1
|
Cakmak-Arslan G, Kaya Y, Mamuk S, Akarsu ES, Severcan F. The investigation of the molecular changes during lipopolysaccharide-induced systemic inflammation on rat hippocampus by using FTIR spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300541. [PMID: 38531619 DOI: 10.1002/jbio.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.
Collapse
Affiliation(s)
- Gulgun Cakmak-Arslan
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Yildiray Kaya
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Soner Mamuk
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eyup Sabri Akarsu
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
2
|
Donadoni E, Siani P, Frigerio G, Milani C, Cui Q, Di Valentin C. The effect of polymer coating on nanoparticles' interaction with lipid membranes studied by coarse-grained molecular dynamics simulations. NANOSCALE 2024. [PMID: 38646798 DOI: 10.1039/d4nr00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nanoparticles' (NPs) permeation through cell membranes, whether it happens via passive or active transport, is an essential initial step for their cellular internalization. The NPs' surface coating impacts the way they translocate through the lipid bilayer and the spontaneity of the process. Understanding the molecular details of NPs' interaction with cell membranes allows the design of nanosystems with optimal characteristics for crossing the lipid bilayer: computer simulations are a powerful tool for this purpose. In this work, we have performed coarse-grained molecular dynamics simulations and free energy calculations on spherical titanium dioxide NPs conjugated with polymer chains of different chemical compositions. We have demonstrated that the hydrophobic/hydrophilic character of the chains, more than the nature of their terminal group, plays a crucial role in determining the NPs' interaction with the lipid bilayer and the thermodynamic spontaneity of NPs' translocation from water to the membrane. We envision that this computational work will be helpful to the experimental community in terms of the rational design of NPs for efficient cell membrane permeation.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Carolina Milani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| |
Collapse
|
3
|
Kawon K, Setkowicz Z, Drozdz A, Janeczko K, Chwiej J. The methods of vibrational microspectroscopy reveals long-term biochemical anomalies within the region of mechanical injury within the rat brain. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120214. [PMID: 34325168 DOI: 10.1016/j.saa.2021.120214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI), meaning functional or structural brain damage which appear as a result of the application of the external physical force, constitutes the main cause of death and disability of individuals and a great socioeconomic problem. To search for the new therapeutic strategies for TBI, better knowledge about posttraumatic pathological changes occurring in the brain is necessary. Therefore in the present paper the Fourier transform infrared microspectroscopy and Raman microscopy were used to examine local and remote biochemical changes occurring in the rat brain as a result of focal cortex injury. The site of the injury and the dorsal part of the hippocampal formation together with the above situated cortex and white matter were the subject of the study. The topographic and quantitative biochemical analysis followed with the statistical study using principal component analysis showed significant biomolecular anomalies within the lesion site but not in the area of the dorsal hippocampal formation and in the above situated white matter and cortex. The observed intralesional anomalies included significantly decreased accumulation of lipids and their structural changes within the place of injury. Also the levels of compounds containing phosphate and carbonyl groups were lower within the lesion site comparing to the surrounding cortex. The opposite relation was, in turn, found for the bands characteristic to proteins and cholesterol/cholesterol esters.
Collapse
Affiliation(s)
- Kamil Kawon
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Zuzanna Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | - Agnieszka Drozdz
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Krzysztof Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | - Joanna Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| |
Collapse
|
4
|
Chatchawal P, Wongwattanakul M, Tippayawat P, Jearanaikoon N, Jumniansong A, Boonmars T, Jearanaikoon P, Wood BR. Monitoring the Progression of Liver Fluke-Induced Cholangiocarcinoma in a Hamster Model Using Synchrotron FTIR Microspectroscopy and Focal Plane Array Infrared Imaging. Anal Chem 2020; 92:15361-15369. [PMID: 33170647 DOI: 10.1021/acs.analchem.0c02656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is a bile duct cancer that originates in the bile duct epithelium. Northeastern Thailand has the highest incidence of CCA, and there is a direct correlation with liver fluke (Opisthorchis viverrini) infection. The high mortality rate of CCA is a consequence of delayed diagnosis. Fourier transform infrared (FTIR) spectroscopy is a powerful technique that detects the absorbance of molecular vibrations and is perfectly suited for the interrogation of biological samples. In this study, we applied synchrotron radiation-FTIR (SR-FTIR) microspectroscopy and focal plane array (FPA-FTIR) microspectroscopy to characterize periductal fibrosis and bile duct cells progressing to CCA induced by inoculating O. viverrini metacercariae into hamsters. SR-FTIR and FPA-FTIR measurements were performed in liver sections harvested from 1-, 2-, 3-, and 6-month post-infected hamsters compared to uninfected liver tissues. Principal component analysis (PCA) of the tissue samples showed a clear discrimination among uninfected and early-stage (1 and 2 months) and cancerous-stage (3 and 6 months) tissues. The discrimination is based on intensity changes in the phosphodiester band (1081 cm-1), amino acid residue (∼1396 cm-1), and C═O stretching carboxylic esters (1745 cm-1). Infected tissues also show definitive bands at ∼1280, 1234, and 1201 cm-1 characteristic of the collagen triplet and indicative of fibrosis. Hierarchical cluster analysis (HCA) was performed on the FPA data and showed a classification into specific cell types. Hepatocyte, fibrotic lesion, and bile duct (cancer) were classified and HCA mapping showed similar cellular distribution pattern compared to Sirius red staining. This study was also extended to less invasive sample analysis using attenuated total reflectance-FTIR (ATR-FTIR) spectroscopy. Sera from O. viverrini-infected and uninfected hamsters were analyzed using multivariate analysis, including principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA). PCA was able to classify spectra of normal, early-stage CCA, and CCA, while the PLS-DA gave 100% accuracy for the validation. The model was established from 17 samples (11 normal, 6 cancer) in the calibration set and 9 samples in the validation set (4 normal, 2 cancer, 3 precancerous). These results indicate that FTIR-based technology is a potential tool to detect the progression of CCA, especially in the early stages of the disease.
