1
|
Aoki T, Nishida N, Minami Y, Kudo M. The Impact of Normal Hepatobiliary Cell Zonation Programs on the Phenotypes and Functions of Primary Liver Tumors. Liver Cancer 2025; 14:92-103. [PMID: 40144466 PMCID: PMC11936443 DOI: 10.1159/000541077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 03/28/2025] Open
Abstract
Background Traditional tumor classifications have relied on cellular origin, pathological morphological features, gene expression profiles, and more recently, the tumor immune microenvironment. While these classifications provide valuable insights, incorporating physiological classifications focusing on liver metabolic functions may lead to new discoveries. Summary We proposed to reclassify benign and malignant hepatocellular neoplasms based on their physiological functions such as albumin production, bile acid production, glycolysis, glycogenesis, and adipogenesis. We further demonstrated the homology between signal pathways activated by the differentiation program of the normal hepatobiliary cells and those activated by genetic abnormalities in tumors. Specifically, Wnt/β-catenin, RAS, NOTCH, and TGF-β signaling not only contribute to cell differentiation via activation of liver-enriched transcription factors but also determine the tumor traits. Examining the distinctions between hepatocellular carcinomas (HCCs) that maintain or lose metabolic functions can yield valuable insights into the drivers of biological malignancy and tumor plasticity. Key Messages To confirm the homology between the differentiation programs of normal hepatobiliary cells, hepatocellular adenomas (HCA), and HCC we identify liver-specific functions such as catabolism and anabolism within tumors. HCCs and HCAs that have lost these metabolic functions exhibit characteristics such as dedifferentiation, resemblance to biliary cells, or increased glycolysis. Focusing on this underexplored area will likely stimulate active research into new tumor characteristics.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Chen C, Cao Z, Lei H, Zhang C, Wu M, Huang S, Li X, Xie D, Liu M, Zhang L, Chen G. Microbial Tryptophan Metabolites Ameliorate Ovariectomy-Induced Bone Loss by Repairing Intestinal AhR-Mediated Gut-Bone Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404545. [PMID: 39041942 PMCID: PMC11423200 DOI: 10.1002/advs.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/β-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shaohua Huang
- Institute of Drug Discovery and TechnologyNingbo UniversityNingbo315211China
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau999078China
| | - Denghui Xie
- Department of Joint SurgeryCenter for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gang Chen
- Department of GeriatricsHubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Chinese Medicine)Wuhan430060China
| |
Collapse
|
3
|
Balogun O, Shao D, Carson M, King T, Kosar K, Zhang R, Zeng G, Cornuet P, Goel C, Lee E, Patel G, Brooks E, Monga SP, Liu S, Nejak-Bowen K. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol Commun 2024; 8:e0485. [PMID: 38967587 PMCID: PMC11227358 DOI: 10.1097/hc9.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of β-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS We found that the presence of β-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated β-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS Loss of β-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Shao
- Case-Western Reserve University, Departments of Biochemistry and Computer Science, Cleveland, Ohio, USA
| | - Matthew Carson
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thalia King
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karis Kosar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gang Zeng
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Cornuet
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chhavi Goel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Lee
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Garima Patel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Brooks
- Duquesne University, School of Science and Engineering, Department of Biotechnology, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Hepatology and Nutrition, Division of Gastroenterology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Shin YS, Hwang DB, Won DH, Kim SY, Kim C, Park JW, Jeon Y, Yun JW. The Wnt/β-catenin signaling pathway plays a role in drug-induced liver injury by regulating cytochrome P450 2E1 expression. Toxicol Res 2023; 39:443-453. [PMID: 37398564 PMCID: PMC10313641 DOI: 10.1007/s43188-023-00180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 07/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure and drug withdrawal. Cytochrome P450 (CYP) 2E1 is involved in the metabolism of several drugs, and can induce liver injury through the production of toxic metabolites and the generation of reactive oxygen species. This study aimed to elucidate the role of Wnt/β-catenin signaling in CYP2E1 regulation for drug-induced hepatotoxicity. To achieve this, mice were administered cisplatin or acetaminophen (APAP) 1 h after treatment with the CYP2E1 inhibitor dimethyl sulfoxide (DMSO), and histopathological and serum biochemical analyses were performed. APAP treatment induced hepatotoxicity, as evidenced by an increase in liver weight and serum ALT levels. Moreover, histological analysis indicated severe injury, including apoptosis, in the liver tissue of APAP-treated mice, which was confirmed by TUNEL assay. Additionally, APAP treatment suppressed the antioxidant capacity of the mice and increased the expression of the DNA damage markers γ-H2AX and p53. However, these effects of APAP on hepatotoxicity were significantly attenuated by DMSO treatment. Furthermore, the activation of Wnt/β-catenin signaling using the Wnt agonist CHIR99021 (CHIR) increased CYP2E1 expression in rat liver epithelial cells (WB-F344), whereas treatment with the Wnt/β-catenin antagonist IWP-2 inhibited nuclear β-catenin and CYP2E1 expression. Interestingly, APAP-induced cytotoxicity in WB-F344 cells was exacerbated by CHIR treatment and suppressed by IWP-2 treatment. Overall, these results showed that the Wnt/β-catenin signaling is involved in DILI through the upregulation of CYP2E1 expression by directly binding the transcription factor β-cat/TCF to the Cyp2e1 promoter, thus exacerbating DILI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00180-6.
Collapse
Affiliation(s)
- Yoo-Sub Shin
- Department of Research and Development, SML Genetree, Seoul, 05855 Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
5
|
Zhu X, Gao H, Qin S, Liu D, Cairns J, Gu Y, Yu J, Weinshilboum RM, Wang L. Testis- specific Y-encoded- like protein 1 and cholesterol metabolism: Regulation of CYP1B1 expression through Wnt signaling. Front Pharmacol 2022; 13:1047318. [PMID: 36518674 PMCID: PMC9742362 DOI: 10.3389/fphar.2022.1047318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and β-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking β-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In β-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/β-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76:1219-1230. [PMID: 35175659 PMCID: PMC9790419 DOI: 10.1002/hep.32408] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
Abstract
The concept of hepatocyte functional zonation is well established, with differences in metabolism and xenobiotic processing determined by multiple factors including oxygen and nutrient levels across the hepatic lobule. However, recent advances in single-cell genomics technologies, including single-cell and nuclei RNA sequencing, and the rapidly evolving fields of spatial transcriptomic and proteomic profiling have greatly increased our understanding of liver zonation. Here we discuss how these transformative experimental strategies are being leveraged to dissect liver zonation at unprecedented resolution and how this new information should facilitate the emergence of novel precision medicine-based therapies for patients with liver disease.
