J Transl Res 2019; 11:6249-6261. [PMID: 31632591 PMCID: PMC6789280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
We aimed to investigate the value of cholestasis-related miRNAs in the diagnosis of intra-hepatic cholestasis of pregnancy (ICP) as well as the molecular mechanisms underlying the role of these miRNAs in the pathogenesis of ICP. In this study, electron microscopy was utilized to observe the exosomes present in the urine samples collected from both ICP patients and healthy pregnant women. Real-time PCR and area under curve (AUC) analysis were performed to predict the values of several miRNAs in the diagnosis of ICP. Bioinformatics analysis and luciferase assays were conducted to identify the target genes of miR-21, miR-29a and miR-590-3p, whose regulatory relationships were then established using real-time PCR, immunohistochemistry (IHC) assay and Western Blot. In the exosomes isolated from urine samples, several miRNAs, including miR-21, miR-29a and miR-590-3p, were differentially expressed between ICP patients and healthy pregnant women. In addition, the gene of intercellular adhesion molecule 1 (ICAM1) was identified as a shared target of miR-21, miR-29a and miR-590-3p, all of which inhibited ICAM1 expression. Therefore, up-regulated expression of miR-21, miR-29a and miR-590-3p in urinary exosomes reduced the expression of ICAM1, which in turn increased the incidence of ICP.
Collapse
Affiliation(s)
- Pei-Yue Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Xiao-Jun Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Ruo-An Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Yi-Na Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Liu Liu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Xiao-Fu Yang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
39
|
Zaccari P, Cardinale V, Severi C, Pedica F, Carpino G, Gaudio E, Doglioni C, Petrone MC, Alvaro D, Arcidiacono PG, Capurso G. Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World J Gastroenterol 2019; 25:4343-4359. [PMID: 31496617 PMCID: PMC6710182 DOI: 10.3748/wjg.v25.i31.4343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
the bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB) share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process. Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells.
Collapse
Affiliation(s)
- Piera Zaccari
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00161 Rome, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Federica Pedica
- Pathology Department, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome 00161, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Division of Human Anatomy, Sapienza University of Rome, Rome 00161, Italy
| | - Claudio Doglioni
- Pathology Department, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Maria Chiara Petrone
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| | - Gabriele Capurso
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan 20132, Italy
| |
Collapse
|
40
|
Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol 2019; 11:1758835919864247. [PMID: 31360238 PMCID: PMC6637839 DOI: 10.1177/1758835919864247] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3), a secreted glycoprotein, plays an important role in carcinogenesis. It can bind to many proteinases to suppress their activity and thus protect the extracellular matrix from degradation. TIMP-3 may have many anticancer properties, including apoptosis induction and antiproliferative, antiangiogenic, and antimetastatic activities. This review summarizes the structure, proteinase inhibition ability, genetic and epigenetic regulation, cancer therapy potential, and contribution to cancer development of TIMP-3. Furthermore, in this review we discuss its potential as a biomarker for predicting cancer progression and the current state of drugs that target TIMP-3, either alone or in combination with clinical treatment. In conclusion, TIMP-3 can be a biomarker of cancer and a potential target for cancer therapy. This review article can serve as a basis to understand how to modulate TIMP-3 levels as a drug target of cancers.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung 402
| |
Collapse
|
41
|
Wang H, Ou J, Jian Z, Ou Y. miR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/β-catenin signaling. J Cell Physiol 2019; 234:23135-23145. [PMID: 31140612 DOI: 10.1002/jcp.28878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Previous studies have revealed that miR-186 is involved in the pathogenesis of many malignancies. However, the role of miR-186 in hepatocellular carcinoma (HCC) carcinogenesis and its detailed mechanism are poorly understood. This study was to investigate the function of miR-186 in modulating HCC cell proliferation, cell cycle, migration, and invasion. We found that miR-186 was decreased in HCC tissues and cell lines. Loss-of-function experiments showed that reduction of miR-186 dramatically enhanced tumor cell proliferation and metastasis. Besides, miR-186 also participated in the modulation of the cell cycle. In addition, luciferase reporter assays and Western blot analysis showed that MCRS1 was a novel target of miR-186 in HCC cells. Notably, upregulation of miR-186 suppressed the nuclear β-catenin accumulation and blocked the activation of Wnt/β-catenin signaling in HCC cells. Forced MCRS1 expression abrogated the inhibitory effect of miR-186 on cell growth, metastasis and Wnt/β-catenin signaling in HCC cells. Our findings may provide new insight into the pathogenesis of HCC and miR-186/ MCRS1 might function as new therapeutic targets for HCC.
