1
|
Lei W, Xu X, Li N, Zhang Y, Tang R, Li X, Tang J, Wu X, Lu C, Bai Y, Yao Y, Qiu Z, Yang Y, Zheng X. Isopropyl 3-(3,4-dihydroxyphenyl) 2-hydroxypropanoate protects septic myocardial injury via regulating GAS6/Axl-AMPK signaling pathway. Biochem Pharmacol 2024; 221:116035. [PMID: 38301968 DOI: 10.1016/j.bcp.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xiaoru Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yajun Bai
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yu Yao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Xiaohui Zheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
2
|
Petryk N, Shevchenko O. Mesenchymal Stem Cells Anti-Inflammatory Activity in Rats: Proinflammatory Cytokines. J Inflamm Res 2020; 13:293-301. [PMID: 32753930 PMCID: PMC7354011 DOI: 10.2147/jir.s256932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Many widespread intractable diseases are caused or supported by chronic inflammation. Such conditions include the 2nd type of diabetes mellitus, atherosclerosis, neurodegenerative diseases, chronic inflammatory diseases of the connective tissue - ankylosing spondylitis, rheumatoid arthritis, autoimmune myositis, etc. Therefore, the search for targeted treatment of these illnesses is extremely in high demand. Immunomodulatory activity of mesenchymal stem cells is one of their remarkable properties. Several biomarkers (cytokines and nonspecific proteins) are known to be associated with chronic inflammation. Methods Our study aimed to investigate the serum levels of tumor necrosis factor-alpha, interleukin 6 and C-reactive protein in carrageenan myositis in rats, because there is more and more evidence of the significance of these markers in the course and resolution of the diseases mentioned above. For the first time in our experiment, it was shown and evaluated using analysis of variance, how MSCs influence the indicators of proinflammatory cytokines on the model of carrageenan myositis. The levels of α-TNF, IL-6 and CRP in the plasma of rats were studied in groups with chronic carrageenan inflammation and chronic inflammation with local injection of MSCs into the affected area. Results Our study proved the effectiveness of MSCs by showing a significant decrease in the levels of inflammatory mediators in the plasma of the studied animals. Discussion and Conclusions Thus, the administration of MSCs is a promising tool in the pathogenic treatment of chronic inflammation and concomitant conditions. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/pgtl5EA7NJk
Collapse
Affiliation(s)
- Nataliia Petryk
- Department of Pathology, Kharkiv National Medical University, Kharkiv, Ukraine
| | | |
Collapse
|
3
|
Abstract
The need to search for new, alternative treatments for various diseases has prompted scientists and physicians to focus their attention on regenerative medicine and broadly understood cell therapies. Currently, stem cells are being investigated for their potentially widespread use in therapies for many untreatable diseases. Nowadays modern treatment strategies willingly use mesenchymal stem cells (MSCs) derived from different sources. Researchers are increasingly aware of the nature of MSCs and new possibilities for their use. Due to their properties, especially their ability to self-regenerate, differentiate into several cell lineages and participate in immunomodulation, MSCs have become a promising tool in developing modern and efficient future treatment strategies. The great potential and availability of MSCs allow for their various clinical applications in the treatment of many incurable diseases. In addition to their many advantages and benefits, there are still questions about the use of MSCs. What are the mechanisms of action of MSCs? How do they reach their destination? Is the clinical use of MSCs safe? These are the main questions that arise regarding MSCs when they are considered as therapeutic tools. The diversity of MSCs, their different clinical applications, and their many traits that have not yet been thoroughly investigated are sources of discussions and controversial opinions about these cells. Here, we reviewed the current knowledge about MSCs in terms of their therapeutic potential, clinical effects and safety in clinical applications.
Collapse
Affiliation(s)
- Aleksandra Musiał-Wysocka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marta Kot
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marcin Majka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
4
|
Scutera S, Salvi V, Lorenzi L, Piersigilli G, Lonardi S, Alotto D, Casarin S, Castagnoli C, Dander E, D'Amico G, Sozzani S, Musso T. Adaptive Regulation of Osteopontin Production by Dendritic Cells Through the Bidirectional Interaction With Mesenchymal Stromal Cells. Front Immunol 2018; 9:1207. [PMID: 29910810 PMCID: PMC5992779 DOI: 10.3389/fimmu.2018.01207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) exert immunosuppressive effects on immune cells including dendritic cells (DCs). However, many details of the bidirectional interaction of MSCs with DCs are still unsolved and information on key molecules by which DCs can modulate MSC functions is limited. Here, we report that osteopontin (OPN), a cytokine involved in homeostatic and pathophysiologic responses, is constitutively expressed by DCs and regulated in the DC/MSC cocultures depending on the activation state of MSCs. Resting MSCs promoted OPN production, whereas the production of OPN was suppressed when MSCs were activated by proinflammatory cytokines (i.e., TNF-α, IL-6, and IL-1β). OPN induction required cell-to-cell contact, mediated at least in part, by β1 integrin (CD29). Conversely, activated MSCs inhibited the release of OPN via the production of soluble factors with a major role played by Prostaglandin E2 (PGE2). Accordingly, pretreatment with indomethacin significantly abrogated the MSC-mediated suppression of OPN while the direct addition of exogenous PGE2 inhibited OPN production by DCs. Furthermore, DC-conditioned medium promoted osteogenic differentiation of MSCs with a concomitant inhibition of adipogenesis. These effects were paralleled by the repression of the adipogenic markers PPARγ, adiponectin, and FABP4, and induction of the osteogenic markers alkaline phosphatase, RUNX2, and of the bone-anabolic chemokine CCL5. Notably, blocking OPN activity with RGD peptides or with an antibody against CD29, one of the OPN receptors, prevented the effects of DC-conditioned medium on MSC differentiation and CCL5 induction. Because MSCs have a key role in maintenance of bone marrow (BM) hematopoietic stem cell niche through reciprocal regulation with immune cells, we investigated the possible MSC/DC interaction in human BM by immunohistochemistry. Although DCs (CD1c+) are a small percentage of BM cells, we demonstrated colocalization of CD271+ MSCs with CD1c+ DCs in normal and myelodysplastic BM. OPN reactivity was observed in occasional CD1c+ cells in the proximity of CD271+ MSCs. Altogether, these results candidate OPN as a signal modulated by MSCs according to their activation status and involved in DC regulation of MSC differentiation.