Collapse
Affiliation(s)
- Jasmin Paris
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
7
|
Panday R, Monckton CP, Khetani SR. The Role of Liver Zonation in Physiology, Regeneration, and Disease. Semin Liver Dis 2022; 42:1-16. [PMID: 35120381 DOI: 10.1055/s-0041-1742279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such "zonation" can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species-specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Pu W, Zhou B. Hepatocyte generation in liver homeostasis, repair, and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:2. [PMID: 34989894 PMCID: PMC8739411 DOI: 10.1186/s13619-021-00101-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
The liver has remarkable capability to regenerate, employing mechanism to ensure the stable liver-to-bodyweight ratio for body homeostasis. The source of this regenerative capacity has received great attention over the past decade yet still remained controversial currently. Deciphering the sources for hepatocytes provides the basis for understanding tissue regeneration and repair, and also illustrates new potential therapeutic targets for treating liver diseases. In this review, we describe recent advances in genetic lineage tracing studies over liver stem cells, hepatocyte proliferation, and cell lineage conversions or cellular reprogramming. This review will also evaluate the technical strengths and limitations of methods used for studies on hepatocyte generation and cell fate plasticity in liver homeostasis, repair and regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
11
|
Kling S, Lang B, Hammer HS, Naboulsi W, Sprenger H, Frenzel F, Pötz O, Schwarz M, Braeuning A, Templin MF. Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches. Biol Chem 2021; 403:331-343. [PMID: 34599868 DOI: 10.1515/hsz-2021-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 01/05/2023]
Abstract
Periportal and perivenous hepatocytes show zonal heterogeneity in metabolism and signaling. Here, hepatic zonation in mouse liver was analyzed by non-targeted mass spectrometry (MS) and by the antibody-based DigiWest technique, yielding a comprehensive overview of protein expression in periportal and perivenous hepatocytes. Targeted immunoaffinity-based proteomics were used to substantiate findings related to drug metabolism. 165 (MS) and 82 (DigiWest) zonated proteins were identified based on the selected criteria for statistical significance, including 7 (MS) and 43 (DigiWest) proteins not identified as zonated before. New zonated proteins especially comprised kinases and phosphatases related to growth factor-dependent signaling, with mainly periportal localization. Moreover, the mainly perivenous zonation of a large panel of cytochrome P450 enzymes was characterized. DigiWest data were shown to complement the MS results, substantially improving possibilities to bioinformatically identify zonated biological processes. Data mining revealed key regulators and pathways preferentially active in either periportal or perivenous hepatocytes, with β-catenin signaling and nuclear xeno-sensing receptors as the most prominent perivenous regulators, and several kinase- and G-protein-dependent signaling cascades active mainly in periportal hepatocytes. In summary, the present data substantially broaden our knowledge of hepatic zonation in mouse liver at the protein level.
Collapse
Affiliation(s)
- Simon Kling
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Benedikt Lang
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Helen S Hammer
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany.,Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Wael Naboulsi
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Falko Frenzel
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Oliver Pötz
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, D-72074Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Markus F Templin
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| |
Collapse
|
12
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
13
|
Ghallab A, Myllys M, Friebel A, Duda J, Edlund K, Halilbasic E, Vucur M, Hobloss Z, Brackhagen L, Begher-Tibbe B, Hassan R, Burke M, Genc E, Frohwein LJ, Hofmann U, Holland CH, González D, Keller M, Seddek AL, Abbas T, Mohammed ESI, Teufel A, Itzel T, Metzler S, Marchan R, Cadenas C, Watzl C, Nitsche MA, Kappenberg F, Luedde T, Longerich T, Rahnenführer J, Hoehme S, Trauner M, Hengstler JG. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10:cells10102516. [PMID: 34685496 PMCID: PMC8533774 DOI: 10.3390/cells10102516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Julia Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Michael Burke
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany;
| | - Christian H. Holland
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Magdalena Keller
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Elsayed S. I. Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Andreas Teufel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Timo Itzel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Sarah Metzler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany;
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| |
Collapse
|
14
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
15
|
Braeuning A, Pavek P. β-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch Toxicol 2020; 94:3983-3991. [PMID: 33097968 PMCID: PMC7655584 DOI: 10.1007/s00204-020-02935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.
Collapse
Affiliation(s)
- Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Heyrovskeho 1203, Hradec Kralove, 500 05, Prague, Czech Republic
| |
Collapse
|
16
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
17
|
Wahlicht T, Vièyres G, Bruns SA, Meumann N, Büning H, Hauser H, Schmitz I, Pietschmann T, Wirth D. Controlled Functional Zonation of Hepatocytes In Vitro by Engineering of Wnt Signaling. ACS Synth Biol 2020; 9:1638-1649. [PMID: 32551516 DOI: 10.1021/acssynbio.9b00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized β-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.
Collapse
Affiliation(s)
- Tom Wahlicht
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gabrielle Vièyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Svenja A. Bruns
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nadja Meumann
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Department of Scientific Strategy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Medical University Hannover, 30625 Hannover, Germany
| |
Collapse
|
18
|
Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y. Induction of in vitro Metabolic Zonation in Primary Hepatocytes Requires Both Near-Physiological Oxygen Concentration and Flux. Front Bioeng Biotechnol 2020; 8:524. [PMID: 32656187 PMCID: PMC7325921 DOI: 10.3389/fbioe.2020.00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-clinical drug screening is an important step in assessing the metabolic effects and hepatic toxicity of new pharmaceutical compounds. However, due to the complexity of the liver microarchitecture, simplified in vitro models do not adequately reflect in vivo situations. Especially spatial heterogeneity, known as metabolic zonation, is often lost due to limitations introduced by typical culture conditions. By culturing primary rat hepatocytes in varied ambient oxygen levels on either gas-permeable or non-permeable culture plates, we highlight the importance of biomimetic oxygen supply for the targeted induction of zonation-like phenotypes. Resulting cellular profiles illustrate the effect of pericellular oxygen concentration and consumption rates on hepatic functionality in terms of zone-specific metabolism and β-catenin signaling. We show that modulation of ambient oxygen tension can partially induce metabolic zonation in vitro when considering high supply rates, leading to in vivo-like drug metabolism. However, when oxygen supply is limited, similar modulation instead triggers an ischemic reprogramming, resembling metabolic profiles of hepatocellular carcinoma and increasing susceptibility toward drug-induced injury. Application of this knowledge will allow for the development of more accurate drug screening models to better identify adverse effects in hepatic drug metabolism.
Collapse
Affiliation(s)
| | - Marie Shinohara
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Mathieu Danoy
- CNRS UMI 2820, LIMMS, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Treindl F, Zabinsky E, Kling S, Schwarz M, Braeuning A, Templin MF. Array-based Western-blotting reveals spatial differences in hepatic signaling and metabolism following CAR activation. Arch Toxicol 2020; 94:1265-1278. [DOI: 10.1007/s00204-020-02680-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
20
|
Regulation of expression of drug-metabolizing enzymes by oncogenic signaling pathways in liver tumors: a review. Acta Pharm Sin B 2020; 10:113-122. [PMID: 31993310 PMCID: PMC6976994 DOI: 10.1016/j.apsb.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Mutations in genes encoding key players in oncogenic signaling pathways trigger specific downstream gene expression profiles in the respective tumor cell populations. While regulation of genes related to cell growth, survival, and death has been extensively studied, much less is known on the regulation of drug-metabolizing enzymes (DMEs) by oncogenic signaling. Here, a comprehensive review of the available literature is presented summarizing the impact of the most relevant genetic alterations in human and rodent liver tumors on the expression of DMEs with a focus on phases I and II of xenobiotic metabolism. Comparably few data are available with respect to DME regulation by p53-dependent signaling, telomerase expression or altered chromatin remodeling. By contrast, DME regulation by constitutive activation of oncogenic signaling via the RAS/RAF/mitogen-activated protein kinase (MAPK) cascade or via the canonical WNT/β-catenin signaling pathway has been analyzed in greater depth, demonstrating mostly positive-regulatory effects of WNT/β-catenin signaling and negative-regulatory effects of MAPK signaling. Mechanistic studies have revealed molecular interactions between oncogenic signaling and nuclear xeno-sensing receptors which underlie the observed alterations in DME expression in liver tumors. Observations of altered DME expression and inducibility in liver tumors with a specific gene expression profile may impact pharmacological treatment options.