Collapse
Affiliation(s)
- Huiling Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinrui Ou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingliang Ou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
Zheng SQ, Qi Y, Wu J, Zhou FL, Yu H, Li L, Yu B, Chen XF, Zhang W. CircPCMTD1 Acts as the Sponge of miR-224-5p to Promote Glioma Progression. Front Oncol 2019; 9:398. [PMID: 31179240 PMCID: PMC6538694 DOI: 10.3389/fonc.2019.00398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system with high morbidity and mortality. Circular RNAs (circRNAs) are abundant non-coding RNAs, which contribute to tumor progression by competing with other endogenous RNAs such as microRNA (miRNA). MiRNA are a class of small non-coding RNAs, which interrupt the translation of target mRNAs. CircPCMTD1 (hsa-circ-0001801) is a newly discovered circRNA that was found to be significantly upregulated in glioma. However, its function is unclear. In this study, circPCMTD1 upregulation promoted the cell viability, migration and invasion dramatically, while the inhibition of circPCMTD1 led to a significant reduction of tumor growth in vivo. MiRNAs microarray analyses on circPCMTD1 silencing models in U251 and U118MG cells were performed, and the results suggested that circPCMTD1 knockdown could upregulate the expression of miR-224-5p and downregulate the expression of mTOR, one of miR-224-5p targets, in both cell lines. According to the prediction from circular RNA interactome and Targetscan, there was a complementary sequence in circPCMTD1 for miR-224-5p. Dual-luciferase reporter assay demonstrated that circPCMTD1 were targets of miR-224-5p. RIP assay was also performed to further confirm their directly interaction. Overexpression of miR-224-5p inhibited the viability and proliferation, migration, and invasion of U251 and U118MG glioma cells. In conclusion, circPCMTD1 could contribute to the promotion of glioma progression, and it may serve as the sponge of miR-224-5p to exert its function.
Collapse
Affiliation(s)
- Si-Qi Zheng
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yue Qi
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wu
- Department of neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fen-Li Zhou
- Department of neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Yu
- Department of Medicine Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lu Li
- Department of Medicine Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Fan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
43
|
Jiang C, Guo Y, Yu H, Lu S, Meng L. Pleiotropic microRNA-21 in pulmonary remodeling: novel insights for molecular mechanism and present advancements. Allergy Asthma Clin Immunol 2019; 15:33. [PMID: 31139230 PMCID: PMC6528201 DOI: 10.1186/s13223-019-0345-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNA-21 (miR-21), probably one of the most studied miRNAs to date, is found pleiotropic in various biological events. Its emerging role in pulmonary remodeling has attracted extensive attention. This review summarizes the genomic information of its primary transcript and various transcriptional regulations on its promoter. In addition, the role of miR-21 in pulmonary remodeling related signaling such as transforming growth factor β (TGF-β), bone morphogenetic protein (BMP), epidermal growth factor receptor (EGFR) and Notch signaling is discussed. Various validated miR-21 target genes participate in controlling of the overactive cell accumulation, smooth muscle contraction, inflammatory stress (trigger for lung epithelium damage), extracellular matrix deposition and hypoxia-induced disorders. Moreover, we focus on its particular implication in events including inflammatory stress-driven epithelium damage, epithelial-to-mesenchymal transition (EMT), transdifferentiation of fibroblasts into myofibroblasts, hypoxia stimuli and ROS response, as well as some other pulmonary remodeling related events such as overactive fibroblast (myofibroblast) accumulation, extracellular matrix deposition, and angiogenesis. Here, we summarize the strong potential of miR-21 in pulmonary remodeling and provide novel clues for further research in this area.
Collapse
Affiliation(s)
- Congshan Jiang
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi People's Republic of China
| | - Yuanxu Guo
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi People's Republic of China
| | - Hongchuan Yu
- Department of Respiratory Medicine, Xi'an Children Hospital, Xi'an, Shaanxi People's Republic of China
| | - Shemin Lu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi People's Republic of China
| | - Liesu Meng
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi People's Republic of China
| |
Collapse
|
44
|
Braconi C, Roessler S, Kruk B, Lammert F, Krawczyk M, Andersen JB. Molecular perturbations in cholangiocarcinoma: Is it time for precision medicine? Liver Int 2019; 39 Suppl 1:32-42. [PMID: 30829432 DOI: 10.1111/liv.14085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
The complexity of cholangiocarcinoma (CCA) cellularity and the molecular perturbation mechanisms that underlie the diversity of growth patterns of this malignancy remain a clinical concern. Tumours of the biliary system display significant intrinsic chemoresistance, caused by significant stromal involvement and genome-wide tumour heterogeneity, hampering disease remission and palliation as well as promoting the metastatic behaviour. It is crucial to advance our present understanding of the risk and molecular pathogenesis of CCA. This will facilitate the delineation of patient subsets based on molecular perturbations and adjust for precision therapies.