Collapse
Affiliation(s)
- Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Piersigilli
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Alotto
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Stefania Casarin
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Erica Dander
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Giovanna D'Amico
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
MMP9 integrates multiple immunoregulatory pathways that discriminate high suppressive activity of human mesenchymal stem cells. Sci Rep 2017; 7:874. [PMID: 28408751 PMCID: PMC5429835 DOI: 10.1038/s41598-017-00923-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
The mechanisms underlying mesenchymal stem cells' (MSC) suppressive potency are largely unknown. We here show that highly suppressive human adipose tissue-derived MSC (AdMSC) display and induce a differential immunologic profile, upon ongoing AdMSC suppressive activity, promoting: (i) early correlated inhibition of IFN-γ and TNF-α production, along IL-10 increase, (ii) CD73+Foxp3+Treg subset expansion, and (iii) specific correlations between gene expression increases, such as: MMP9 correlated with CCL22, TNF, FASL, RUNX3, and SEMAD4 in AdMSC and, in T cells, MMP9 upregulation correlated with CCR4, IL4 and TBX21, among others, whereas MMP2 correlated with BCL2 and LRRC31. MMP9 emerged as an integrating molecule for both AdMSC and T cells in molecular networks built with our gene expression data, and we confirmed upregulation of MMP9 and MMP2 at the protein level, in AdMSC and T cells, respectively. MMP2/9 inhibition significantly decreased AdMSC suppressive effect, confirming their important role in suppressive acitivity. We conclude that MMP9 and 2 are robust new players involved in human MSC immunoregulatory mechanisms, and the higher suppressive activity correlates to their capacity to trigger a coordinated action of multiple specific molecules, mobilizing various immunoregulatory mechanisms.
Collapse
|
7
|
Sadri M, Abdolmaleki P, Abrun S, Beiki B, Samani FS. Static Magnetic Field Effect on Cell Alignment, Growth, and Differentiation in Human Cord-Derived Mesenchymal Stem Cells. Cell Mol Bioeng 2017; 10:249-262. [PMID: 31719863 DOI: 10.1007/s12195-017-0482-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/25/2017] [Indexed: 10/19/2022] Open
Abstract
This investigation is performed to evaluate the impact of static magnetic field on the Cell growth alignment, and differentiation potential in Human Mesenchymal Stem cells derived from human newborn cords. In vitro-cultured mesenchymal stem cells derived from human newborn cords were exposed to SMF up to 24 mT and compared with the control (unexposed) cultures. Viability was assessed via Trypan Blue staining and MTT assay. Cell cycle progression was studied after flow cytometry data analysis. Sox-2, Nanong, and Oct-4 Primers used for RT-PCR experiment. Morphological studies showed that the exposed cells were significantly aligned in parallel bundles in a correlation with the magnetic field lines. Viability measurements showed a significant reduction in cell viability which was noted after exposure to static magnetic field and initiated 36 h after the end of exposure time. Flow cytometric data analysis confirmed a decrease in G1 phase cell population within the treated and cultured groups compared with the corresponding control samples. However, the induced changes were recovered in the cell cultures after the post-exposure culture recovery time which may be attributed to the cellular repair mechanisms. Furthermore, the proliferation rate and Oct-4 gene expression were reduced due to the 18 mT static magnetic field exposure. The significant proliferation rate decrease accompanied by the Sox-2, Nanong, and Oct-4 gene expression decline, suggested the differentiation inducing effects of SMF exposure. Exposure to Static Magnetic fields up to 24 mT affects mesenchymal stem cell alignment and proliferation rate as well as mRNA expression of Sox-2, Nanong, and Oct-4 genes, therefore can be considered as a new differentiation inducer in addition to the other stimulators.
Collapse
Affiliation(s)
- Maryam Sadri
- 1Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran
| | - Parviz Abdolmaleki
- 1Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran
| | - Saeid Abrun
- 2Department of Hematology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), P.O. Box 14115-175, Tehran, Iran.,Royan Stem Cell Technology Company (Cord Blood Bank), Tehran, Iran
| | - Bahareh Beiki
- Royan Stem Cell Technology Company (Cord Blood Bank), Tehran, Iran
| | - Fazel Sahraneshin Samani
- 4Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression. Cell Death Dis 2017; 8:e2632. [PMID: 28230853 PMCID: PMC5386489 DOI: 10.1038/cddis.2017.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSCs) are known to suppress T-cell activation and proliferation. Several studies have reported that MSCs suppress CD25 expression in T cells. However, the molecular mechanism underlying MSC-mediated suppression of CD25 expression has not been fully examined. Here, we investigated the mTOR pathway, which is involved in CD25 expression in T cells. We showed that MSCs inhibited CD25 expression, which was restored in the presence of an inducible nitric oxide synthase (iNOS) inhibitor. Since CD25 mRNA expression was not inhibited, we focused on determining whether MSCs modulated components of the mTOR pathway in T cells. MSCs increased the phosphorylation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK) and decreased the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). In addition, the expression of 4E-BP1 increased dramatically in the presence of MSCs. An m7GTP pull-down assay showed increased binding of 4E-BP1 to the 5' cap-binding eukaryotic translation initiation factor 4E (eIF4E) complex in the presence of MSCs, which resulted in inhibition of mRNA translation. Treatment with 4EGI-1, a synthetic inhibitor of mRNA translation, also reduced CD25 expression in T cells. Polysome analysis confirmed decreased CD25 mRNA in the polysome-rich fraction in the presence of MSCs. Taken together, our results showed that nitric oxide, produced by MSCs, inhibits CD25 translation through regulation of the LKB1-AMPK-mTOR pathway to suppress T cells.
Collapse
|
9
|
Stem cell therapy: An emerging modality in glomerular diseases. Cytotherapy 2017; 19:333-348. [PMID: 28089754 DOI: 10.1016/j.jcyt.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The kidney has been considered a highly terminally differentiated organ with low proliferative potential and thus unlikely to undergo regeneration. Glomerular disease progresses to end-stage renal disease (ESRD), which requires dialysis or renal transplantation for better quality of life for patients with ESRD. Because of the shortage of implantable kidneys and complications such as immune rejection, septicemia and toxicity of immunosuppression, kidney transplantation remains a challenge. Therapeutic options available for glomerular disease include symptomatic treatment and strategies to delay progression. In an attempt to develop innovative treatments by promoting the limited capability of regeneration and repair after kidney injury and overcome the progressive pathological process that is uncontrolled with conventional treatment modalities, stem cell-based therapy has emerged as novel intervention due to its ability to inhibit inflammation and promote regeneration. Recent developments in cell therapy have demonstrated promising therapeutic outcomes in terms of restoration of renal structure and function. This review focuses on stem cell therapy approaches for the treatment of glomerular disease, including the various cell sources used and recent advances in preclinical and clinical studies.