Collapse
|
21
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Mak KM, Png CYM. The Hepatic Central Vein: Structure, Fibrosis, and Role in Liver Biology. Anat Rec (Hoboken) 2019; 303:1747-1767. [PMID: 31581357 DOI: 10.1002/ar.24273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The hepatic central vein is a primary source of Wnt2, Wnt9b, and R-spondin3. These angiocrines activate ß-catenin signaling to regulate hepatic metabolic zonation and perivenous gene expression in mice. Little is known about the central vein ultrastructure. Here, we describe the morphological-functional correlates of the central vein and its draining and branching patterns. Central vein fibrosis occurs in liver disease and is often accompanied by perivenous perisinusoidal fibrosis, which may affect perivenous gene expression. We review the biological properties of perivenous hepatocytes and glutamine synthetase that serve as a biomarker of perivenous hepatocytes. Glutamine synthetase and P4502E1 are indicators of ß-catenin activity in centrilobular liver injury and regeneration. The Wnt/ß-catenin pathway is the master regulator of hepatic metabolic zonation and perivenous gene expression and is modulated by the R-spondin-LGR4/5-ZNRF3/RNF43 module. We examined the structures of the molecules of these pathways and their involvements in liver biology. Central vein-derived Wnts and R-spondin3 participate in the cellular-molecular circuitry of the Wnt/ß-catenin and R-spondin-LGR4/5-ZNRF3/RNF43 module. The transport and secretion of lipidated Wnts in Wnt-producing cells require Wntless protein. Secreted Wnts are carried on exosomes in the extracellular matrix to responder cells. The modes of release of Wnts and R-spondin3 from central veins and their transit in the venular wall toward perivenous hepatocytes are unknown. We hypothesize that central vein fibrosis may impact perivenous gene expression. The proposal that the central vein constitutes an anatomical niche of perivenous stem cells that subserve homeostatic hepatic renewal still needs studies using additional mouse models for validation. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1747-1767, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - C Y Maximilian Png
- Division of Vascular Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2019; 175:1607-1619.e15. [PMID: 30500539 DOI: 10.1016/j.cell.2018.11.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Aguisanda
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrián Álvarez-Varela
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junjie Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Xu Y, Chen D, Lin XX, Zhao Q, Guo J, Chen LJ, Zhang W, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Obianom O, Shu Y, Chen Y. The LRP6 functional mutation rs2302685 contributes to individual susceptibility to alcoholic liver injury related to the Wnt/β-catenin-TCF1-CYP2E1 signaling pathway. Arch Toxicol 2019; 93:1679-1695. [PMID: 30976847 DOI: 10.1007/s00204-019-02447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is an important coreceptor in the Wnt/β-catenin upstream signaling pathway. Rs2302685 is a common functional mutation of LRP6 that has been previously associated with reduced alcoholic liver injury among alcoholic liver disease (ALD) patients, and the present research was designed to study the underlying mechanisms of that finding. A total of 107 ALD patients and 138 non-ALD patients were recruited from hospitalized alcoholics in China. Their venous blood samples were collected for DNA extraction and genotyped using Sequenom MassARRAY. We found that the rs2302685 mutation, which impaired the function of LRP6, was present in higher frequency among alcoholics with ALD than those without ALD. We also conducted a mouse model experiment in which LRP6(+/-) knockdown mice and LRP6(+/+) wild-type mice received daily intragastric doses of ethanol (2.4 g/kg) as well as a larger dose of ethanol (4 g/kg) every 7 days for 28 days. The mouse blood and liver specimens were subsequently collected for laboratory analysis, and cell experiments were performed to compare the inhibition, activation, over-expression, and siRNA of LRP6 in the treatment versus the control HL7702 cells. Expression of the targeted molecules was detected by real-time PCR or western blot analysis. Stably transfected cells with pRL3-CYP2E1 vector were used to further study the underlying mechanisms. The total bile acid (TBA), direct bilirubin, total bilirubin (TBIL), aspartate aminotransferase (AST), mitochondrial aspartate aminotransferase, and AST/ALT values were significantly lower in carriers of the rs2302685 mutation than in the wild-type patients, by 63.4, 60.6, 82.1, 44.8, 45.7, and 21.4%, respectively. Compared to the LRP6(+/+) wild-type mice, the LRP6(+/-) knockdown mice had lower ALT, TBIL, TBA, and ALB/GLO values, as well reduced liver tissue damage, in accordance with their reduced expressions of LRP6, β-catenin, and CYP2E1. In HL7702 cells exposed to ethanol, AST, ALT, lipid accumulation, and ROS generation decreased in cells that were treated with LRP6 inhibitors or siRNA but increased in cells treated with LRP6 activators or over-expressed LRP6. TCF1 was the transcriptional factor most likely to connect the LRP6-Wnt/β-catenin signaling pathway to the regulation of CYP2E1. We concluded that the LRP6 functional mutation rs2302685 contributes to individual differences in susceptibility to alcoholic liver injury related to the Wnt/β-catenin-TCF1-CYP2E1 signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xiao
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guang-Hui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Obinna Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Takasu S, Yokoo Y, Ishii Y, Kijima A, Ogawa K, Umemura T. Molecular Pathological Differences in Global Gene Expression between Two Sustained Proliferative Lesions, Nodular Regenerative Hepatocellular Hyperplasia and Hepatocellular Adenoma, in Mice. Toxicol Pathol 2018; 47:44-52. [PMID: 30572783 DOI: 10.1177/0192623318810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term exposure to piperonyl butoxide (PBO) induces multiple nodular masses along with hepatocellular tumors in the liver of mice. The histopathological features of the nodules led to our diagnosis of nodular regenerative hepatocellular hyperplasia (NRH). However, because of the lack of data on the biological characteristics of NRH, whether this lesion is truly nonneoplastic remains unknown. In this study, the molecular characteristics of NRH were compared with those of hepatocellular adenoma (HCA) by global gene expression analysis. Six-week-old male ICR mice were fed a diet containing 6,000 ppm PBO for 43 weeks to induce NRH and HCA development. Complementary DNA microarray analysis was performed using messenger RNA extracted from NRH and HCA frozen sections collected by laser microdissection. Hierarchical cluster analysis showed that all NRH samples clustered together but were separate from the HCA cluster. Pathway analysis revealed activation of the cell cycle and Delta-Notch signaling in both lesions, but the latter was more upregulated in HCA. Downregulation of cytochrome p450 enzymes was observed in NRH, but not in HCA. These results imply that NRH differs from HCA in terms of not only morphological but also molecular characteristics.