Collapse
Affiliation(s)
- Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Trust, Surrey and London, UK
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg and Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Beata Kruk
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Marcin Krawczyk
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
45
|
Macias RIR, Kornek M, Rodrigues PM, Paiva NA, Castro RE, Urban S, Pereira SP, Cadamuro M, Rupp C, Loosen SH, Luedde T, Banales JM. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:108-122. [PMID: 30843325 DOI: 10.1111/liv.14090] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The high mortality rate of cholangiocarcinoma (CCA) is due, in part, to the lack of non-invasive approaches able to accurately detect this silent tumour at early stages, when therapeutic options can be potentially curative or may at least increase the overall survival of patients. The fact that the majority of CCA tumours are not linked to any known aetiological factor highly compromises the monitoring of patients at risk for tumour development and also their early diagnosis. Combination of clinical/biochemical features, imaging techniques and analysis of non-specific tumour biomarkers in serum are commonly used to help in the diagnosis of CCA, but tumour biopsy is usually required to confirm the diagnosis. Moreover, no prognostic biomarkers are currently used in the clinical setting, deserving more innovative research, and international validation and consensus. Important efforts have been made in the last few years to identify accurate non-invasive biomarkers, by using innovative techniques and high-throughput omics technologies. This review summarizes and discusses the advances in the investigation of novel diagnostic and prognostic biomarkers in CCA and envisions the future directions in this field of research.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain.,Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sabine Urban
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, Royal Free Hospital Campus, University College London, London, UK
| | | | - Christian Rupp
- Department of Internal Medicine IV, Medical University of Heidelberg, Heidelberg, Germany
| | - Sven H Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| | - Jesus M Banales
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
46
|
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, Lewandowska MA. Prognostic and Predictive Epigenetic Biomarkers in Oncology. Mol Diagn Ther 2019; 23:83-95. [PMID: 30523565 PMCID: PMC6394434 DOI: 10.1007/s40291-018-0371-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic patterns, such as DNA methylation, histone modifications, and non-coding RNAs, can be both driver factors and characteristic features of certain malignancies. Aberrant DNA methylation can lead to silencing of crucial tumor suppressor genes or upregulation of oncogene expression. Histone modifications and chromatin spatial organization, which affect transcription, regulation of gene expression, DNA repair, and replication, have been associated with multiple tumors. Certain microRNAs (miRNAs), mainly those that silence tumor suppressor genes and occur in a greater number of copies, have also been shown to promote oncogenesis. Multiple patterns of these epigenetic factors occur specifically in certain malignancies, which allows their potential use as biomarkers. This review presents examples of tests for each group of epigenetic factors that are currently available or in development for use in early cancer detection, prediction, prognosis, and response to treatment. The availability of blood-based biomarkers is noted, as they allow sampling invasiveness to be reduced and the sampling procedure to be simplified. The article stresses the role of epigenetics as a crucial element of future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Nalejska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Kubiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Wojtysiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Żołna
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marzena Anna Lewandowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|
47
|
Varkaris A, Katsiampoura A, Davis JS, Shah N, Lam M, Frias RL, Ivan C, Shimizu M, Morris J, Menter D, Overman M, Tran H, Heymach J, Chun YS, Vauthey JN, Calin G, Kopetz S. Circulating inflammation signature predicts overall survival and relapse-free survival in metastatic colorectal cancer. Br J Cancer 2019; 120:340-345. [PMID: 30636774 PMCID: PMC6353894 DOI: 10.1038/s41416-018-0360-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is a highly heterogeneous disease from a clinical, molecular, and immunological perspective. Current predictive models rely primarily in tissue based genetic analysis, which not always correlate with inflammatory response. Here we evaluated the role of a circulating inflammatory signature as a prognostic marker in mCRC. METHODS Two hundred eleven newly diagnosed patients with mCRC were enrolled in the study. One hundred twenty-one patients had unresectable metastases, whereas ninety patients had potentially resectable liver metastases at presentation. Analysis of miR-21, IL-6, and IL-8 in the plasma of peripheral blood was performed at baseline. Patients with high circulating levels of ≥2 of the three inflammation markers (miR-21, IL-6, and IL-8) were considered to have the "Inflammation phenotype-positive CISIG". RESULTS Positive CISIG was found in 39/90 (43%) and 50/121 (45%) patients in the resectable and unresectable cohort, respectively. In the resectable population the median relapse-free survival was 18.4 compared to 31.4 months (p = 0.001 HR 2.09, 95% CI 1.2-3.67) for positive vs. negative CISIG. In contrast, the individual components were not significant. In the same population the median overall survival was 46.2 compared to 66.0 months (p = 0.0003, HR 2.57, 95% CI 1.26-5.27) for positive vs. negative CISIG, but not significant for the individual components. In the unresectable population, the median overall survival was 13.5 compared to 25.0 months (p = 0.0008, HR 2.49, 95% CI 1.46-4.22) for positive vs. negative CISIG. IL-6 was independently prognostic with overall survival of 16.2 compared to 27.0 months (p = 0.004, HR 1.96, 95% CI 1.24-3.11) for high vs. low IL-6, but not the other components. Using a Cox regression model, we demonstrated that CISIG is an independent predictive marker of survival in patients with unresectable disease (HR 1.8, 95% CI 1.2, 2.8, p < 0.01). CONCLUSION In two different cohorts, we demonstrated that CISIG is a strong prognostic factor of relapse-free and overall survival of patients with mCRC. Based on these data, analysis of circulating inflammatory signaling can be complimentary to traditional molecular testing.