Collapse
|
10
|
Haldar D, Henderson NC, Hirschfield G, Newsome PN. Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J 2016; 30:3905-3928. [DOI: 10.1096/fj.201600433r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Debashis Haldar
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Neil C. Henderson
- Medical Research Council (MRC) Centre for Inflammation ResearchQueens Medical Research Institute University of Edinburgh Edinburgh United Kingdom
| | - Gideon Hirschfield
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Philip N. Newsome
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| |
Collapse
|
11
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
12
|
Maulik N, Thirunavukkarasu M, Selvaraju V, Suresh SC. Reply to the letter "thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy is a promising feasible therapeutic approach for myocardial infarction". Int J Cardiol 2016; 207:277-8. [PMID: 26808992 DOI: 10.1016/j.ijcard.2016.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
13
|
Kariminekoo S, Movassaghpour A, Rahimzadeh A, Talebi M, Shamsasenjan K, Akbarzadeh A. Implications of mesenchymal stem cells in regenerative medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:749-57. [PMID: 26757594 DOI: 10.3109/21691401.2015.1129620] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.
Collapse
Affiliation(s)
- Saber Kariminekoo
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliakbar Movassaghpour
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amirbahman Rahimzadeh
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Talebi
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Karim Shamsasenjan
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- c Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,d Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
14
|
Fontaine MJ, Shih H, Schäfer R, Pittenger MF. Unraveling the Mesenchymal Stromal Cells' Paracrine Immunomodulatory Effects. Transfus Med Rev 2015; 30:37-43. [PMID: 26689863 DOI: 10.1016/j.tmrv.2015.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023]
Abstract
In the last 10 years, the role of mesenchymal stromal cells (MSCs) in modulating inflammatory and immune responses has been characterized using both in vitro studies and in vivo models of immune disorders. Mesenchymal stromal cell immunomodulatory properties have been linked to various paracrine factors which expression varies depending on the pathologic condition to which the MSCs are exposed. These factors may directly impact key cells of the adaptive immune system, such as T cells. Indeed, coculturing MSCs with T cells in a mixed lymphocyte reaction assay inhibits T-cell proliferation through the secretion of immunomodulatory cytokines. However, in a context of inflammation, MSCs may secrete paracrine factors that influence other immune cell subpopulations such as dendritic cells and macrophages and polarize them toward a tolerogenic phenotype. In vivo, these same immunomodulatory factors are shown to be increased in the serum of animal models presenting with inflammatory diseases treated with MSC administration. In light of the results from these landmark studies, we review the main MSC secreted factors identified to play a role in modulating inflammatory immune responses either in vitro or in vivo, and we assess the impact of these factors on the therapeutic applications of MSC-based cell therapies in immune diseases.
Collapse
Affiliation(s)
| | - Hank Shih
- Department of Pathology, University of Maryland, Baltimore, MD
| | - Richard Schäfer
- Institute for TransfusionMedicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt amMain, Germany
| | | |
Collapse
|
15
|
Chen X, Wang C, Yin J, Xu J, Wei J, Zhang Y. Efficacy of Mesenchymal Stem Cell Therapy for Steroid-Refractory Acute Graft-Versus-Host Disease following Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0136991. [PMID: 26323092 PMCID: PMC4554731 DOI: 10.1371/journal.pone.0136991] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been broadly used experimentally in various clinical contexts. The addition of MSCs to initial steroid therapy for acute graft-versus-host disease (aGVHD) may improve patient outcomes. However, investigations regarding prognostic factors affecting the efficacy of MSC therapy for steroid-refractory aGVHD remain controversial. We thus conducted a systematic review and meta-analysis of published clinical trials to determine possible prognostic factors affecting the efficacy of MSCs in treating steroid-refractory aGVHD. Methods and Findings Clinical trials using MSC therapy for steroid-refractory aGVHD were identified by searching PubMed and EMBASE databases. A total of 6,963 citations were reviewed, and 13 studies met the inclusion criteria. A total of 301 patients from thirteen studies were included. Of these, 136 patients showed a complete response (CR), and 69 patients displayed a partial (PR) or mixed response (MR). In total, 205 patients exhibited overall response (ORR). Patients with skin steroid-refractory aGVHD showed a better clinical response than gastrointestinal (CR: odds ratio [OR] = 1.93, 95% confidence interval [95%CI]: 1.05–3.57, p < 0.05) and liver (CR: OR = 2.30, 95%CI: 1.12–4.69, p < 0.05, and ORR: OR = 2.93, 95%CI: 1.06–8.08, p < 0.05) steroid-refractory aGVHD. Those with grade II steroid-refractory aGVHD exhibited a better clinical response following MSC therapy than recipients with grade III–IV (CR: OR = 3.22, 95%CI: 1.24–8.34, p < 0.05). Completion therapy may improve the CR but reduce ORR compared with induction therapy (CR: OR = 0.20, 95%CI: 0.09–0.44, p < 0.05; ORR: OR = 2.18, 95%CI: 1.17–4.05, p = 0.01). There was also a trend towards a better clinical response in children compared with adults (CR: OR = 2.41, 95%CI: 1.01–5.73, p = 0.05). Conclusions Age, skin involvement, lower aGVHD grade, and the number of infusions are the main prognostic factors affecting the efficacy of MSC therapy for steroid-refractory aGVHD.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YZ); (JW)
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YZ); (JW)
| |
Collapse
|
16
|
Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, Sanchez JA, McFadden DW, Maulik N. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol 2015; 201:517-28. [PMID: 26322599 DOI: 10.1016/j.ijcard.2015.08.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Engraftment of mesenchymal stem cells (MSCs) has emerged as a powerful candidate for mediating myocardial repair. In this study, we genetically modified MSCs with an adenovector encoding thioredoxin-1 (Ad.Trx1). Trx1 has been described as a growth regulator, a transcription factor regulator, a cofactor, and a powerful antioxidant. We explored whether engineered MSCs, when transplanted, are capable of improving cardiac function and angiogenesis in a rat model of myocardial infarction (MI). METHODS Rat MSCs were cultured and divided into MSC, MSC+Ad.LacZ, and MSC+Ad.Trx1 groups. The cells were assayed for proliferation, and differentiation potential. In addition, rats were divided into control-sham (CS), control-MI (CMI), MSC+Ad.LacZ-MI (MLZMI), and MSC+Ad.Trx1-MI (MTrxMI) groups. MI was induced by left anterior descending coronary artery (LAD) ligation, and MSCs preconditioned with either Ad.LacZ or Ad.Trx1 were immediately administered to four sites in the peri-infarct zone. RESULTS The MSC+Ad.Trx1 cells increased the proliferation capacity and maintained pluripotency, allowing them to divide into cardiomyocytes, smooth muscle, and endothelial cells. Western blot analysis, 4 days after treatment showed increased vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1), and C-X-C chemokine receptor type 4 (CXCR4). Also capillary density along with myocardial function as examined by echocardiography was found to be increased. Fibrosis was reduced in the MTrxMI group compared to MLZMI and CMI. Visualization of Connexin-43 by immunohistochemistry confirmed increased intercellular connections in the MTrxMI rats compared to MLZMI. CONCLUSION Engineering MSCs to express Trx1 may prove to be a strategic therapeutic modality in the treatment of cardiac failure.