Collapse
Affiliation(s)
- Patutong Chatchawal
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Molin Wongwattanakul
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Patcharaporn Tippayawat
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Amonrat Jumniansong
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thidarat Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Jearanaikoon
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Bayden R Wood
- Center for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Victoria 3800, Australia
| |
Collapse
|
5
|
Mehra S, Chadha P. Alterations in structure of biomolecules using ATR-FTIR and histopathological variations in brain tissue of Channa punctatus exposed to 2Naphthalene sufonate. Toxicol Res (Camb) 2020; 9:530-536. [PMID: 32905108 DOI: 10.1093/toxres/tfaa052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/12/2022] Open
Abstract
2Naphthalene sulfonate (2NS) is an intermediate compound used in textile industries. Being nonbiodegradable, the concerns regarding its biotoxicity have risen. In the present investigation the toxic effects of 2NS were analyzed with the help of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), which was used to monitor changes in the vibrational modes of functional groups within the biomolecules. After calculating LD 50, one half of LD 50 i.e. 0.33 mg/15 g b.w. was intraperitoneally administrated and the brain tissue was collected for investigation after 96 h of exposure. The spectra observed revealed the significant differences in absorbance and areas between control and treated groups reflecting the change in proteins, lipids and nucleic acid due to toxicity induced by 2NS. In addition, protein secondary structure analysis was focused in this study, which reveals alterations in α helix and β sheet structure after 2NS intoxication. Histopathology of brain was also studied, which reveals changes in the histology of brain in group treated with 2NS. In conclusion, the study highlighted the application of ATR-FTIR and histopathology for toxicity assessment.
Collapse
Affiliation(s)
- Sukanya Mehra
- Department of Zoology, Guru Nanak Dev University, Scf 54, UT Market Grand Trunk Road, Off, NH 1, Amritsar, Punjab 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Scf 54, UT Market Grand Trunk Road, Off, NH 1, Amritsar, Punjab 143005, India
| |
Collapse
|
6
|
Favaro L, Cagnin L, Corte L, Roscini L, De Pascale F, Treu L, Campanaro S, Basaglia M, van Zyl WH, Casella S, Cardinali G. Metabolomic Alterations Do Not Induce Metabolic Burden in the Industrial Yeast M2n[pBKD2- Pccbgl1]-C1 Engineered by Multiple δ-Integration of a Fungal β-Glucosidase Gene. Front Bioeng Biotechnol 2019; 7:376. [PMID: 31850332 PMCID: PMC6893308 DOI: 10.3389/fbioe.2019.00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
In the lignocellulosic yeast development, metabolic burden relates to redirection of resources from regular cellular activities toward the needs created by recombinant protein production. As a result, growth parameters may be greatly affected. Noteworthy, Saccharomyces cerevisiae M2n[pBKD2-Pccbgl1]-C1, previously developed by multiple δ-integration of the β-glucosidase BGL3, did not show any detectable metabolic burden. This work aims to test the hypothesis that the metabolic burden and the metabolomic perturbation induced by the δ-integration of a yeast strain, could differ significantly. The engineered strain was evaluated in terms of metabolic performances and metabolomic alterations in different conditions typical of the bioethanol industry. Results indicate that the multiple δ-integration did not affect the ability of the engineered strain to grow on different carbon sources and to tolerate increasing concentrations of ethanol and inhibitory compounds. Conversely, metabolomic profiles were significantly altered both under growing and stressing conditions, indicating a large extent of metabolic reshuffling involved in the maintenance of the metabolic homeostasis. Considering that four copies of BGL3 gene have been integrated without affecting any parental genes or promoter sequences, deeper studies are needed to unveil the mechanisms implied in these metabolomic changes, thus supporting the optimization of protein production in engineered strains.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Lorenzo Cagnin
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Perugia, Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Perugia, Italy
| | | | - Laura Treu
- Department of Biology, University of Padova, Padova, Italy
| | | | - Marina Basaglia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Matieland, South Africa
| | - Sergio Casella
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, Centre of Excellence on Nanostructured Innovative Materials (CEMIN), University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Blümel R, Lukacs R, Zimmermann B, Bağcıoğlu M, Kohler A. Observation of Mie ripples in the synchrotron Fourier transform infrared spectra of spheroidal pollen grains. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:1769-1779. [PMID: 30462098 DOI: 10.1364/josaa.35.001769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Conceptually, biological cells are dielectric, photonic resonators that are expected to show a rich variety of shape resonances when exposed to electromagnetic radiation. For spheroidal cells, these shape resonances may be predicted and analyzed using the Mie theory of dielectric spheres, which predicts that a special class of resonances, i.e., whispering gallery modes (WGMs), causes ripples in the absorbance spectra of spheroidal cells. Indeed, the first tentative indication of the presence of Mie ripples in the synchrotron Fourier transform infrared (SFTIR) absorbance spectra of Juniperus chinensis pollen has already been reported [Analyst140, 3273 (2015)ANLYAG0365-488510.1039/C5AN00401B]. To show that this observation is no isolated incidence, but a generic spectral feature that can be expected to occur in all spheroidal biological cells, we measured and analyzed the SFTIR absorbance spectra of Cunninghamia lanceolata, Juniperus chinensis, Juniperus communis, and Juniperus excelsa. All four pollen species show Mie ripples. Since the WGMs causing the ripples are surface modes, we propose ripple spectroscopy as a powerful tool for studying the surface properties of spheroidal biological cells. In addition, our paper draws attention to the fact that shape resonances need to be taken into account when analyzing (S)FTIR spectra of isolated biological cells since shape resonances may distort the shape or mimic the presence of chemical absorption bands.
Collapse
|
8
|
Pallua JD, Brunner A, Zelger B, Stalder R, Unterberger SH, Schirmer M, Tappert MC. Clinical infrared microscopic imaging: An overview. Pathol Res Pract 2018; 214:1532-1538. [PMID: 30220435 DOI: 10.1016/j.prp.2018.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 11/16/2022]
Abstract
New developments in Mid-infrared microscopic imaging instrumentation and data analysis have turned this method into a conventional technique. This imaging method offers a global analysis of samples, with a resolution close to the cellular level enabling the acquisition of local molecular expression profiles. It is possible to get chemo-morphological information about the tissue status, which represents an essential benefit for future analytical interpretation of pathological changes of tissue. In this review, we give an overview of Mid-infrared microscopic imaging and its applications in clinical research.