Collapse
Affiliation(s)
- Shinji Takasu
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuh Yokoo
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuji Ishii
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Aki Kijima
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takashi Umemura
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,2 Laboratory of Animal Pathology, Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
26
|
Braeuning A, Kollotzek F, Zeller E, Knorpp T, Templin MF, Schwarz M. Mouse Hepatomas with Ha-ras and B-raf Mutations Differ in Mitogen-Activated Protein Kinase Signaling and Response to Constitutive Androstane Receptor Activation. Drug Metab Dispos 2018; 46:1462-1465. [PMID: 30115646 DOI: 10.1124/dmd.118.083014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors mediate the hepatic induction of drug-metabolizing enzymes by xenobiotics. Not much is known about enzyme induction in liver tumors. Here, we treated tumor-bearing mice with phenobarbital, an activator of the constitutive androstane receptor (CAR), to analyze the response of chemically induced Ha-ras- and B-raf-mutated mouse liver adenoma to CAR activation in vivo. Both tumor subpopulations possess almost identical gene expression profiles. CAR target gene induction in the tumors was studied at the mRNA and protein levels, and a reverse-phase protein microarray approach was chosen to characterize important signaling cascades. CAR target gene induction was pronounced in B-raf-mutated but not in Ha-ras-mutated tumors. Phosphoproteomic profiling revealed that phosphorylation-activated extracellular signal-regulated kinase (ERK) 1/2 was more abundant in Ha-ras-mutated than in B-raf-mutated tumors. ERK activation in tumor tissue was negatively correlated with CAR target induction. ERK activation is known to inhibit CAR-dependent transcription. In summary, profound differences exist between the two closely related tumor subpopulations with respect to the activation of mitogenic signaling cascades, and these dissimilarities might explain the differences in xenobiotic induction of CAR target genes.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Ferdinand Kollotzek
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Eva Zeller
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Thomas Knorpp
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Markus F Templin
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| |
Collapse
|
27
|
Nault JC, Couchy G, Caruso S, Meunier L, Caruana L, Letouzé E, Rebouissou S, Paradis V, Calderaro J, Zucman-Rossi J. Argininosuccinate synthase 1 and periportal gene expression in sonic hedgehog hepatocellular adenomas. Hepatology 2018; 68:964-976. [PMID: 29572896 DOI: 10.1002/hep.29884] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
UNLABELLED Genetic alterations define different molecular subclasses of hepatocellular adenoma (HCA) linked with risk factors, histology and clinical behavior. Recently, Argininosuccinate Synthase 1 (ASS1), a major periportal protein, was proposed as a marker of HCA with a high risk of hemorrhage. We aimed to assess the significance of ASS1 expression through the scope of the HCA molecular classification. ASS1 expression was evaluated using RNAseq, quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Immunohistochemistry. ASS1 and glioma-associated oncogene 1 (GLI1) expression were analyzed in vitro after modulation of GLI1 expression. Using RNAseq in 27 HCA and five nontumor liver samples, ASS1 expression was highly correlated with GLI1 expression (P<0.0001, R=0.75). In the overall series of 408 HCA, ASS1 overexpression was significantly associated with sonic hedgehog HCA (shHCA) compared to other molecular subgroups (P<0.0001), suggesting that sonic hedgehog signaling controls ASS1 expression. GLI1 expression silencing by siRNA induced a downregulation of ASS1 in PLC/PFR5 and SNU878 cell lines. In 390 HCA, we showed that ASS1 expression belonged to the periportal expression program that was maintained in shHCA but down-regulated in all the other HCA subtypes. In contrast, HCA with β-catenin activation showed an activation of a perivenous program. Despite the significant association between GLI1 and ASS1 expression, ASS1 mRNA expression was not associated with specific clinical features. At the protein level using immunohistochemistry, prostaglandin D synthase (PTGDS) was strongly and specifically overexpressed in shHCA. CONCLUSION ASS1 is associated with sonic hedgehog activation as part of a periportal program expressed in shHCA, a molecular subgroup defined by INHBE-GLI1 gene fusion. (Hepatology 2018).
Collapse
Affiliation(s)
- Jean-Charles Nault
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France.,Liver unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, APHP, Bondy, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Gabrielle Couchy
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Stefano Caruso
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Léa Meunier
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Laure Caruana
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Eric Letouzé
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Sandra Rebouissou
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France
| | - Valérie Paradis
- Service d'anatomopathologie, Hôpital Beaujon, Clichy, Centre de Recherche sur l'inflammation, UMR 1149, INSERM-Paris Diderot University, Paris, France
| | - Julien Calderaro
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France.,Service d'anatomopathologie, Hôpital Henri Mondor, Créteil; Université Paris Est Créteil, Inserm U955, Team 18, Institut Mondor de Recherche Biomédicale, Paris, France
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France.,Hôpital Europeen Georges Pompidou, HEGP, F-75015, Assistance Publique-Hôpitaux de Paris, APHP, Paris, France
| |
Collapse
|
28
|
Knittelfelder O, Traikov S, Vvedenskaya O, Schuhmann A, Segeletz S, Shevchenko A, Shevchenko A. Shotgun Lipidomics Combined with Laser Capture Microdissection: A Tool To Analyze Histological Zones in Cryosections of Tissues. Anal Chem 2018; 90:9868-9878. [PMID: 30004672 DOI: 10.1021/acs.analchem.8b02004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Shotgun analysis provides a quantitative snapshot of the lipidome composition of cells, tissues, or model organisms; however, it does not elucidate the spatial distribution of lipids. Here we demonstrate that shotgun analysis could quantify low-picomole amounts of lipids isolated by laser capture microdissection (LCM) of hundred micrometer-sized histological zones visualized at the cryosections of tissues. We identified metabolically distinct periportal (pp) and pericentral (pc) zones by immunostaining of 20 μm thick cryosections of a healthy mouse liver. LCM was used to ablate, catapult, and collect the tissue material from 10 to 20 individual zones covering a total area of 0.3-0.5 mm2 and containing ca. 500 cells. Top-down shotgun profiling relying upon computational stitching of 61 targeted selective ion monitoring ( t-SIM) spectra quantified more than 200 lipid species from 17 lipid classes including glycero- and glycerophospholipids, sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed the overall commonality of the full lipidome composition of pp and pc zones along with significant ( p < 0.001) difference in the relative abundance of 13 lipid species. Follow-up proteomics analyses of pellets recovered from an aqueous phase saved after the lipid extraction identified 13 known and 7 new protein markers exclusively present in pp or in pc zones and independently validated the specificity of their visualization, isolation, and histological assignment.
Collapse
Affiliation(s)
- Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Andrea Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Sandra Segeletz
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108 , 01307 Dresden , Germany
| |
Collapse
|
29
|
Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater 2018; 69:63-70. [PMID: 29317370 PMCID: PMC5831494 DOI: 10.1016/j.actbio.2017.12.042] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/23/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. STATEMENT OF SIGNIFICANCE Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in 2D models.