Collapse
Affiliation(s)
- Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Joshua W Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Aaftab Husain
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - J Alexander Palesty
- Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Juan A Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA.
| |
Collapse
|
17
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
18
|
Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 2015; 8:54-68. [PMID: 26019755 PMCID: PMC4445710 DOI: 10.15283/ijsc.2015.8.1.54] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea ; Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Nam YS, Kim N, Im KI, Lim JY, Lee ES, Cho SG. Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis. World J Gastroenterol 2015; 21:2030-2039. [PMID: 25717235 PMCID: PMC4326137 DOI: 10.3748/wjg.v21.i7.2030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/05/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mesenchymal stem cells (MSCs) on dextran sulfate sodium-induced inflammatory bowel disease (IBD).
METHODS: C57BL/6 mice were fed 3.5% (g/L) dextran sulfate sodium. On day seven, the mice received intraperitoneal injections of 1 × 106 MSCs. The survival rate, disease activity index values, and body weight, were monitored daily. On day ten, colon lengths and histopathologic changes were assessed. In addition, immunoregulatory changes following MSC administration were evaluated by determining the levels of effector T cell responses in the spleen and mesenteric lymph nodes, and the expression levels of inflammatory cytokines in homogenized colons.
RESULTS: Intraperitoneal administration of MSCs did not prevent development of colitis and did not reduce the clinicopathologic severity of IBD. No significant difference was evident in either survival rate or disease activity index score between the control and MSC-treated group. Day ten-sacrificed mice exhibited no significant difference in either colon length or histopathologic findings. Indeed, the MSC-treated group exhibited elevated levels of interleukin (IL)-6 and transforming growth factor-β, and a reduced level of IL-10, in spleens, mesenteric lymph nodes, and homogenized colons. The IL-17 level was lower in the mesenteric lymph nodes of the MSC-treated group (P = 0.0126). In homogenized colons, the IL-17 and tumor necrosis factor-α (P = 0.0092) expression levels were also lower in the treated group.
CONCLUSION: MSC infusion provided no significant histopathologic or clinical improvement, thus representing a limited therapeutic approach for IBD. Functional enhancement of MSCs is needed in further study.
Collapse
|
20
|
Placenta as a Source of Stem Cells for Regenerative Medicine. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0070-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
De Oliveira GLV, De Lima KWA, Colombini AM, Pinheiro DG, Panepucci RA, Palma PVB, Brum DG, Covas DT, Simões BP, De Oliveira MC, Donadi EA, Malmegrim KCR. Bone Marrow Mesenchymal Stromal Cells Isolated from Multiple Sclerosis Patients have Distinct Gene Expression Profile and Decreased Suppressive Function Compared with Healthy Counterparts. Cell Transplant 2015; 24:151-65. [DOI: 10.3727/096368913x675142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system, due to an immune reaction against myelin proteins. Multipotent mesenchymal stromal cells (MSCs) present immunosuppressive effects and have been used for the treatment of autoimmune diseases. In our study, gene expression profile and in vitro immunomodulatory function tests were used to compare bone marrow-derived MSCs obtained from MS patients, at pre- and postautologous hematopoietic stem cell transplantation (AHSCT) with those from healthy donors. Patient MSCs comparatively exhibited i) senescence in culture; ii) similar osteogenic and adipogenic differentiation potential; iii) decreased expression of CD105, CD73, CD44, and HLA-A/B/C molecules; iv) distinct transcription at pre-AHSCT compared with control MSCs, yielding 618 differentially expressed genes, including the downregulation of TGFB1 and HGF genes and modulation of the FGF and HGF signaling pathways; v) reduced antiproliferative effects when pre-AHSCT MSCs were cocultured with allogeneic T-lymphocytes; vi) decreased secretion of IL-10 and TGF-β in supernatants of both cocultures (pre- and post-AHSCT MSCs); and vii) similar percentages of regulatory cells recovered after MSC cocultures. The transcriptional profile of patient MSCs isolated 6 months posttransplantation was closer to pre-AHSCT samples than from healthy MSCs. Considering that patient MSCs exhibited phenotypic changes, distinct transcriptional profile and functional defects implicated in MSC immunomodulatory and immunosuppressive activity, we suggest that further MS clinical studies should be conducted using allogeneic bone marrow MSCs derived from healthy donors. We also demonstrated that treatment of MS patients with AHSCT does not reverse the transcriptional and functional alterations observed in patient MSCs.