Collapse
Affiliation(s)
- J D Pallua
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria; Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria.
| | - A Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - B Zelger
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - R Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - S H Unterberger
- Material-Technology, Leopold-Franzens University Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - M C Tappert
- Hyperspectral Intelligence Inc., Box 851, V0N 1V0, Gibsons, Canada
| |
Collapse
|
9
|
Sahu RK, Salman A, Mordechai S. Tracing overlapping biological signals in mid-infrared using colonic tissues as a model system. World J Gastroenterol 2017; 23:286-296. [PMID: 28127202 PMCID: PMC5236508 DOI: 10.3748/wjg.v23.i2.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/19/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To understand the interference of carbohydrates absorbance in nucleic acids signals during diagnosis of malignancy using Fourier transform infrared (FTIR) spectroscopy.
METHODS We used formalin fixed paraffin embedded colonic tissues to obtain infrared (IR) spectra in the mid IR region using a bruker II IR microscope with a facility for varying the measurement area by varying the aperture available. Following this procedure we could measure different regions of the crypt circles containing different biochemicals. Crypts from 18 patients were measured. Circular crypts with a maximum diameter of 120 μm and a lumen of about 30 μm were selected for uniformity. The spectral data was analyzed using conventional and advanced computational methods.
RESULTS Among the various components that are observed to contribute to the diagnostic capabilities of FTIR, the carbohydrates and nucleic acids are prominent. However there are intrinsic difficulties in the diagnostic capabilities due to the overlap of major absorbance bands of nucleic acids, carbohydrates and phospholipids in the mid-IR region. The result demonstrates colonic tissues as a biological system suitable for studying interference of carbohydrates and nucleic acids under ex vivo conditions. Among the diagnostic parameters that are affected by the absorbance from nucleic acids is the RNA/DNA ratio, dependent on absorbance at 1121 cm-1 and 1020 cm-1 that is used to classify the normal and cancerous tissues especially during FTIR based diagnosis of colonic malignancies. The signals of the nucleic acids and the ratio (RNA/DNA) are likely increased due to disappearance of interfering components like carbohydrates and phosphates along with an increase in amount of RNA.
CONCLUSION The present work, proposes one mechanism for the observed changes in the nucleic acid absorbance in mid-IR during disease progression (carcinogenesis).
Collapse
|
10
|
Diem M, Miljković M, Bird B, Mazur AI, Schubert JM, Townsend D, Laver N, Almond M, Old O. Cancer screening via infrared spectral cytopathology (SCP): results for the upper respiratory and digestive tracts. Analyst 2017; 141:416-28. [PMID: 26421636 DOI: 10.1039/c5an01751c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Instrumental advances in infrared micro-spectroscopy have made possible the observation of individual human cells and even subcellular structures. The observed spectra represent a snapshot of the biochemical composition of a cell; this composition varies subtly but reproducibly with cellular effects such as progression through the cell cycle, cell maturation and differentiation, and disease. The aim of this summary is to provide a synopsis of the progress achieved in infrared spectral cytopathology (SCP) - the combination of infrared micro-spectroscopy and multivariate methods of analysis - for the detection of abnormalities in exfoliated human cells of the upper respiratory and digestive tract, namely the oral and nasopharyngeal cavities, and the esophagus.
Collapse
Affiliation(s)
- Max Diem
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Cireca Theranostics, LLC, 19 Blackstone St, Cambridge, MA 02139, USA.
| | - Miloš Miljković
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Benjamin Bird
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Antonella I Mazur
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jen M Schubert
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Douglas Townsend
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Nora Laver
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Max Almond
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, UK
| | - Oliver Old
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, UK
| |
Collapse
|
11
|
Eberhardt K, Matthäus C, Winter D, Wiegand C, Hipler UC, Diekmann S, Popp J. Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model. Analyst 2017; 142:4405-4414. [DOI: 10.1039/c7an00592j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Senescence-associated alterations were detected in biomolecules of 3D cultured cells and these cells were distinguished from 2D cultured cells.
Collapse
Affiliation(s)
- Katharina Eberhardt
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| | - Doreen Winter
- University Hospital Jena
- Department of Dermatology
- 07740 Jena
- Germany
| | - Cornelia Wiegand
- University Hospital Jena
- Department of Dermatology
- 07740 Jena
- Germany
| | | | - Stephan Diekmann
- Leibniz Institute on Aging – Fritz Lipmann Institute
- Department of Molecular Biology
- 07745 Jena
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| |
Collapse
|
12
|
Tiwari S, Raman J, Reddy V, Ghetler A, Tella RP, Han Y, Moon CR, Hoke CD, Bhargava R. Towards Translation of Discrete Frequency Infrared Spectroscopic Imaging for Digital Histopathology of Clinical Biopsy Samples. Anal Chem 2016; 88:10183-10190. [PMID: 27626947 DOI: 10.1021/acs.analchem.6b02754] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fourier transform infrared (FT-IR) spectroscopic imaging has been widely tested as a tool for stainless digital histology of biomedical specimens, including for the identification of infiltration and fibrosis in endomyocardial biopsy samples to assess transplant rejection. A major barrier in clinical translation has been the slow speed of imaging. To address this need, we tested and report here the viability of using high speed discrete frequency infrared (DFIR) imaging to obtain stain-free biochemical imaging in cardiovascular samples collected from patients. Images obtained by this method were classified with high accuracy by a Bayesian classification algorithm trained on FT-IR imaging data as well as on DFIR data. A single spectral feature correlated with instances of fibrosis, as identified by the pathologist, highlights the advantage of the DFIR imaging approach for rapid detection. The speed of digital pathologic recognition was at least 16 times faster than the fastest FT-IR imaging instrument. These results indicate that a fast, on-site identification of fibrosis using IR imaging has potential for real time assistance during surgeries. Further, the work describes development and applications of supervised classifiers on DFIR imaging data, comparing classifiers developed on FT-IR and DFIR imaging modalities and identifying specific spectral features for accurate identification of fibrosis. This addresses a topic of much debate on the use of training data and cross-modality validity of IR measurements. Together, the work is a step toward addressing a clinical diagnostic need at acquisition time scales that make IR imaging technology practical for medical use.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jai Raman
- Knight Cardiovascular Institute, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, United States
| | - Vijaya Reddy
- Department of Pathology, Rush University Medical Center , 1725 West Harrison Street, Chicago, Illinois 60612, United States
| | - Andrew Ghetler
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Richard P Tella
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Yang Han
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Christopher R Moon
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Charles D Hoke
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Rohit Bhargava
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Departments of Chemistry, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Blümel R, Bağcioğlu M, Lukacs R, Kohler A. Infrared refractive index dispersion of polymethyl methacrylate spheres from Mie ripples in Fourier-transform infrared microscopy extinction spectra. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:1687-1696. [PMID: 27607489 DOI: 10.1364/josaa.33.001687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We performed high-resolution Fourier-transform infrared (FTIR) spectroscopy of a polymethyl methacrylate (PMMA) sphere of unknown size in the Mie scattering region. Apart from a slow, oscillatory structure (wiggles), which is due to an interference effect, the measured FTIR extinction spectrum exhibits a ripple structure, which is due to electromagnetic resonances. We fully characterize the underlying electromagnetic mode structure of the spectrum by assigning mode numbers to each of the ripples in the measured spectrum. We show that analyzing the ripple structure in the spectrum in the wavenumber region from about 3000 cm-1 to 8000 cm-1 allows us to determine both the unknown radius of the sphere and the PMMA index of refraction, which shows a strong frequency dependence in this infrared spectral region. While in this paper we focus on examining a PMMA sphere as an example, our method of determining the refractive index and its dispersion from infrared extinction spectra is generally applicable for the determination of the index of refraction of any transparent substance that can be shaped into micron-sized spheres.