Collapse
Affiliation(s)
- Phillip L Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States.
| | - Richard M Green
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Ramille N Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States; Department of Surgery - Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
30
|
Jonsson-Schmunk K, Schafer SC, Croyle MA. Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0376-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Ramakrishnan SK, Shah YM. A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis. ACTA ACUST UNITED AC 2017; 4:207-216. [PMID: 29276790 PMCID: PMC5734117 DOI: 10.3233/nha-170022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic glucose production is regulated by hormonal and dietary factors. At fasting, 80% of glucose released into the circulation is derived from the liver, among which gluconeogenesis accounts for 55% and the rest by glycogenolysis. Studies suggest a complex mechanism involved in the regulation of hepatic glucose metabolism during fasting and post-absorptive phase. Oxygen plays a key role in numerous metabolic pathways such as TCA cycle, gluconeogenesis, glycolysis and fatty acid oxidation. Oxygenation of the gastrointestinal tract including liver and intestine is dynamically regulated by changes in the blood flow and metabolic activity. Cellular adaptation to low oxygen is mediated by the transcription factors HIF-1α and HIF-2α. HIF-1α regulates glycolytic genes whereas HIF-2α is known to primarily regulate genes involved in cell proliferation and iron metabolism. This review focuses on the role of the oxygen sensing signaling in the regulation of hepatic glucose output with an emphasis on hypoxia inducible factor (HIF)-2α. Recent studies have established a metabolic role of HIF-2α in systemic glucose homeostasis. Understanding the HIF-2α dependent mechanism in hepatic metabolism will greatly enhance our potential to utilize the oxygen sensing mechanisms to treat metabolic diseases.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542:352-356. [PMID: 28166538 PMCID: PMC5321580 DOI: 10.1038/nature21065] [Citation(s) in RCA: 693] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
|
33
|
Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun 2016; 7:13369. [PMID: 27857132 PMCID: PMC5120209 DOI: 10.1038/ncomms13369] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes are functionally heterogeneous and are divided into two distinct populations based on their metabolic zonation: the periportal and pericentral hepatocytes. During liver injury and regeneration, the cellular dynamics of these two distinct populations remain largely elusive. Here we show that major facilitator super family domain containing 2a (Mfsd2a), previously known to maintain blood–brain barrier function, is a periportal zonation marker. By genetic lineage tracing of Mfsd2a+ periportal hepatocytes, we show that Mfsd2a+ population decreases during liver homeostasis. Nevertheless, liver regeneration induced by partial hepatectomy significantly stimulates expansion of the Mfsd2a+ periportal hepatocytes. Similarly, during chronic liver injury, the Mfsd2a+ hepatocyte population expands and completely replaces the pericentral hepatocyte population throughout the whole liver. After injury recovery, the adult liver re-establishes the metabolic zonation by reprogramming the Mfsd2a+-derived hepatocytes into pericentral hepatocytes. The evidence of entire zonation replacement during injury increases our understanding of liver biology and disease. Hepatocytes are highly specialized cells and their fate is determined by their position in the liver as either periportal or perivenous hepatocytes. Here, Pu et al. show through genetic lineage tracing for Mfsd2 that periportal hepatocytes proliferate and reprogram into pericentral hepatocytes during liver regeneration and injury.
Collapse
|
34
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
35
|
Kaji K, Factor VM, Andersen JB, Durkin ME, Tomokuni A, Marquardt JU, Matter MS, Hoang T, Conner EA, Thorgeirsson SS. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology 2016; 64:582-98. [PMID: 26999257 PMCID: PMC5841553 DOI: 10.1002/hep.28563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED DNA methyltransferase 1 (DNMT1) is an essential regulator maintaining both epigenetic reprogramming during DNA replication and genome stability. We investigated the role of DNMT1 in the regulation of postnatal liver histogenesis under homeostasis and stress conditions. We generated Dnmt1 conditional knockout mice (Dnmt1(Δalb) ) by crossing Dnmt1(fl/fl) with albumin-cyclization recombination transgenic mice. Serum, liver tissues, and primary hepatocytes were collected from 1-week-old to 20-week old mice. The Dnmt1(Δalb) phenotype was assessed by histology, confocal and electron microscopy, biochemistry, as well as transcriptome and methylation profiling. Regenerative growth was induced by partial hepatectomy and exposure to carbon tetrachloride. The impact of Dnmt1 knockdown was also analyzed in hepatic progenitor cell lines; proliferation, apoptosis, DNA damage, and sphere formation were assessed. Dnmt1 loss in postnatal hepatocytes caused global hypomethylation, enhanced DNA damage response, and initiated a senescence state causing a progressive inability to maintain tissue homeostasis and proliferate in response to injury. The liver regenerated through activation and repopulation from progenitors due to lineage-dependent differences in albumin-cyclization recombination expression, providing a basis for selection of less mature and therefore less damaged hepatic progenitor cell progeny. Consistently, efficient knockdown of Dnmt1 in cultured hepatic progenitor cells caused severe DNA damage, cell cycle arrest, senescence, and cell death. Mx1-cyclization recombination-driven deletion of Dnmt1 in adult quiescent hepatocytes did not affect liver homeostasis. CONCLUSION These results establish the indispensable role of DNMT1-mediated epigenetic regulation in postnatal liver growth and regeneration; Dnmt1(Δalb) mice provide a unique experimental model to study the role of senescence and the contribution of progenitor cells to physiological and regenerative liver growth. (Hepatology 2016;64:582-598).
Collapse
Affiliation(s)
- Kosuke Kaji
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jesper B. Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark
| | - Marian E. Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Akira Tomokuni
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jens U. Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Department of Medicine I, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias S. Matter
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Tanya Hoang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Elizabeth A. Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
36
|
Groll N, Petrikat T, Vetter S, Colnot S, Weiss F, Poetz O, Joos TO, Rothbauer U, Schwarz M, Braeuning A. Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology 2016; 350-352:40-8. [PMID: 27153753 DOI: 10.1016/j.tox.2016.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023]
Abstract
Depending on their position within the liver lobule, hepatocytes fulfill different metabolic functions. Cytochrome P450 (CYP) 2E1 is a drug-metabolizing enzyme which is exclusively expressed in hepatocytes surrounding branches of the hepatic central vein. Previous publications have shown that signaling through the Wnt/β-catenin pathway, a major determinant of liver zonation, and the hepatocyte-enriched transcription factor HNF (hepatocyte nuclear factor) 1α participate in the regulation of the gene. This study was aimed to decipher the molecular mechanisms by which the two transcription factors, β-catenin and HNF1α, jointly regulate CYP2E1 at the gene promoter level. Chromatin immunoprecipitation identified a conserved Wnt/β-catenin-responsive site (WRE) in the murine Cyp2e1 promoter adjacent to a known HNF1α response element (HNF1-RE). In vitro analyses demonstrated that both, activated β-catenin and HNF1α, are needed for the full response of the promoter. The WRE was dispensable for β-catenin-mediated effects on the Cyp2e1 promoter, while activity of β-catenin was integrated into the promoter response via the HNF1-RE. Physical interaction of β-catenin and HNF1α was demonstrated by co-immunoprecipitation. In conclusion, present data the first time identify and characterize the interplay of HNF1α and β-catenin and elucidate molecular determinants of CYP2E1 expression in the liver.