Collapse
Affiliation(s)
- Gislane L. V. De Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kalil W. A. De Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Amanda M. Colombini
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo A. Panepucci
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Patrícia V. B. Palma
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Doralina G. Brum
- Department of Neurology, Psychology and Psychiatry, School of Medicine of Botucatu, University of State of São Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Dimas T. Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Belinda P. Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria C. De Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo A. Donadi
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Rahimzadeh A, Mirakabad FST, Movassaghpour A, Shamsasenjan K, Kariminekoo S, Talebi M, Shekari A, Zeighamian V, Ghalhar MG, Akbarzadeh A. Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:559-70. [PMID: 25340260 DOI: 10.3109/21691401.2014.968823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent progenitor cells which reside in bone marrow (BM), support homing of hematopoietic stem cells (HSCs) and self-renewal in the BM. These cells have the potential to differentiate into tissues of mesenchymal origin, such as fibroblasts, adipocytes, cardiomyocytes, and stromal cells. MSCs can express surface molecules like CD13, CD29, CD44, CD73, CD90, CD166, CXCL12 and toll-like receptors (TLRs). Different factors, such as TGF-β, IL-10, IDO, PGE-2, sHLA-G5, HO, and Galectin-3, secreted by MSCs, induce interaction in cell to cell immunomodulatory effects on innate and adaptive cells of the immune system. Furthermore, these cells can stimulate and increase the TH2 and regulatory T-cells through inhibitory effects on the immune system. MSCs originate from the BM and other tissues including the brain, adipose tissue, peripheral blood, cornea, thymus, spleen, fallopian tube, placenta, Wharton's jelly and umbilical cord blood. Many studies have focused on two significant features of MSC therapy: (I) MSCs can modulate T-cell-mediated immunological responses, and (II) systemically administered MSCs home in to sites of ischemia or injury. In this review, we describe the known mechanisms of immunomodulation and homing of MSCs. As a result, this review emphasizes the functional role of MSCs in modulating immune responses, their capability in homing to injured tissue, and their clinical therapeutic potential.
Collapse
Affiliation(s)
- Amirbahman Rahimzadeh
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Aliakbar Movassaghpour
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Karim Shamsasenjan
- d Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tabriz , Iran
| | - Saber Kariminekoo
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Talebi
- e Hematology and Blood Banking Department, Faculty of Medical Science , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Shekari
- f Department Of Medical Genetic , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Vahideh Zeighamian
- g Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Masoud Gandomkar Ghalhar
- g Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- h Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
23
|
Abstract
Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
24
|
Patel SA, Dave MA, Bliss SA, Giec-Ujda AB, Bryan M, Pliner LF, Rameshwar P. T reg/Th17 polarization by distinct subsets of breast cancer cells is dictated by the interaction with mesenchymal stem cells. JOURNAL OF CANCER STEM CELL RESEARCH 2014; 2014:e1003. [PMID: 25705705 PMCID: PMC4334154 DOI: 10.14343/jcscr.2014.2e1003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cells (BCCs) exist within a hierarchy beginning with cancer stem cells (CSCs). Unsorted BCCs interact with mesenchymal stem cells (MSCs) to induce regulatory T cells (Tregs). This study investigated how distinct BCC subsets interacted with MSCs to polarize T-cell response, Tregs versus T helper 17 (Th17). This study tested BC initiating cells (CSCs) and the relatively more mature early and late BC progenitors. CSCs interacted with the highest avidity to MSCs. This interaction required CXCR4 and connexin 43 (Cx43)-dependant gap junctional intercellular communication (GJIC). This interaction induced Treg whereas interactions between MSCs and the progenitors induced Th17 response. The increases in Treg and Th17 depended on MSCs but not CTLA-4, which was increased in the presence of MSCs. Studies with BM stroma (fibroblasts) and MSCs from the same donors, indicated specific effects of MSCs. In total, MSC-CSC interaction required CXCR4 for GJIC. This led to increased Tregs and TGFβ, and decreased Th17. In contrast, late and early BCCs showed reduced formation of GJIC, decreased Treg and increased Th17 and IL-17. These findings have significance to the methods by which CSCs evade the immune response. The findings could provide methods of intervention to reverse immune-mediated protection and support of BC.
Collapse
Affiliation(s)
- Shyam A. Patel
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
- Graduate School of Biomedical Sciences, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Meneka A. Dave
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Sarah A. Bliss
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
- Graduate School of Biomedical Sciences, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Agata B. Giec-Ujda
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
- Graduate School of Biomedical Sciences, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Margarette Bryan
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Lillian F. Pliner
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| | - Pranela Rameshwar
- Dept of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Sciences, Newark, NJ, USA
| |
Collapse
|
25
|
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
26
|
Perspectives on the use of stem cells for autism treatment. Stem Cells Int 2013; 2013:262438. [PMID: 24222772 PMCID: PMC3810518 DOI: 10.1155/2013/262438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
27
|
Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013:130763. [PMID: 24194766 PMCID: PMC3806396 DOI: 10.1155/2013/130763] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo.
Collapse
|
28
|
Yoo HS, Yi T, Cho YK, Kim WC, Song SU, Jeon MS. Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease. Immune Netw 2013; 13:133-40. [PMID: 24009540 PMCID: PMC3759710 DOI: 10.4110/in.2013.13.4.133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 12/29/2022] Open
Abstract
Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft-versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and IFN-γ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.
Collapse
Affiliation(s)
- Hyun Seung Yoo
- Translational Research Center, Inha University School of Medicine, Incheon 400-711, Korea. ; Department of Drug Development, Inha University School of Medicine, Incheon 400-711, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Mohammadian M, Shamsasenjan K, Lotfi Nezhad P, Talebi M, Jahedi M, Nickkhah H, Minayi N, Movassagh Pour A. Mesenchymal stem cells: new aspect in cell-based regenerative therapy. Adv Pharm Bull 2013; 3:433-7. [PMID: 24312873 DOI: 10.5681/apb.2013.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022] Open
Abstract
MSCs are multipotent progenitors which reside in bone marrow. They support hematopoietic stem cells homing, self renewal and differentiation in bone marrow. They can also differentiate into osteoblasts, adipocytes, chondrocytes, myocyates and many other tissues. In vivo, when trauma happens, MSCs operate cell renewal and migrate to the damaged tissues to regenerate that injury. In vitro, MSCs are able to proliferate and differentiate to a variety of cell lineages. This makes them a very hopeful tool for cell-based regenerative therapy for large bone defects, maxillofacial skeletal reconstruction, cardiovascular and spinal cord injury and so many other defects. The most important characteristic that make MSCs an excellent tool for cell replacement is their ability to escape from immune rejection. For therapeutic purposes they usually isolated from human bone marrow or fat and they should proliferate in order to reach an adequate number for implantation. Conventionally DMEM medium supplemented with 10% FBS is used for their expansion, but currently autologous platelet rich products are replaced FBS. Platelet granules contain so many growth factors that can support MSCs proliferation.