Collapse
|
14
|
Woess C, Drach M, Villunger A, Tappert R, Stalder R, Pallua JD. Application of mid-infrared (MIR) microscopy imaging for discrimination between follicular hyperplasia and follicular lymphoma in transgenic mice. Analyst 2015; 140:6363-72. [PMID: 26236782 PMCID: PMC4562367 DOI: 10.1039/c5an01072a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mid-infrared (MIR) microscopy imaging is a vibrational spectroscopic technique that uses infrared radiation to image molecules of interest in thin tissue sections. A major advantage of this technology is the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue. Therefore, this technology has become an essential tool for the detection and characterization of the molecular components of many biological processes. Using this method, it is possible to investigate the spatial distribution of proteins and small molecules within biological systems by in situ analysis. In this study, we have evaluated the potential of mid-infrared microscopy imaging to study biochemical changes which distinguish between reactive lymphadenopathy and cancer in genetically modified mice with different phenotypes. We were able to demonstrate that MIR microscopy imaging and multivariate image analyses of different mouse genotypes correlated well with the morphological tissue features derived from HE staining. Using principal component analyses, we were also able to distinguish spectral clusters from different phenotype samples, particularly from reactive lymphadenopathy (follicular hyperplasia) and cancer (follicular lymphoma).
Collapse
Affiliation(s)
- C Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
15
|
Obinaju BE, Fullwood NJ, Martin FL. Distinguishing nuclei-specific benzo[a]pyrene-induced effects from whole-cell alterations in MCF-7 cells using Fourier-transform infrared spectroscopy. Toxicology 2015; 335:27-34. [PMID: 26148868 DOI: 10.1016/j.tox.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 02/04/2023]
Abstract
Exposure to chemicals such as benzo[a]pyrene (B[a]P) can generate intracellular toxic mechanisms. Fourier-transform infrared (FTIR) spectroscopy is a novel approach that allows the non-destructive analysis of underlying chemical bond alterations in patho-physiological processes. This study set out to examine whether B[a]P-induced whole cell alterations could be distinguished from effects on nuclei of exposed cells. Using attenuated total reflection FTIR (ATR-FTIR) spectroscopy, alterations in nuclei isolated from B[a]P-treated MCF-7 cells concentrated either in G0/G1- or S-phase were observed. B[a]P-induced effects in whole-cells included alterations to lipids, DNA and protein spectral regions. Absorbance areas for protein and DNA/RNA regions in B[a]P-treated whole cells differed significantly (P<0.0001) from vehicle controls and these observations correlated with alterations noted in isolated nuclei. Our findings provide evidence that FTIR spectroscopy has the ability to identify specific chemical-induced alterations.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, UK
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
16
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
17
|
Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization. Adv Drug Deliv Rev 2015; 89:71-90. [PMID: 25728764 DOI: 10.1016/j.addr.2015.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 12/11/2022]
Abstract
Progress in advanced therapeutic concepts requires the development of appropriate carrier systems for intracellular drug delivery. Consequently, analysis of interaction between carriers, drugs and cells as well as their uptake and intracellular fate is a current focus of research interest. In this context, Raman spectroscopy recently became an emerging analytical technique, due to its non-destructive, chemically selective and label-free working principle. In this review, we briefly present the state-of-the-art technologies for cell visualization and drug internalization. Against this background, Raman microscopy is introduced as a versatile analytical technique. An overview of various Raman spectroscopy investigations in this field is given including interactions of cells with drug molecules, carrier systems and other nanomaterials. Further, Raman instrumentations and sample preparation methods are discussed. Finally, as the analytical limit is not reached yet, a future perspective for Raman microscopy in pharmaceutical and biomedical research on the single cell level is given.
Collapse
|
18
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
19
|
Lukacs R, Blümel R, Zimmerman B, Bağcıoğlu M, Kohler A. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles. Analyst 2015; 140:3273-84. [PMID: 25797528 DOI: 10.1039/c5an00401b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we first provide an overview of the Mie type scattering at absorbing materials and existing correction methods, followed by a new method to obtain the pure absorbance spectra of biological systems with spherical symmetry. This method is a further development of the recently described iterative algorithm of van Dijk et al. The method is tested on FTIR synchrotron spectra of polymethyl methacrylate (PMMA) microspheres and pollen grains with approximately spherical shape. The imaginary part of the refractive index was successfully recovered for both systems. Good agreement was obtained between the pure absorbance spectra obtained by this method and the measured spectra.