Collapse
Affiliation(s)
- Nicola Groll
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Tamara Petrikat
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Sabine Colnot
- Institut Cochin, INSERM U1016, CNRS, UMR8104, Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Frederik Weiss
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Michael Schwarz
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany; Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
37
|
PGC-1α Promotes Ureagenesis in Mouse Periportal Hepatocytes through SIRT3 and SIRT5 in Response to Glucagon. Sci Rep 2016; 6:24156. [PMID: 27052737 PMCID: PMC4823758 DOI: 10.1038/srep24156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 01/12/2023] Open
Abstract
Excess ammonia is produced during fasting when amino acids are used for glucogenesis. Together with ureagenesis, glucogenesis occurs in periportal hepatocytes mediated mainly through the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In vivo experiments showed that fasting strongly stimulated mice glucagon secretion, hepatic PGC-1α, sirtuin 3 (SIRT3) and sirtuin 5 (SIRT5) expression and ureagenesis enzymatic activity such as carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamoylase (OTC). Interestingly, (15)N-labeled urea and (13)C-labeled glucose production in wild-type mice were significantly increased compared with PGC-1α null mice by [(15)N,(13)C]alanine perfused liver. Glucagon significantly stimulated ureagenesis, expression of SIRT3, SIRT5 and the activities of CPS1 and OCT but did not stimulate PGC-1α silencing hepatocytes in mice periportal hepatocytes. Contrarily, PGC-1α overexpression significantly increased the expression of SIRT3, SIRT5 and the activities of CPS1 and OTC, but induced no significant changes in CPS1 and OTC expression. Morever, SIRT3 directly deacetylates and upregulates the activity of OTC, while SIRT5 deacetylates and stimulates the activity of CPS1. During fasting, PGC-1α facilitates ureagenesis in mouse periportal hepatocytes by deacetylating CPS1 and OTC modulated by mitochondrial deacetylase, SIRT3 and SIRT5. This mechanism may be relevant to ammonia detoxification and metabolic homeostasis in liver during fasting.
Collapse
|
38
|
Nilakantan H, Kuttippurathu L, Parrish A, Hoek JB, Vadigepalli R. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy. PLoS One 2015; 10:e0140236. [PMID: 26452159 PMCID: PMC4599916 DOI: 10.1371/journal.pone.0140236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx). We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs). We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new insights as to how ethanol treatment may affect cell-type specific processes regulated by NF-κB activation in liver cells.
Collapse
Affiliation(s)
- Harshavardhan Nilakantan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Austin Parrish
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jan B. Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Peng C, Chiappini F, Kaščáková S, Danulot M, Sandt C, Samuel D, Dumas P, Guettier C, Le Naour F. Vibrational signatures to discriminate liver steatosis grades. Analyst 2015; 140:1107-18. [PMID: 25581590 DOI: 10.1039/c4an01679c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a frequent lesion associated with obesity, diabetes and the metabolic syndrome. The hallmark feature of fatty liver disease is steatosis, which is the intra-cellular accumulation of lipids resulting in the formation of vesicles in hepatocytes. Steatosis is a precursor of steatohepatitis, a condition that may progress to hepatic fibrosis, cirrhosis and primary liver cancer. We addressed the potential of Fourier transform-infrared (FTIR) microspectroscopy for grading steatosis on frozen tissue sections. The use of the bright infrared source emitted by synchrotron radiation (SR) allowed the investigation of the biochemical composition at the cellular level. The variance in the huge number of spectra acquired was addressed by principal component analysis (PCA). The study demonstrated that the progression of steatosis corresponds not only to the accumulation of lipids but also to dramatic changes in the qualitative composition of the tissue. Indeed, a lower grade of steatosis showed a decrease in glycogen content and a concomitant increase in lipids in comparison with normal liver. Intermediate steatosis exhibited an increase in glycogen and major changes in lipids, with a significant contribution of esterified fatty acids with elongated carbon chains and unsaturated lipids, and these features were more pronounced in a high grade of steatosis. Furthermore, the approach allows a systematic discrimination of morphological features, leading to a separate investigation of steatotic vesicles and the non-steatotic counterpart of the tissue. This highlighted the fact that dramatic biochemical changes occur in the non-steatotic part of the tissue also despite its normal histological aspect, suggesting that the whole tissue reflects the grade of steatosis.
Collapse
|
40
|
Briolotti P, Chaloin L, Balaguer P, Da Silva F, Tománková V, Pascussi JM, Duret C, Fabre JM, Ramos J, Klieber S, Maurel P, Daujat-Chavanieu M, Gerbal-Chaloin S. Analysis of Glycogen Synthase Kinase Inhibitors That Regulate Cytochrome P450 Expression in Primary Human Hepatocytes by Activation of β-Catenin, Aryl Hydrocarbon Receptor and Pregnane X Receptor Signaling. Toxicol Sci 2015; 148:261-75. [DOI: 10.1093/toxsci/kfv177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Thomas M, Bayha C, Vetter S, Hofmann U, Schwarz M, Zanger UM, Braeuning A. Activating and Inhibitory Functions of WNT/β-Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Mol Pharmacol 2015; 87:1013-20. [PMID: 25824487 DOI: 10.1124/mol.114.097402] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
The WNT/β-catenin signaling pathway has been identified as an important endogenous regulator of hepatic cytochrome P450 (P450) expression in mouse liver. In particular, it is involved in the regulation of P450 expression in response to exposure to xenobiotic agonists of the nuclear receptors constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR), and Nrf2. To systematically elucidate the effect of the WNT/β-catenin pathway on the regulation and inducibility of major human P450 enzymes, HepaRG cells were treated with either the WNT/β-catenin signaling pathway agonist, WNT3a, or with small interfering RNA directed against β-catenin, alone or in combination with a panel of activating ligands for AhR [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)], CAR [6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO)], pregnane X receptor (PXR) [rifampicin], and peroxisome proliferator-activated receptor (PPAR) α [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY14,643)]. Assessment of P450 gene expression and enzymatic activity after downregulation or activation of the WNT/β-catenin pathway revealed a requirement of β-catenin in the AhR-, CAR-, and PXR-mediated induction of CYP1A, CYP2B6 and CYP3A4 (for CAR and PXR), and CYP2C8 (for PXR) gene expression. By contrast, activation of the WNT/β-catenin pathway prevented PPARα-mediated induction of CYP1A, CYP2C8, CYP3A4, and CYP4A11 genes, suggesting a dominant-negative role of β-catenin in PPARα-mediated regulation of these genes. Our data indicate a significant effect of the WNT/β-catenin pathway on the regulation of P450 enzymes in human hepatocytes and reveal a novel crosstalk between β-catenin and PPARα signaling pathways in the regulation of P450 expression.
Collapse
Affiliation(s)
- Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Christine Bayha
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Silvia Vetter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Michael Schwarz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Albert Braeuning
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany (M.T., C.B., U.H., U.M.Z.); Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany (S.V., M.S.); and Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| |
Collapse
|
42
|
Schulthess P, Löffler A, Vetter S, Kreft L, Schwarz M, Braeuning A, Blüthgen N. Signal integration by the CYP1A1 promoter--a quantitative study. Nucleic Acids Res 2015; 43:5318-30. [PMID: 25934798 PMCID: PMC4477655 DOI: 10.1093/nar/gkv423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/17/2015] [Indexed: 01/23/2023] Open
Abstract
Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns.