Collapse
Affiliation(s)
- Mozhdeh Mohammadian
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent progenitor cells with multilineage potential to differentiate into cell types of mesodermal origin, such as adipocytes, osteocytes, and chondrocytes. In addition, MSCs can migrate to sites of inflammation and exert potent immunosuppressive and anti-inflammatory effects through interactions between lymphocytes associated with both the innate and adaptive immune system. Along with these unique therapeutic properties, their ease of accessibility and expansion suggest that use of MSCs may be a useful therapeutic approach for various disorders. In the clinical setting, MSCs are being explored in trials of various conditions, including orthopedic injuries, graft versus host disease following bone marrow transplantation, cardiovascular diseases, autoimmune diseases, and liver diseases. Furthermore, genetic modification of MSCs to overexpress antitumor genes has provided prospects for clinical use as anticancer therapy. Here, we highlight the currently reported uses of MSCs in clinical trials and discuss their efficacy as well as their limitations.
Collapse
Affiliation(s)
- Nayoun Kim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Seok-Goo Cho
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Kim N, Im KI, Lim JY, Jeon EJ, Nam YS, Kim EJ, Cho SG. Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: experiments and practice. Ann Hematol 2013; 92:1295-308. [DOI: 10.1007/s00277-013-1796-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/14/2013] [Indexed: 12/13/2022]
|
32
|
Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 2013; 15:1054-61. [PMID: 23602578 DOI: 10.1016/j.jcyt.2013.02.010] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/21/2013] [Accepted: 02/18/2013] [Indexed: 12/16/2022]
Abstract
Cultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of the International Society for Cellular Therapy has decided to put forward for general discussion a working proposal for a standardized approach based on a critical view of literature data.
Collapse
Affiliation(s)
- Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Verona, Italy.
| | | | | | | | | |
Collapse
|
33
|
Matysiak M, Fortak-Michalska M, Szymanska B, Orlowski W, Jurewicz A, Selmaj K. MicroRNA-146a Negatively Regulates the Immunoregulatory Activity of Bone Marrow Stem Cells by Targeting Prostaglandin E2 Synthase-2. THE JOURNAL OF IMMUNOLOGY 2013; 190:5102-9. [DOI: 10.4049/jimmunol.1202397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Abstract
Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.
Collapse
Affiliation(s)
- Naoki Ichiryu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
35
|
Lim R, Milton P, Murphy SV, Dickinson H, Chan ST, Jenkin G. Human mesenchymal stem cells reduce lung injury in immunocompromised mice but not in immunocompetent mice. ACTA ACUST UNITED AC 2012. [PMID: 23207668 DOI: 10.1159/000343078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The immunomodulatory and immunosuppressive capacity of human mesenchymal stem cells (hMSC) is well recognized, but efficacies of hMSC in immunocompetent and immunocompromised animals have never been directly compared. OBJECTIVES We aimed to compare the efficacy of hMSC in preventing bleomycin-induced lung injury in immunocompromised SCID and immunocompetent C57Bl/6 mice. METHODS SCID and C57Bl/6 mice were subjected to a single bolus intranasal instillation of bleomycin to induce lung injury. One million hMSC were administered intravenously 24 h following the induction of bleomycin lung injury. RESULTS hMSC xenotransplantation into SCID mice resulted in transient improvements in lung weight and tidal volume and to persistent improvement in inspiratory duty cycle, inspiratory flow rate and inspiration/expiration ratio. We did not observed protective effects in C57Bl/6 mice. This correlated with histological changes, where hMSC administration reduced Ashcroft scores, collagen deposition and inflammatory influx in the lungs of SCID mice, but not in those of C57Bl/6 mice. CONCLUSION The application of hMSC for the treatment of acute and chronic lung injury is significantly affected by the immune status of the recipient. Lack of hMSC-mediated repair observed in C57Bl/6 mice was likely to be due to limitations of their immune privilege and differential priming of hMSC in immunocompetent versus immunocompromised hosts.
Collapse
Affiliation(s)
- Rebecca Lim
- Ritchie Centre, Monash Institute for Medical Research, Clayton, VIC 3168, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Xia X, Chen W, Ma T, Xu G, Liu H, Liang C, Bai X, Zhang Y, He Y, Liang T. Mesenchymal stem cells administered after liver transplantation prevent acute graft-versus-host disease in rats. Liver Transpl 2012; 18:696-706. [PMID: 22344929 DOI: 10.1002/lt.23414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute graft-versus-host disease is a serious and life-threatening complication of liver transplantation (LT) that occurs in 1% to 2% of liver allograft recipients. It is associated with a high mortality rate, and effective therapies are lacking. In our established rat model, a relative decrease in regulatory T cells (Tregs) was previously shown to be associated with acute graft-versus-host disease after liver transplantation (LT-aGVHD). Mesenchymal stem cells (MSCs) have been used to treat graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, and they have been shown to induce Tregs, which have immunomodulatory effects. In this study, when a treatment with donor- or recipient-derived MSCs was administered from day 8 to day 14 after the typical symptoms of LT-aGVHD started, the recipients were not cured, and their survival time was not prolonged. However, when MSCs of different origins were administered from day 0 to day 6 after LT, the recipients survived significantly longer than the control group, and the surviving MSC-treated rats did not show typical LT-aGVHD symptoms. In vivo tracings of carboxyfluorescein diacetate succinimidyl ester-stained MSCs did not show significant accumulations in the target organs after administration. Flow cytometry analysis showed that the Treg ratios in peripheral blood were more higher for the MSC-treated groups versus the control group. More immunohistochemically stained forkhead box P3-positive cells were also found in the intestines of the MSC-treated groups versus the control group. Further investigations of the function of MSCs showed that they could increase the Treg ratio in a mixed lymphocyte reaction (MLR) and lead to a greater reduction in MLR proliferation in vitro. In conclusion, the post-LT administration of MSCs of either donor or recipient origin could prevent the onset of LT-aGVHD in our rat model.
Collapse
Affiliation(s)
- Xuefeng Xia
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hogenes MCH, van Dorp S, van Kuik J, Monteiro FRP, ter Hoeve N, van Dijk MR, Martens AC, de Weger RA. Histological assessment of the sclerotic graft-versus-host response in the humanized RAG2-/-γc-/- mouse model. Biol Blood Marrow Transplant 2012; 18:1023-35. [PMID: 22579931 DOI: 10.1016/j.bbmt.2012.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Graft-versus-host disease (GVHD) remains a frequently occurring and difficult-to-treat complication in human allogeneic stem cell transplantation. Murine transplantation models are often used to study and understand the complex pathogenesis of GVHD and to explore new treatment strategies. Although GVHD kinetics may differ in murine and human models, adequate models are essential for identification of the crucial factors responsible for the major pathology in GVHD. We present a detailed description of the specific histological features of a graft-versus-host-induced fibrotic response in xenogeneic RAG2(-/-)γc(-/-) mice after total body irradiation and injection with human peripheral blood mononuclear cells. We describe the full morphological features of this reaction, including a detailed analysis of the specific tissue infiltration patterns of the human peripheral blood mononuclear cells. Our data show the development of fibrosis, predominantly near blood vessels, and reveal different cell populations and specific cell migration patterns in the affected organs. The combination of immunohistochemical cell characterization and mRNA expression analysis of both human (donor)- and murine (host)-derived cytokines reveals an interaction between host tissues and donor-derived cells in an entangled cytokine profile, in which both donor- and host-derived cytokines contribute to the formation of fibrosis.