Collapse
Affiliation(s)
- R Lukacs
- Department of Mathematical Sciences and Technology, Faculty of Environmental Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | | | |
Collapse
|
20
|
Quaroni L, Obst M, Nowak M, Zobi F. Dreidimensionale Tomographie im mittleren Infrarotbereich von endogenen und exogenen Molekülen in einer einzelnen Zelle mit subzellulärer Auflösung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luca Quaroni
- Département de Chimie, Université de Fribourg, Chemin de Musée 9, 1700 Fribourg (Schweiz)
- Derzeitige Adresse: Functional Genomics Center Zurich, 8057 Zürich (Schweiz)
| | - Martin Obst
- Institut für Geowissenschaften, Eberhard Karls‐Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen (Deutschland)
| | - Marcus Nowak
- Institut für Geowissenschaften, Eberhard Karls‐Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen (Deutschland)
| | - Fabio Zobi
- Département de Chimie, Université de Fribourg, Chemin de Musée 9, 1700 Fribourg (Schweiz)
| |
Collapse
|
21
|
Quaroni L, Obst M, Nowak M, Zobi F. Three-dimensional mid-infrared tomographic imaging of endogenous and exogenous molecules in a single intact cell with subcellular resolution. Angew Chem Int Ed Engl 2014; 54:318-22. [PMID: 25395248 DOI: 10.1002/anie.201407728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 11/07/2022]
Abstract
Microscopy in the mid-infrared spectral range provides detailed chemical information on a sample at moderate spatial resolution and is being used increasingly in the characterization of biological entities as challenging as single cells. However, a conventional cellular 2D imaging measurement is limited in its ability to associate specific compositional information to subcellular structures because of the interference from the complex topography of the sample. Herein we provide a method and protocols that overcome this challenge in which tilt-series infrared tomography is used with a standard benchtop infrared microscope. This approach gives access to the quantitative 3D distribution of molecular components based on the intrinsic contrast provided by the sample. We demonstrate the method by quantifying the distribution of an exogenous metal carbonyl complex throughout the cell and by reporting changes in its coordination sphere in different locations in the cell.
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Chemistry, University of Fribourg, Chemin de Musée 9, 1700 Fribourg (Switzerland); Current address: Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| | | | | | | |
Collapse
|
22
|
Berger G, Leclercqz H, Derenne A, Gelbcke M, Goormaghtigh E, Nève J, Mathieu V, Dufrasne F. Synthesis and in vitro characterization of platinum(II) anticancer coordinates using FTIR spectroscopy and NCI COMPARE: A fast method for new compound discovery. Bioorg Med Chem 2014; 22:3527-36. [DOI: 10.1016/j.bmc.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/26/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023]
|
23
|
Johnson CM, Pleshko N, Achary M, Suri RPS. Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4581-4587. [PMID: 24650306 DOI: 10.1021/es5000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is important to develop rapid and sensitive screening assays to assess the biological effects of emerging contaminants. In this contribution, the ability to determine the molecular level effects of 17β-estradiol on single MCF-7 cells using Fourier transform infrared imaging spectroscopy (FT-IRIS) was investigated. The use of FT-IRIS enabled subcellular imaging of the cells and determination of a dose dependent response in mucin concentration at 24 and 48 h of incubation. The 48 h increase in mucin was comparable to increases in cellular proliferation (Pearson R = 0.978). The EC50 values for the E-screen and FT-IRIS assays were 2.29 and 2.56 ppt, respectively, indicating that the molecular changes, which are observed at the single cell level using FT-IRIS, are reflective of physiological changes that are observed as the cell population responds to 17ß-estradiol. The FT-IRIS method, when combined with principal component analysis, enabled differentiation and grouping of cells exposed to varying concentrations of 17ß-estradiol. The FT-IRIS method shows potential to be used as a rapid and sensitive screening technique for the detection of biological responses to different emerging contaminants in relevant cells or tissues.
Collapse
Affiliation(s)
- Candice M Johnson
- NSF Water & Environmental Technology (WET) Center, Department of Civil and Environmental Engineering, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | | | |
Collapse
|
24
|
Quaroni L, Zlateva T, Sarafimov B, Kreuzer HW, Wehbe K, Hegg EL, Cinque G. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium. Biophys Chem 2014; 189:40-8. [PMID: 24747675 DOI: 10.1016/j.bpc.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/15/2014] [Accepted: 03/16/2014] [Indexed: 12/29/2022]
Abstract
We successfully tested the viability of using synchrotron-based full-field infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.
Collapse
Affiliation(s)
- Luca Quaroni
- Paul Scherrer Institut, Villigen-PSI, CH-5232, Switzerland.
| | | | | | - Helen W Kreuzer
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Katia Wehbe
- Diamond Light Source, Harwell Campus, Chilton-Didcot, Oxon OX11 0DE, UK
| | - Eric L Hegg
- Michigan State University, Department of Biochemistry & Molecular Biology, East Lansing, MI 48824, USA
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Campus, Chilton-Didcot, Oxon OX11 0DE, UK
| |
Collapse
|
25
|
General Overview on Vibrational Spectroscopy Applied in Biology and Medicine. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2014. [DOI: 10.1007/978-94-007-7832-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Ghadimi E, Eimar H, Marelli B, Nazhat SN, Asgharian M, Vali H, Tamimi F. Trace elements can influence the physical properties of tooth enamel. SPRINGERPLUS 2013; 2:499. [PMID: 24133648 PMCID: PMC3795877 DOI: 10.1186/2193-1801-2-499] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
In previous studies, we showed that the size of apatite nanocrystals in tooth enamel can influence its physical properties. This important discovery raised a new question; which factors are regulating the size of these nanocrystals? Trace elements can affect crystallographic properties of synthetic apatite, therefore this study was designed to investigate how trace elements influence enamel's crystallographic properties and ultimately its physical properties. The concentration of trace elements in tooth enamel was determined for 38 extracted human teeth using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The following trace elements were detected: Al, K, Mg, S, Na, Zn, Si, B, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se and Ti. Simple and stepwise multiple regression was used to identify the correlations between trace elements concentration in enamel and its crystallographic structure, hardness, resistance to crack propagation, shade lightness and carbonate content. The presence of some trace elements in enamel was correlated with the size (Pb, Ti, Mn) and lattice parameters (Se, Cr, Ni) of apatite nanocrystals. Some trace elements such as Ti was significantly correlated with tooth crystallographic structure and consequently with hardness and shade lightness. We conclude that the presence of trace elements in enamel could influence its physical properties.
Collapse
Affiliation(s)
- Elnaz Ghadimi
- Faculty of Dentistry, McGill University, Montreal, QC Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Novak S, Drobne D, Vaccari L, Kiskinova M, Ferraris P, Birarda G, Remškar M, Hočevar M. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11284-11292. [PMID: 23952740 DOI: 10.1021/es402364w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.
Collapse
Affiliation(s)
- Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana , Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang F, Meyer WH, Zhang J. Dense poly(4-vinyl pyridine) brushes grafting from silica nanoparticles via atom transfer radical polymerization. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Bedolla DE, Kenig S, Mitri E, Ferraris P, Marcello A, Grenci G, Vaccari L. Determination of cell cycle phases in live B16 melanoma cells using IRMS. Analyst 2013; 138:4015-21. [PMID: 23662303 DOI: 10.1039/c3an00318c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.