Collapse
Affiliation(s)
- Pascal Schulthess
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Alexandra Löffler
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Luisa Kreft
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Michael Schwarz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Nils Blüthgen
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
43
|
Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, Schuster S. Zonation of hepatic fatty acid metabolism - The diversity of its regulation and the benefit of modeling. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:641-56. [PMID: 25677822 DOI: 10.1016/j.bbalip.2015.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
A pronounced heterogeneity between hepatocytes in subcellular structure and enzyme activities was discovered more than 50years ago and initiated the idea of metabolic zonation. In the last decades zonation patterns of liver metabolism were extensively investigated for carbohydrate, nitrogen and lipid metabolism. The present review focuses on zonation patterns of the latter. We review recent findings regarding the zonation of fatty acid uptake and oxidation, ketogenesis, triglyceride synthesis and secretion, de novo lipogenesis, as well as bile acid and cholesterol metabolism. In doing so, we expose knowledge gaps and discuss contradictory experimental results, for example on the zonation pattern of fatty acid oxidation and de novo lipogenesis. Thus, possible rewarding directions of further research are identified. Furthermore, recent findings about the regulation of metabolic zonation are summarized, especially regarding the role of hormones, nerve innervation, morphogens, gender differences and the influence of the circadian clock. In the last part of the review, a short collection of models considering hepatic lipid metabolism is provided. We conclude that modeling, despite its proven benefit for understanding of hepatic carbohydrate and ammonia metabolisms, has so far been largely disregarded in the study of lipid metabolism; therefore some possible fields of modeling interest are presented.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | - C Tokarski
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - E Marbach
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - M Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Zellmer
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - R Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Schuster
- Department of Bioinformatics, University of Jena, Jena, Germany
| |
Collapse
|
44
|
Ueberham E, Glöckner P, Göhler C, Straub BK, Teupser D, Schönig K, Braeuning A, Höhn AK, Jerchow B, Birchmeier W, Gaunitz F, Arendt T, Sansom O, Gebhardt R, Ueberham U. Global increase of p16INK4a in APC-deficient mouse liver drives clonal growth of p16INK4a-negative tumors. Mol Cancer Res 2015; 13:239-49. [PMID: 25270420 DOI: 10.1158/1541-7786.mcr-14-0278-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Reduction of β-catenin (CTNNB1) destroying complex components, for example, adenomatous polyposis coli (APC), induces β-catenin signaling and subsequently triggers activation of genes involved in proliferation and tumorigenesis. Though diminished expression of APC has organ-specific and threshold-dependent influence on the development of liver tumors in mice, the molecular basis is poorly understood. Therefore, a detailed investigation was conducted to determine the underlying mechanism in the development of liver tumors under reduced APC levels. Mouse liver at different developmental stages was analyzed in terms of β-catenin target genes including Cyp2e1, Glul, and Ihh using real-time RT-PCR, reporter gene assays, and immunohistologic methods with consideration of liver zonation. Data from human livers with mutations in APC derived from patients with familial adenomatous polyposis (FAP) were also included. Hepatocyte senescence was investigated by determining p16(INK4a) expression level, presence of senescence-associated β-galactosidase activity, and assessing ploidy. A β-catenin activation of hepatocytes does not always result in β-catenin positive but unexpectedly also in mixed and β-catenin-negative tumors. In summary, a senescence-inducing program was found in hepatocytes with increased β-catenin levels and a positive selection of hepatocytes lacking p16(INK4a), by epigenetic silencing, drives the development of liver tumors in mice with reduced APC expression (Apc(580S) mice). The lack of p16(INK4a) was also detected in liver tumors of mice with triggers other than APC reduction. IMPLICATIONS Epigenetic silencing of p16(Ink4a) in selected liver cells bypassing senescence is a general principle for development of liver tumors with β-catenin involvement in mice independent of the initial stimulus.
Collapse
Affiliation(s)
- Elke Ueberham
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany. Department of Cell Engineering/GLP, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Pia Glöckner
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Claudia Göhler
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Beate K Straub
- Institute of Pathology, University Clinic, University Heidelberg, Heidelberg, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany. Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Schönig
- Central Institute of Mental Health, Department of Molecular Biology, University of Heidelberg, Mannheim, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Tübingen, Germany
| | | | - Boris Jerchow
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | | | - Frank Gaunitz
- Department of Neurosurgery, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Owen Sansom
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Uwe Ueberham
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany.
| |
Collapse
|
45
|
Gerbal-Chaloin S, Dumé AS, Briolotti P, Klieber S, Raulet E, Duret C, Fabre JM, Ramos J, Maurel P, Daujat-Chavanieu M. The WNT/β-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol Pharmacol 2014; 86:624-34. [PMID: 25228302 DOI: 10.1124/mol.114.094797] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The wingless-type MMTV integration site family (WNT)/β-catenin/adenomatous polyposis coli (CTNNB1/APC) pathway has been identified as a regulator of drug-metabolizing enzymes in the rodent liver. Conversely, little is known about the role of this pathway in drug metabolism regulation in human liver. Primary human hepatocytes (PHHs), which are the most physiologically relevant culture system to study drug metabolism in vitro, were used to investigate this issue. This study assessed the link between cytochrome P450 expression and WNT/β-catenin pathway activity in PHHs by modulating its activity with recombinant mouse Wnt3a (the canonical activator), inhibitors of glycogen synthase kinase 3β, and small-interfering RNA to invalidate CTNNB1 or its repressor APC, used separately or in combination. We found that the WNT/β-catenin pathway can be activated in PHHs, as assessed by universal β-catenin target gene expression, leucine-rich repeat containing G protein-coupled receptor 5. Moreover, WNT/β-catenin pathway activation induces the expression of CYP2E1, CYP1A2, and aryl hydrocarbon receptor, but not of CYP3A4, hepatocyte nuclear factor-4α, or pregnane X receptor (PXR) in PHHs. Specifically, we show for the first time that CYP2E1 is transcriptionally regulated by the WNT/β-catenin pathway. Moreover, CYP2E1 induction was accompanied by an increase in its metabolic activity, as indicated by the increased production of 6-OH-chlorzoxazone and by glutathione depletion after incubation with high doses of acetaminophen. In conclusion, the WNT/β-catenin pathway is functional in PHHs, and its induction in PHHs represents a powerful tool to evaluate the hepatotoxicity of drugs that are metabolized by CYP2E1.