Collapse
Affiliation(s)
- Marieke C H Hogenes
- Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? J Biomed Biotechnol 2012; 2012:480289. [PMID: 22496609 PMCID: PMC3303614 DOI: 10.1155/2012/480289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 12/16/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs) show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.
Collapse
|
39
|
Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011. [PMID: 22164136 DOI: 10.3389/fnint.2011.00079.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. METHODS Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. RESULTS hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. CONCLUSION As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Dario Siniscalco
- Division of Pharmacology "L. Donatelli," Department of Experimental Medicine, Second University of Naples Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011; 5:79. [PMID: 22164136 PMCID: PMC3230031 DOI: 10.3389/fnint.2011.00079] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/16/2011] [Indexed: 12/24/2022] Open
Abstract
Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Dario Siniscalco
- Division of Pharmacology "L. Donatelli," Department of Experimental Medicine, Second University of Naples Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Despite recent studies suggesting that the heart has instrinsic mechanisms of self-regeneration following myocardial infarction, it cannot regenerate itself to an optimal level. Mesenchymal stem cells (MSCs) are currently being investigated for regeneration of mesenchyme-derived tissues, such as bone, cartilage and tendon. In vitro evidence suggests that MSCs can also differentiate into cardiomyogenic and vasculogenic lineages, offering another cell source for cardiovascular regeneration. In vivo, MSCs may contribute to the re-growth and protection of vasculature and cardiomyocytes, mediated by paracrine actions, and/or persist within the myocardium in a differentiated state; although proof of cardiomyocytic phenotype and functional integration remains elusive. Herein, we review the evidence of MSCs as a cell source for cardiovascular regeneration, as well as their limitations that may prevent them from being effectively used in the clinic.
Collapse
Affiliation(s)
- Drew Kuraitis
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | | | | |
Collapse
|
42
|
Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. BONE MARROW RESEARCH 2011; 2011:353878. [PMID: 22046560 PMCID: PMC3196250 DOI: 10.1155/2011/353878] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.
Collapse
|
43
|
Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P. microRNAs, Gap Junctional Intercellular Communication and Mesenchymal Stem Cells in Breast Cancer Metastasis. CURRENT CANCER THERAPY REVIEWS 2011; 7:176-183. [PMID: 21886602 DOI: 10.2174/157339411796234915] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The failed outcome of autologous bone marrow transplantation for breast cancer opens the field for investigations. This is particularly important because the bone marrow could be a major source of cancer cells during tertiary metastasis. This review discusses subsets of breast cancer cells, including those that enter the bone marrow at an early period of disease development, perhaps prior to clinical detection. This population of cells evades chemotherapeutic damage even at high doses. An understanding of this population might be crucial for the success of bone marrow transplants for metastatic breast cancer and for the eradication of cancer cells in bone marrow. In vivo and in vitro studies have demonstrated gap junctional intercellular communication (GJIC) between bone marrow stroma and breast cancer cells. This review discusses GJIC in cancer metastasis, facilitating roles of mesenchymal stem cells (MSCs). In addition, the review addresses potential roles for miRNAs, including those already linked to cancer biology. The literature on MSCs is growing and their links to metastasis are beginning to be significant leads for the development of new drug targets for breast cancer. In summary, this review discusses interactions among GJIC, miRNAs and MSCs as future consideration for the development of cancer therapies.
Collapse
Affiliation(s)
- Larissa A Gregory
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
44
|
Mafi R, Hindocha S, Mafi P, Griffin M, Khan WS. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications - a systematic review of the literature. Open Orthop J 2011; 5 Suppl 2:242-8. [PMID: 21886689 PMCID: PMC3149887 DOI: 10.2174/1874325001105010242] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were first discovered by Friedenstein and his colleagues in 1976 from bone marrow. The unique property of these cells was their potential to develop into fibroblastic colony forming cells. Since Friedenstein’s discovery of these cells the interest in adult MSCs has been progressively growing. Nowadays MSCs are defined as undeveloped biological cells capable of proliferation, self renewal and regenerating tissues. All these properties of MSCs have been discovered in the past 35 years. MSCs can play a crucial role in tissue engineering, organogenesis, gene therapy, transplants as well as tissue injuries. These cells were mainly extracted from bone marrow but there have been additional sources for MSCs discovered in the laboratories including: muscle, dermis, trabecular bone, adipose tissue, periosteum, pericyte, blood, synovial membrane and so forth. The discovery of the alternative sources of MSCs helps widen the application of these cells in different areas of medicine. By way of illustration, they can be used in various therapeutic purposes such as tissue regeneration and repair in musculoskeletal diseases including osteonecrosis of femoral head, stimulating growth in children with osteogenesis imperfecta, disc regeneration, osteoarthritis and duchenne muscular dystrophy. In order to fully comprehend the characteristics and potential of MSCs future studies in this field are essential.
Collapse
Affiliation(s)
- R Mafi
- The Hull York Medical School, Hertford Building, Hull, HU6 7RX, UK
| | | | | | | | | |
Collapse
|
45
|
Abstract
Many in vitro and in vivo data are available supporting the role of mesenchymal stromal cell (MSC) licensing in the induction of a measurable and effective immune regulation. The failure of some MSC-based protocols for immune modulation in animal models and in human clinical trials may be explained by either lack of a proper licensing by inflammatory microenvironment or wrong timing in MSC administration. Thus, optimization of MSC use for immune-regulating purposes is required to maximize their beneficial effects.