Collapse
Affiliation(s)
- Diana E Bedolla
- Elettra Sincrotrone Trieste, SISSI beamline, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Pijanka JK, Stone N, Rutter AV, Forsyth N, Sockalingum GD, Yang Y, Sulé-Suso J. Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation. Analyst 2013; 138:5052-8. [DOI: 10.1039/c3an00968h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Faillace ME, Phipps RJ, Miller LM. Fourier transform infrared imaging as a tool to chemically and spatially characterize matrix-mineral deposition in osteoblasts. Calcif Tissue Int 2013; 92:50-8. [PMID: 23143076 DOI: 10.1007/s00223-012-9667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Mineralizing osteoblasts are regularly used to study osteogenesis and model in vivo bone formation. Thus, it is important to verify that the mineral and matrix being formed in situ are comparable to those found in vivo. However, it has been shown that histochemical techniques alone are not sufficient for identifying calcium phosphate-containing mineral. The goal of the present study was to demonstrate the use of Fourier transform infrared imaging (FTIRI) as a tool for characterizing the spatial distribution and colocalization of the collagen matrix and the mineral phase during the mineralization process of osteoblasts in situ. MC3T3-E1 mouse osteoblasts were mineralized in culture for 28 days and FTIRI was used to evaluate the collagen content, collagen cross-linking, mineralization level and speciation, and mineral crystallinity in a spatially resolved fashion as a function of time. To test whether FTIRI could detect subtle changes in the mineralization process, cells were treated with risedronate (RIS). Results showed that collagen deposition and mineralization progressed over time and that the apatite mineral was associated with a collagenous matrix rather than ectopic mineral. The process was temporarily slowed by RIS, where the inhibition of osteoblast function caused slowed collagen production and cross-linking, leading to decreased mineralization. This study demonstrates that FTIRI is a complementary tool to histochemistry for spatially correlating the collagen matrix distribution and the nature of the resultant mineral during the process of osteoblast mineralization. It can further be used to detect small perturbations in the osteoid and mineral deposition process.
Collapse
Affiliation(s)
- Meghan E Faillace
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
32
|
Eimar H, Ghadimi E, Marelli B, Vali H, Nazhat SN, Amin WM, Torres J, Ciobanu O, Albuquerque Junior RF, Tamimi F. Regulation of enamel hardness by its crystallographic dimensions. Acta Biomater 2012; 8:3400-10. [PMID: 22684114 DOI: 10.1016/j.actbio.2012.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 01/31/2023]
Abstract
Enamel is a composite biomaterial comprising a minor organic matrix (~2%) and a hierarchically organized inorganic ultrastructure (~96-98%). Surprisingly, to date there is no available information in the literature regarding the possible role of the enamel ultrastructure on the nanoscale level in tooth macroscopic properties. Understanding this relationship is of special interest for restorative purposes in dentistry. Accordingly, this study was designed to investigate how enamel nanocrystals regulate its hardness. We performed microindentation analysis on 100 extracted human teeth. The tooth enamel hardness was quantified and correlated with changes in enamel chemical composition and crystallographic dimensions obtained from Fourier transform infrared spectroscopy and X-ray diffraction, respectively. Enamel hardness was not related to the variability in organic content, but was associated with the size of apatite crystals along the c-axis. This association followed the Hall-Petch model for polycrystalline materials, indicating that the optimal size of apatite nanocrystals (larger than the critical size) provides enamel with the greatest hardness, which enables teeth to survive the heavy wear over a human lifetime.
Collapse
Affiliation(s)
- Hazem Eimar
- Faculty of Dentistry, McGill University, Montreal, QC, Canada H3A 0C7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brozek-Pluska B, Musial J, Kordek R, Bailo E, Dieing T, Abramczyk H. Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 2012; 137:3773-80. [PMID: 22754917 DOI: 10.1039/c2an16179f] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.
Collapse
Affiliation(s)
- Beata Brozek-Pluska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Vaccari L, Birarda G, Businaro L, Pacor S, Grenci G. Infrared Microspectroscopy of Live Cells in Microfluidic Devices (MD-IRMS): Toward a Powerful Label-Free Cell-Based Assay. Anal Chem 2012; 84:4768-75. [DOI: 10.1021/ac300313x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Chen L, Holman HYN, Hao Z, Bechtel HA, Martin MC, Wu C, Chu S. Synchrotron Infrared Measurements of Protein Phosphorylation in Living Single PC12 Cells during Neuronal Differentiation. Anal Chem 2012; 84:4118-25. [DOI: 10.1021/ac300308x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Liang Chen
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
94720, United States
| | - Hoi-Ying N. Holman
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
94720, United States
| | - Zhao Hao
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
94720, United States
| | - Hans A. Bechtel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
94720, United States
| | - Michael C. Martin
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
94720, United States
| | - Chengbiao Wu
- Department
of Neurosciences, University of California at San Diego School of Medicine, La Jolla, California 92093, United
States
| | - Steven Chu
- Departments of Physics
and Molecular
and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative
Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Mao G, Flach CR, Mendelsohn R, Walters RM. Imaging the distribution of sodium dodecyl sulfate in skin by confocal Raman and infrared microspectroscopy. Pharm Res 2012; 29:2189-201. [PMID: 22477073 PMCID: PMC3399083 DOI: 10.1007/s11095-012-0748-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/22/2012] [Indexed: 01/06/2023]
Abstract
Purpose To image SDS distribution across different skin regions, to compare the permeability difference between porcine and human skin, and to evaluate the interaction between SDS and skin. Methods Full thickness porcine and human skin was treated with acyl chain perdeuterated SDS (SDS-d25) at room temperature and at 34 °C for 3, 24 and 40 h. SDS distribution in skin was monitored by confocal Raman and IR microspectroscopic imaging. Permeation profiles of SDS-d25 in skin were derived from the band intensities of the CD2 stretching vibrations. The interaction between SDS and skin was monitored through the CH2 and CD2 stretching frequencies and the Amide I and II spectral region. Results SDS-d25 penetrates both porcine and human skin in a time and temperature-dependent manner, with slightly higher permeability through the stratum corneum (SC) in porcine skin. When SDS permeates into the SC, its chains are more ordered compared to SDS micelles. The secondary structure of keratin in the SC is not affected by SDS-d25. Conclusion The spatial distribution of SDS-d25 in skin was obtained for the first time. Infrared microscopic imaging provides unique opportunities to measure concentration profiles of exogenous materials in skin and offers insights to interaction between permeants and skin. Electronic supplementary material The online version of this article (doi:10.1007/s11095-012-0748-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Mao
- Johnson & Johnson Consumer Companies, Inc., 199 Grandview Rd., Skillman, New Jersey 08558-9418, USA.