Collapse
Affiliation(s)
- Andreas Varkaris
- Department of Hematology Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anastasia Katsiampoura
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- St. Elizabeth's Medical Center, Boston, MA, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeraj Shah
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lizeth Frias
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Morris
- Department of Biostatistics, Division of Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology - Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Shin Chun
- Hepato-Pancreato-Biliary Section, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Hepato-Pancreato-Biliary Section, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Department of Experimental Therapeutics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
48
|
Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, DeVine LR, Talbot CC, Liu Z, Meltzer SJ. Synthetic Circular RNA Functions as a miR-21 Sponge to Suppress Gastric Carcinoma Cell Proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:312-321. [PMID: 30326427 PMCID: PMC6197335 DOI: 10.1016/j.omtn.2018.09.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
MicroRNA (miR) sponges containing miR binding sequences constitute a potentially powerful molecular therapeutic strategy. Recently, naturally occurring circular RNAs (circRNAs) were shown to function as efficient miR sponges in cancer cells. We hypothesized that synthetic circRNA sponges could achieve therapeutic loss-of-function targeted against specific miRs. Linear RNA molecules containing miR-21 binding sites were transcribed in vitro; after dephosphorylation and phosphorylation, circularization was achieved using 5'-3' end-ligation by T4 RNA ligase 1. circRNA stability was assessed using RNase R and fetal bovine serum. Competitive inhibition of miR-21 activity by a synthetic circRNA sponge was assessed using luciferase reporter, cell proliferation, and cell apoptosis assays in three gastric cancer cell lines. circRNA effects on downstream proteins were also delineated by Tandem Mass Tag (TMT) labeling (data available via ProteomeXchange identifier PRIDE: PXD008584), followed by western blotting. We conclude that artificial circRNA sponges resistant to nuclease digestion can be synthesized using simple enzymatic ligation steps. These sponges inhibit cancer cell proliferation and suppress the activity of miR-21 on downstream protein targets, including the cancer protein DAXX. In summary, synthetic circRNA sponges represent a simple, effective, convenient strategy for achieving targeted loss of miR function in vitro, with potential future therapeutic application in human patients.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, Shaanxi, China; Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Division of Gastroenterology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - John M Abraham
- Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Division of Gastroenterology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Division of Gastroenterology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Division of Gastroenterology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Guanjun Zhang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren R DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Division of Gastroenterology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Song WS, Park HM, Ha JM, Shin SG, Park HG, Kim J, Zhang T, Ahn DH, Kim SM, Yang YH, Jeong JH, Theberge AB, Kim BG, Lee JK, Kim YG. Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma. Sci Rep 2018; 8:11088. [PMID: 30038332 PMCID: PMC6056462 DOI: 10.1038/s41598-018-29445-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although several biomarkers can be used to distinguish cholangiocarcinoma (CCA) from healthy controls, differentiating the disease from benign biliary disease (BBD) or pancreatic cancer (PC) is a challenge. CCA biomarkers are associated with low specificity or have not been validated in relation to the biological effects of CCA. In this study, we quantitatively analyzed 15 biliary bile acids in CCA (n = 30), BBD (n = 57) and PC (n = 17) patients and discovered glycocholic acid (GCA) and taurochenodeoxycholic acid (TCDCA) as specific CCA biomarkers. Firstly, we showed that the average concentration of total biliary bile acids in CCA patients was quantitatively less than in other patient groups. In addition, the average composition ratio of primary bile acids and conjugated bile acids in CCA patients was the highest in all patient groups. The average composition ratio of GCA (35.6%) in CCA patients was significantly higher than in other patient groups. Conversely, the average composition ratio of TCDCA (13.8%) in CCA patients was significantly lower in all patient groups. To verify the biological effects of GCA and TCDCA, we analyzed the gene expression of bile acid receptors associated with the development of CCA in a CCA cell line. The gene expression of transmembrane G protein coupled receptor (TGR5) and sphingosine 1-phosphate receptor 2 (S1PR2) in CCA cells treated with GCA was 8.6-fold and 3.4-fold higher compared with control (untreated with bile acids), respectively. Gene expression of TGR5 and S1PR2 in TCDCA-treated cells was not significantly different from the control. Taken together, our study identified GCA and TCDCA as phenotype-specific biomarkers for CCA.