Collapse
Affiliation(s)
- Sabine Gerbal-Chaloin
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Anne-Sophie Dumé
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Philippe Briolotti
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Sylvie Klieber
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Edith Raulet
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Cédric Duret
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Jean-Michel Fabre
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Jeanne Ramos
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Patrick Maurel
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| | - Martine Daujat-Chavanieu
- Institut de Recherche en Biothérapie, INSERM, U1040 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); UMR 1040, Université Montpellier 1 (S.G.C., A.S.D., P.B., E.R., C.D., P.M., M.D.C.); Drug Disposition Domain, Sanofi Aventis (S.K.); Department of Digestive Surgery, CHU Saint Eloi (J.M.F.); Pathological Anatomy Department, CHU Gui de Chauliac (J.R.); and Institut de Recherche en Biothérapie, CHU Montpellier, (M.D.C.), Montpellier, France
| |
Collapse
|
46
|
Ueno A, Masugi Y, Yamazaki K, Komuta M, Effendi K, Tanami Y, Tsujikawa H, Tanimoto A, Okuda S, Itano O, Kitagawa Y, Kuribayashi S, Sakamoto M. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 2014; 61:1080-7. [PMID: 24946283 DOI: 10.1016/j.jhep.2014.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/31/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In the current era of emerging molecular targeted drugs, it is necessary to identify before treatment the specific subclass to which a tumour belongs. Gadoxetic acid is a liver-specific contrast agent that is preferentially taken up by hepatocytes. Therefore, gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI) should provide precise molecular information about hepatocellular carcinomas (HCCs). The aim of this study was to investigate the transporters of gadoxetic acid in HCC comprehensively and to analyse the molecular regulatory mechanism of such transporters. METHODS Expression levels of transporters, transcriptional factors and Wnt target genes in clinical samples were examined by quantitative real-time reverse transcription polymerase chain reaction and immunohistochemistry. LiCl treatment of the HCC cell line KYN-2 was conducted in vitro to assess the effects of Wnt signalling activity. RESULTS Comprehensive analyses of transporter mRNAs and protein expressions revealed that the organic anion transporting polypeptide 1B3 (OATP1B3) had the strongest correlation with tumour enhancement in hepatobiliary-phase images of EOB-MRI. Association analysis with OATP1B3 expression revealed significant correlation with the expression of Wnt/β-catenin target genes. Further, LiCl treatment induced OATP1B3 mRNA expression in KYN-2 cells, indicating a strong association between OATP1B3 expression and Wnt/β-catenin signalling. The sensitivity and specificity to predict Wnt/β-catenin-activated HCC using tumour enhancement in EOB-MRI were 78.9% and 81.7%, respectively. CONCLUSIONS OATP1B3 was confirmed as the most important transporter mediating HCC enhancement in EOB-MRI. OATP1B3 expression showed a strong association with the expression of Wnt/β-catenin target genes, therefore, OATP1B3-upregulated HCC likely represents a specific subclass of Wnt/β-catenin-activated HCC.
Collapse
Affiliation(s)
- Akihisa Ueno
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan; Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mina Komuta
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan; Department of Translational Cell & Tissue Research, University Hospitals Leuven, Leuven, Belgium
| | - Kathryn Effendi
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Tanami
- Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Akihiro Tanimoto
- Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Shigeo Okuda
- Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Osamu Itano
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Sachio Kuribayashi
- Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
47
|
Braeuning A, Bucher P, Hofmann U, Buchmann A, Schwarz M. Chemically induced mouse liver tumors are resistant to treatment with atorvastatin. BMC Cancer 2014; 14:766. [PMID: 25319454 PMCID: PMC4203962 DOI: 10.1186/1471-2407-14-766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023] Open
Abstract
Background Atorvastatin is a potent inhibitor of the mevalonate pathway and widely used as a hypolipidemic drug. Some epidemiological studies and animal experiments indicate that the long-term use of atorvastatin and structurally related drugs might be associated with a reduced risk of developing hepatocellular carcinoma (HCC), the most common hepatocellular malignancy in humans. However, the potential of atorvastatin to inhibit HCC formation is controversially discussed. Methods Hepatocellular tumors were chemically induced by treatment of C3H/He mice with 10 μg/g body weight N-nitrosodiethylamine and the ability of atorvastatin to interfere with tumor formation was investigated by treatment of mice with 0.1% atorvastatin in the diet for 6 months. Tumor size and tumor multiplicity were analyzed, as were tissue levels of cholesterol and atorvastatin. Results Atorvastatin treatment efficiently reduced serum cholesterol levels. However, the growth of tumors driven by activated MAPK (mitogen-activated protein kinase) signaling was not attenuated by the presence of the drug, as evidenced by a lack of reduction of tumor volume or tumor multiplicity by atorvastatin. Levels of the atorvastatin uptake transporters Oatp1a4 and Oatp1b2 were down-regulated at the mRNA and protein levels in chemically induced mouse liver tumors, but without striking effects on atorvastatin concentrations in the tumor tissue. Conclusion In summary, the present data provide substantial evidence that atorvastatin does not beneficially influence tumor growth in mouse liver and thereby challenge the hypothesis that statin use might protect against hepatocellular cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-766) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Braeuning
- Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tuebingen, Wilhelmstr, 56, Tuebingen 72074, Germany.
| | | | | | | | | |
Collapse
|
48
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
49
|
Gebhardt R, Matz-Soja M. Liver zonation: Novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol 2014; 20:8491-8504. [PMID: 25024605 PMCID: PMC4093700 DOI: 10.3748/wjg.v20.i26.8491] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/20/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Liver zonation, the spatial separation of the immense spectrum of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ. Recent progress in elucidating localization and interactions of different metabolic pathways by using “omics” techniques and novel approaches to couple them with refined spatial resolution and in characterizing novel master regulators of zonation by using transgenic mice has created the basis for a deeper understanding of core mechanisms of zonation and their impact on liver physiology, pathology and metabolic diseases. This review summarizes the fascinating technical achievements for investigating liver zonation and the elucidation of an emerging network of master regulators of zonation that keep the plethora of interrelated and sometimes opposing functions of the liver in balance with nutritional supply and specific requirements of the entire body. In addition, a brief overview is given on newly described zonated functions and novel details on how diverse the segmentation of metabolic zonation may be. From these facts and developments a few fundamental principles are inferred which seem to rule zonation of liver parenchyma. In addition, we identify important questions that still need to be answered as well as interesting fields of research such as the connection of zonation with circadian rhythm and gender dimorphism which need to be pushed further, in order to improve our understanding of metabolic zonation. Finally, an outlook is given on how disturbance of liver zonation and its regulation may impact on liver pathology and the development of metabolic diseases.
Collapse
|
50
|
OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci U S A 2014; 111:9983-8. [PMID: 24961373 DOI: 10.1073/pnas.1314939111] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organic cation transporter 1, OCT1 (SLC22A1), is the major hepatic uptake transporter for metformin, the most prescribed antidiabetic drug. However, its endogenous role is poorly understood. Here we show that similar to metformin treatment, loss of Oct1 caused an increase in the ratio of AMP to ATP, activated the energy sensor AMP-activated kinase (AMPK), and substantially reduced triglyceride (TG) levels in livers from healthy and leptin-deficient mice. Conversely, livers of human OCT1 transgenic mice fed high-fat diets were enlarged with high TG levels. Metabolomic and isotopic uptake methods identified thiamine as a principal endogenous substrate of OCT1. Thiamine deficiency enhanced the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase. Metformin and the biguanide analog, phenformin, competitively inhibited OCT1-mediated thiamine uptake. Acute administration of metformin to wild-type mice reduced intestinal accumulation of thiamine. These findings suggest that OCT1 plays a role in hepatic steatosis through modulation of energy status. The studies implicate OCT1 as well as metformin in thiamine disposition, suggesting an intriguing and parallel mechanism for metformin and its major hepatic transporter in metabolic function.
Collapse
|