Collapse
|
46
|
Matysiak M, Orlowski W, Fortak-Michalska M, Jurewicz A, Selmaj K. Immunoregulatory function of bone marrow mesenchymal stem cells in EAE depends on their differentiation state and secretion of PGE2. J Neuroimmunol 2011; 233:106-11. [DOI: 10.1016/j.jneuroim.2010.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/17/2010] [Accepted: 12/10/2010] [Indexed: 12/12/2022]
|
47
|
Crisan M, Corselli M, Chen CW, Péault B. Multilineage stem cells in the adult: a perivascular legacy? Organogenesis 2011; 7:101-4. [PMID: 21593599 PMCID: PMC3142446 DOI: 10.4161/org.7.2.16150] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells proliferate extensively in cultures of unselected, total cell isolates from multiple fetal and adult organs. Perivascular cells, principally pericytes surrounding capillaries and microvessels, but also adventitial cells located around larger arteries and veins, have been recently identified as possible originators of mesenchymal stem cells, first by phenotypic analogies and eventually following stringent cell sorting. While it is clear that purified perivascular cells exhibit multiple mesodermal developmental potentials and become indistinguishable from conventionally derived mesenchymal stem cells after in vitro culture, the possible roles played by these blood vessel-bound cells in organogenesis and adult tissue repair remain elusive. Unsolved questions regarding the identity of mesenchymal stem cells have not compromised the consideration of these cells as outstanding candidates for cell therapies. Better knowledge of the lineage affiliation, tissue distribution and molecular identity of mesenchymal stem cells will contribute to the development of more efficient, safer therapeutic cells.
Collapse
Affiliation(s)
- Mihaela Crisan
- Department of Cell Biology; Erasmus MC Stem Cell Institute; Erasmus University; Rotterdam, The Netherlands
| | - Mirko Corselli
- Orthopaedic Hospital Research Center; University of California at Los Angeles; Los Angeles, CA
| | - Chien-Wen Chen
- Stem Cell Research Center; Children's Hospital; University of Pittsburgh; Pittsburgh, PA USA
| | - Bruno Péault
- Orthopaedic Hospital Research Center; University of California at Los Angeles; Los Angeles, CA
- David Geffen School of Medicine at UCLA and Broad Stem Cell Research Center; University of California at Los Angeles; Los Angeles, CA
- Center For Cardiovascular Science; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, Scotland UK
| |
Collapse
|
48
|
Wu Y, Ren M, Yang R, Liang X, Ma Y, Tang Y, Huang L, Ye J, Chen K, Wang P, Shen H. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther 2011; 13:R29. [PMID: 21338515 PMCID: PMC3241373 DOI: 10.1186/ar3257] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/16/2011] [Accepted: 02/21/2011] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is a chronic autoimmune disease, and the precise pathogenesis is largely unknown at present. Bone marrow-derived mesenchymal stem cells (BMSCs) with immunosuppressive and anti-inflammatory potential and Th17/Treg cells with a reciprocal relationship regulated by BMSCs have been reported to be involved in some autoimmune disorders. Here we studied the biological and immunological characteristics of BMSCs, the frequency and phenotype of CCR4+CCR6+ Th/Treg cells and their interaction in vitro in AS. METHODS The biological and immunomodulation characteristics of BMSCs were examined by induced multiple-differentiation and two-way mixed peripheral blood mononuclear cell (PBMC) reactions or after stimulation with phytohemagglutinin, respectively. The interactions of BMSCs and PBMCs were detected with a direct-contact co-culturing system. CCR4+CCR6+ Th/Treg cells and surface markers of BMSCs were assayed using flow cytometry. RESULTS The AS-BMSCs at active stage showed normal proliferation, cell viability, surface markers and multiple differentiation characteristics, but significantly reduced immunomodulation potential (decreased 68 ± 14%); the frequencies of Treg and Fox-P3+ cells in AS-PBMCs decreased, while CCR4+CCR6+ Th cells increased, compared with healthy donors. Moreover, the AS-BMSCs induced imbalance in the ratio of CCR4+CCR6+ Th/Treg cells by reducing Treg/PBMCs and increasing CCR4+CCR6+ Th/PBMCs, and also reduced Fox-P3+ cells when co-cultured with PBMCs. Correlation analysis showed that the immunomodulation potential of BMSCs has significant negative correlations with the ratio of CCR4+CCR6+ Th to Treg cells in peripheral blood. CONCLUSIONS The immunomodulation potential of BMSCs is reduced and the ratio of CCR4+CCR6+ Th/Treg cells is imbalanced in AS. The BMSCs with reduced immunomodulation potential may play a novel role in AS pathogenesis by inducing CCR4+CCR6+ Th/Treg cell imbalance.
Collapse
Affiliation(s)
- Yanfeng Wu
- Department of Othopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Mingliang Ren
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Rui Yang
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Xinjun Liang
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Yuanchen Ma
- Department of Othopaedics, Guangdong Provincial People Hospital, 106# Zhongshan Road 2, Guangzhou 510080, PR China
| | - Yong Tang
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Lin Huang
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Jichao Ye
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Keng Chen
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Peng Wang
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| | - Huiyong Shen
- Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yanjiangxi Road, Guangzhou 510120, PR China
| |
Collapse
|
49
|
Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 2011; 81:162-71. [PMID: 21339039 DOI: 10.1016/j.diff.2011.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/28/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.
Collapse
Affiliation(s)
- Silvia Díaz-Prado
- Department of Medicine, INIBIC-University of A Coruña, Spain; CIBER-BBN-Cellular Therapy Area, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 2011; 28:1446-55. [PMID: 20597105 DOI: 10.1002/stem.459] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells or mesenchymal stem cells (MSCs) have captured considerable scientific and public interest because of their potential to limit physical and immune injury, to produce bioactive molecules and to regenerate tissues. MSCs are phenotypically heterogeneous and distinct subpopulations within MSC cultures are presumed to contribute to tissue repair and the modulation of allogeneic immune responses. As the first example of efficacy, clinical trials for prevention and treatment of graft-versus-host disease after hematopoietic cell transplantation show that MSCs can effectively treat human disease. The view of the mechanisms whereby MSCs function as immunomodulatory and reparative cells has evolved simultaneously. Initially, donor MSCs were thought to replace damaged cells in injured tissues of the recipient. More recently, however, it has become increasingly clear that even transient MSC engraftment may exert favorable effects through the secretion of cytokines and other paracrine factors, which engage and recruit recipient cells in productive tissue repair. Thus, an important reason to investigate MSCs in mechanistic preclinical models and in clinical trials with well-defined end points and controls is to better understand the therapeutic potential of these multifunctional cells. Here, we review the controversies and recent insights into MSC biology, the regulation of alloresponses by MSCs in preclinical models, as well as clinical experience with MSC infusions (Table 1) and the challenges of manufacturing a ready supply of highly defined transplantable MSCs.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | |
Collapse
|