| | | | | | | |
Collapse
|
37
|
Applications of Infrared and Raman Microspectroscopy of Cells and Tissue in Medical Diagnostics: Present Status and Future Promises. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/848360] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper summarizes the progress achieved over the past fifteen years in applying vibrational (Raman and IR) spectroscopy to problems of medical diagnostics and cellular biology. During this time, a number of research groups have verified the enormous information content of vibrational spectra; in fact, genomic, proteomic, and metabolomic information can be deduced by decoding the observed vibrational spectra. This decoding process is aided enormously by the availability of high-power computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared microspectral data has rendered practical the collection of images based solely on spectral data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational biological and biomedical arenas.
Collapse
|
38
|
Wrobel TP, Marzec KM, Majzner K, Kochan K, Bartus M, Chlopicki S, Baranska M. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell. Analyst 2012; 137:4135-9. [PMID: 22854681 DOI: 10.1039/c2an35331h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Tomasz P Wrobel
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
39
|
Kwak JT, Reddy R, Sinha S, Bhargava R. Analysis of variance in spectroscopic imaging data from human tissues. Anal Chem 2011; 84:1063-9. [PMID: 22148458 DOI: 10.1021/ac2026496] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The analysis of cell types and disease using Fourier transform infrared (FT-IR) spectroscopic imaging is promising. The approach lacks an appreciation of the limits of performance for the technology, however, which limits both researcher efforts in improving the approach and acceptance by practitioners. One factor limiting performance is the variance in data arising from biological diversity, measurement noise or from other sources. Here we identify the sources of variation by first employing a high throughout sampling platform of tissue microarrays (TMAs) to record a sufficiently large and diverse set data. Next, a comprehensive set of analysis of variance (ANOVA) models is employed to analyze the data. Estimating the portions of explained variation, we quantify the primary sources of variation, find the most discriminating spectral metrics, and recognize the aspects of the technology to improve. The study provides a framework for the development of protocols for clinical translation and provides guidelines to design statistically valid studies in the spectroscopic analysis of tissue.
Collapse
Affiliation(s)
- Jin Tae Kwak
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
40
|
The role of enamel crystallography on tooth shade. J Dent 2011; 39 Suppl 3:e3-10. [DOI: 10.1016/j.jdent.2011.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/23/2022] Open
|
41
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R. Raman 'optical biopsy' of human breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:74-81. [PMID: 22122914 DOI: 10.1016/j.pbiomolbio.2011.10.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 09/22/2011] [Accepted: 10/31/2011] [Indexed: 01/08/2023]
Abstract
Raman imaging (RI) is a novel method of medical diagnostics of human breast cancer and has a potential to become a routine optical biopsy. Up to date the present study is the most statistically reliable Raman analysis based on data of normal, benign, and cancerous breast tissues for 146 patients. This paper present the first Raman 'optical biopsy' images of the normal and cancerous breast tissue of the same patient. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal (noncancerous), and cancerous types. The results provide evidence that carotenoids and lipids composition of cancerous breast tissues differs significantly from that of the surrounding noncancerous breast tissue and may be a key factor responsible for mechanisms of carcinogenesis. We have found that fatty acid composition of the cancerous breast tissue is markedly different from that of the surrounding noncancerous breast tissue. The cancerous breast tissue seems to be dominated by the metabolism products of the arachidonic acid - derived cyclic eicosanoids catalyzed by cyclooxygenase, while the noncancerous breast tissue is dominated by monounsaturated oleic acid and its derivatives.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Technical University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|
42
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R. The label-free Raman imaging of human breast cancer. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Piva JAAC, Silva JLR, Raniero L, Martin AA, Bohr HG, Jalkanen KJ. Overview of the use of theory to understand infrared and Raman spectra and images of biomolecules: colorectal cancer as an example. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1063-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Holton SE, Walsh MJ, Bhargava R. Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging. Analyst 2011; 136:2953-8. [PMID: 21647505 DOI: 10.1039/c1an15112f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tumor microenvironment, or stroma, is chemically and morphologically modified during carcinoma progression. The predominant cell type in the stroma, the fibroblast, maintains collagen properties in normal tissue and often transformed during tumor progression. Biochemical changes within fibroblasts upon initial cancer activation, however, are relatively poorly defined. Here, we hypothesized that Fourier transform infrared (FT-IR) spectroscopic imaging could potentially be employed to examine these early transformations. Further, we employ attenuated total reflectance (ATR) microscopy to characterize subcellular spectra and their changes upon transformation. We characterized fibroblast transitions upon stimulation with both a molecular agent and a carcinoma-mimicking cellular co-culture system. Changes were predominantly observed in the 1080 cm(-1) and 1224 cm(-1) peak absorbance, commonly associated with nucleic acids, as well as in the band at 2930 cm(-1) associated with the C-H stretching of proteins in the cytoplasmic compartment. In conclusion, biochemical changes in cancer-associated fibroblasts that express α-SMA are dominated by the cytoplasm, rather than the nucleus. This ensures that spectral changes are not associated with proliferation or cell cycle processes of the cells and the cells are undergoing a true phenotypic change denoted by protein modifications in the cell body.