Collapse
Affiliation(s)
- Won-Suk Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Hae-Min Park
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois, 60208, United States
| | - Jung Min Ha
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, 0635, Korea
| | - Sung Gyu Shin
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Han-Gyu Park
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Tianzi Zhang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, United States
| | - Da-Hee Ahn
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Sung-Min Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, United States
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, 0635, Korea.
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea.
| |
Collapse
|
50
|
Sun C, Zhu J, Wu B, Chen J, Zhu Z, Cai P, Guo W, Gu Z, Wang J, Huang S. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: a systematic review and meta-analysis. Cancer Manag Res 2018; 10:2125-2139. [PMID: 30050323 PMCID: PMC6055881 DOI: 10.2147/cmar.s158155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background and aim Several dysregulated microRNAs (miRNAs) have been implicated in the pathogenesis of cholangiocarcinoma (CCA); however, small sample sizes and invariable research designs are limitations, hindering a thorough analysis of miRNAs as diagnostic and prognostic tools for CCA. This study aimed to systematically summarize the clinical value of miRNAs in human CCA both for all available miRNAs and single miRNA with multiple researches. Methods Pooled parameters included the area under the curve (AUC), sensitivity, specificity, and hazard ratios (HRs) to separately determine overall diagnostic and prognostic performance. Subgroup and sensitivity analyses were performed only in the event of heterogeneity. Thirty-four studies including 12 diagnostic studies and 22 prognostic studies were eligible for inclusion in this meta-analysis. Results We observed that miR-21, miR-26, miR-483, miR-106a, miR-150, miR-192, and miR-194 were employed for distinguishing patients with CCA from healthy controls. Pooled sensitivity, specificity, and AUC were 0.82 (95% confidence interval [CI] 0.77–0.86), 0.83 (95% CI 0.75–0.89), and 0.88 (95% CI 0.85–0.91), respectively. Abnormal expression of miR-21, miR-26a, miR-192, miR-200c, miR-221, miR-29a, miR-191, miR-181c, miR-34a, miR-106a, miR-203, and miR-373 in patients was confirmed to associate with poor survival rate. Pooled HRs and 95% CIs were calculated using STATA, resulting in the pooled HR of 1.47 (95% CI 0.91–2.37) for overall survival (OS), 0.67 (95% CI 0.16–2.81) for disease-free survival (DFS), 2.31 (95% CI 1.59–3.36) for progression-free survival (PFS), and 2.68 (95% CI 0.88–8.15) for relapse-free survival (RFS). Thus, CCA patients with dysregulated miRNA expression were confirmed to have shorter OS, DFS, PFS, and RFS. Data regarding the diagnostic and prognostic roles of miR-21 suggested pooled diagnostic results of miR-21 for sensitivity, specificity, and AUC were 0.85 (95% CI 0.76–0.91), 0.92 (95% CI 0.81–0.97), and 0.93 (95% CI 0.91–0.95), respectively, suggesting better diagnostic performance of miR-21 compared with other miRNAs. Meanwhile, pooled prognostic result of miR-21 for HR was 1.88 (95% CI 1.41–2.51), indicating miR-21 could more appropriately predict shorter OS in patients with CCA. Conclusion miRNAs may provide a new approach for clinical application, and miR-21 may be a promising biomarker for diagnosis and prognosis of CCA.
Collapse
Affiliation(s)
- Chao Sun
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jie Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Bin Wu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jianlei Chen
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Zhenwei Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Peng Cai
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Wanliang Guo
- Radiology Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Zhicheng Gu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jian Wang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Shungen Huang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| |
Collapse
|