Collapse
Affiliation(s)
- Sarah E Holton
- Department of Bioengineering, Micro- and Nanotechnology Laboratory and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
45
|
Lasch P, Petrich W. Data Acquisition and Analysis in Biomedical Vibrational Spectroscopy. BIOMEDICAL APPLICATIONS OF SYNCHROTRON INFRARED MICROSPECTROSCOPY 2010. [DOI: 10.1039/9781849731997-00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peter Lasch
- Robert Koch-Institut (P25) Nordufer 20, 13353 Berlin Germany
| | - Wolfgang Petrich
- Faculty of Physics and Astronomy, University of Heidelberg Albert-Überle-Str. 3-5, 69120 Heidelberg, Germany and Roche Diagnostics GmbH, Sandhofer Str.116 68305 Mannheim Germany
| |
Collapse
|
46
|
Bassan P, Gardner* P. Scattering in Biomedical Infrared Spectroscopy. BIOMEDICAL APPLICATIONS OF SYNCHROTRON INFRARED MICROSPECTROSCOPY 2010. [DOI: 10.1039/9781849731997-00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paul Bassan
- School of Chemical Engineering and Analytical Science Manchester Interdisciplinary Biocentre (MIB), University of Manchester, 131 Princess Street Manchester M1 7DN UK
| | - Peter Gardner*
- School of Chemical Engineering and Analytical Science Manchester Interdisciplinary Biocentre (MIB), University of Manchester, 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
47
|
Brusnichkin AV, Nedosekin DA, Galanzha EI, Vladimirov YA, Shevtsova EF, Proskurnin MA, Zharov VP. Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions. JOURNAL OF BIOPHOTONICS 2010; 3:791-806. [PMID: 20572284 PMCID: PMC3350104 DOI: 10.1002/jbio.201000012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light-absorbing endogenous cellular proteins, in particular cytochrome c, are used as intrinsic biomarkers for studies of cell biology and environment impacts. To sense cytochrome c against real biological backgrounds, we combined photothermal (PT) thermal-lens single-channel schematic in a back-synchronized measurement mode and a multiplex thermal-lens schematic in a transient high resolution (ca. 350 nm) imaging mode. These multifunctional PT techniques using continuous-wave (cw) Ar+ laser and a nanosecond pulsed optical parametric oscillator in the visible range demonstrated the capability for label-free spectral identification and quantification of trace amounts of cytochrome c in a single mitochondrion alone or within a single live cell. PT imaging data were verified in parallel by molecular targeting and fluorescent imaging of cellular cytochrome c. The detection limit of cytochrome c in a cw mode was 5 x 10(-9) mol/L (80 attomols in the signal-generation zone); that is ca. 10³ lower than conventional absorption spectroscopy. Pulsed fast PT microscopy provided the detection limit for cytochrome c at the level of 13 zmol (13 x 10(-21) mol) in the ultrasmall irradiated volumes limited by optical diffraction effects. For the first time, we demonstrate a combination of high resolution PT imaging with PT spectral identification and ultrasensitive quantitative PT characterization of cytochrome c within individual mitochondria in single live cells. A potential of far-field PT microscopy to sub-zeptomol detection thresholds, resolution beyond diffraction limit, PT Raman spectroscopy, and 3D imaging are further highlighted.
Collapse
Affiliation(s)
- Anton V. Brusnichkin
- Chemistry Department, M.V. Lomonosov Moscow State University, Vorob’evy Hills 1/3, Moscow, 119991, Russia
| | - Dmitry A. Nedosekin
- Chemistry Department, M.V. Lomonosov Moscow State University, Vorob’evy Hills 1/3, Moscow, 119991, Russia
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yuri A. Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Lomonosovskii prosp. 31-5, Moscow, 117192, Russia
| | - Elena F. Shevtsova
- Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
| | - Mikhail A. Proskurnin
- Chemistry Department, M.V. Lomonosov Moscow State University, Vorob’evy Hills 1/3, Moscow, 119991, Russia
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
48
|
Miller LM, Dumas P. From structure to cellular mechanism with infrared microspectroscopy. Curr Opin Struct Biol 2010; 20:649-56. [PMID: 20739176 DOI: 10.1016/j.sbi.2010.07.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Current efforts in structural biology aim to integrate structural information within the context of cellular organization and function. X-rays and infrared radiation stand at opposite ends of the electromagnetic spectrum and act as complementary probes for achieving this goal. Intense and bright beams are produced by synchrotron radiation, and are efficiently used in the wavelength domain extending from hard X-rays to the far-infrared (or THz) regime. While X-ray crystallography provides exquisite details on atomic structure, Fourier transform infrared microspectroscopy (FTIRM) is emerging as a spectroscopic probe and imaging tool for correlating molecular structure to biochemical dynamics and function. In this manuscript, the role of synchrotron FTIRM in bridging the gap towards 'functional biology' is discussed based upon recent achievements, with a critical assessment of the contributions to biological and biomedical research.
Collapse
Affiliation(s)
- Lisa M Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA.
| | | |
Collapse
|
49
|
Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. JOURNAL OF BIOPHOTONICS 2010; 3:609-620. [PMID: 20414907 DOI: 10.1002/jbio.201000036] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the field of biomedical infrared spectroscopy it is often desirable to obtain spectra at the cellular level. Samples consisting of isolated single biological cells are particularly unsuited to such analysis since cells are strong scatterers of infrared radiation. Thus measured spectra consist of an absorption component often highly distorted by scattering effects. It is now known that the predominant contribution to the scattering is Resonant Mie Scattering (RMieS) and recently we have shown that this can be corrected for, using an iterative algorithm based on Extended Multiplicative Signal Correction (EMSC) and a Mie approximation formula. Here we present an iterative algorithm that applies full Mie scattering theory. In order to avoid noise accumulation in the iterative algorithm a curve-fitting step is implemented on the new reference spectrum. The new algorithm increases the computational time when run on an equivalent processor. Therefore parallel processing by a Graphics Processing Unit (GPU) was employed to reduce computation time. The optimised RMieS-EMSC algorithm is applied to an IR spectroscopy data set of cultured single isolated prostate cancer (PC-3) cells, where it is shown that spectral distortions from RMieS are removed.
Collapse
Affiliation(s)
- Paul Bassan
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Inoue K, Fujii M, Sakai M. Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cells. APPLIED SPECTROSCOPY 2010; 64:275-281. [PMID: 20223061 DOI: 10.1366/000370210790918481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report single-cell infrared (IR) imaging of onion (Allium cepa) root cells using an IR super-resolution microscope based on vibrational sum-frequency generation (VSFG). The resolution of recorded IR images was less than 2 microm and IR super-resolution was achieved by virtue of the VSFG detection. In addition, IR spectra measurements were successfully performed on distinct intra-cellular assemblies. The IR absorption intensity of the cell nuclear edge and the nucleolus in the 3055-3130 cm(-1) region was stronger than that from the cytoplasmic part. This is because the cell nucleus and nucleolus contain larger amounts of nucleic acid. Thus, the obtained IR spectra reflect differences in chemical composition among different cellular structures. In addition, the ability of our novel IR super-resolution microscope to obtain distinct information on both VSFG and two-photon fluorescence is demonstrated.
Collapse
Affiliation(s)
- Keiichi Inoue
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | | | | |
Collapse
|