1
|
Wu X, Pan B, Chu C, Zhang Y, Ma J, Xing Y, Ma Y, Zhu W, Zhong H, Alimu A, Zhou G, Liu S, Chen W, Li X, Puyi S. CXCL16/CXCR6/TGF-β Feedback Loop Between M-MDSCs and Treg Inhibits Anti-Bacterial Immunity During Biofilm Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409537. [PMID: 39716908 PMCID: PMC11831521 DOI: 10.1002/advs.202409537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Indexed: 12/25/2024]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of Periprosthetic joint infection (PJI), a severe complication after joint arthroplasty. Immunosuppression is a major factor contributing to the infection chronicity of S. aureus PJI, posing significant treatment challenges. This study investigates the relationship between the immunosuppressive biofilm milieu and S. aureus PJI outcomes in both discovery and validation cohorts. This scRNA-seq analysis of synovium from PJI patients reveals an expansion and heightened activity of monocyte-related myeloid-derived suppressor cells (M-MDSCs) and regulatory T cells (Treg). Importantly, CXCL16 is significantly upregulated in M-MDSCs, with its corresponding CXCR6 receptor also elevated on Treg. M-MDSCs recruit Treg and enhance its activity via CXCL16-CXCR6 interactions, while Treg secretes TGF-β, inducing M-MDSCs proliferation and immunosuppressive activity. Interfering with this cross-talk in vivo using Treg-specific CXCR6 knockout PJI mouse model reduces M-MDSCs/Treg-mediated immunosuppression and alleviates bacterial burden. Immunohistochemistry and recurrence analysis show that PJI patients with CXCR6high synovium have poor prognosis. This findings highlight the critical role of CXCR6 in Treg in orchestrating an immunosuppressive microenvironment and biofilm persistence during PJI, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Baiqi Pan
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Chenghan Chu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yangchun Zhang
- Department of OrthopedicsThe People's Hospital of Baoan ShenzhenShenzhenGuangdong518101China
- Department of OrthopedicsThe Second Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518101China
| | - Jinjin Ma
- Technology School of MedicineSouth China University of TechnologyGuangzhouGuangdong510640China
- Shien‐ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Yang Xing
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yuanchen Ma
- Department of OrthopedicsGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong519041China
| | - Wengang Zhu
- Department of Joint OrthopedicsYuebei People's HospitalShaoguanGuangdong512099China
| | - Huan Zhong
- Department of Joint SurgeryAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524002China
| | - Aerman Alimu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Guanming Zhou
- Department of OrthopedicsFoshan Hospital of Traditional Chinese MedicineGuangzhouGuangdong528051China
| | - Shuying Liu
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weishen Chen
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Xiang Li
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Sheng Puyi
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| |
Collapse
|
2
|
Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol 2025; 7:e11755. [PMID: 39435687 PMCID: PMC11694140 DOI: 10.1002/acr2.11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common cause of chronic disability in joints among older individuals. The primary goal of OA treatment is pain relief to improve the quality of life. Inflammation and aging are involved in the pathogenesis of pain in OA. In this study, we evaluated the ability of metformin to regulate microRNAs, such as miR-451 and miR-15b, and their target proteins, CXCL16 and B cell leukemia/lymphoma 2 (BCL-2), involved in inflammation and apoptosis. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided into two groups: one receiving metformin and the other receiving a placebo for four months (starting at 0.5 g/day for the first week, increasing to 1 g/day for the second week, and increasing to 1.5 g/day for the remaining period). In addition to evaluating the clinical response using the Knee Injury and Osteoarthritis Outcome Score questionnaire, miR-451 and miR-15b expression levels were detected using real-time polymerase chain reaction. The serum levels of CXCL16 and BCL-2 were evaluated using enzyme-linked immunosorbent assay kits before (time zero) and after treatment (month four). RESULTS Metformin increased miR-451 expression levels simultaneously with pain reduction, whereas miR-15b expression did not change significantly after four months of treatment. Also, metformin decreased the serum levels of BCL-2 and CXCL16 in patients with OA. CONCLUSION The effects of metformin in reducing pain can be attributed to many factors, including its anti-inflammatory and antiaging effects. Our findings suggest that metformin may reduce pain and inflammation in patients with OA through the regulation of miR-451/CXCL16 and BCL-2.
Collapse
|
3
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Chen Y, Yang M, Zhang M, Wang H, Zheng Y, Sun R, Li X. Single-Cell Transcriptome Reveals Potential Mechanisms for Coronary Artery Lesions in Kawasaki Disease. Arterioscler Thromb Vasc Biol 2024; 44:866-882. [PMID: 38357816 DOI: 10.1161/atvbaha.123.320188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Coronary artery lesions (CALs) are the most common and major complication of Kawasaki disease (KD) in developed countries. However, the underlying immunologic mechanisms of CAL development in KD remain unclear. METHODS Here, we conducted single-cell transcriptome analyses of 212 210 peripheral blood mononuclear cells collected from a cross-sectional cohort of 16 children, including 4 patients with KD with CALs, 5 patients with KD without CALs, 4 healthy controls, and 3 febrile controls. RESULTS KD altered the proportion of peripheral blood mononuclear cells, including an increasing trend in inflammatory cells (megakaryocytes and monocytes) and a decreasing trend in lymphocytes (eg, CD4+ T, CD8+ T, mucosal-associated invariant T, natural killer, and γδ T cells), highlighting the potential presence of lymphopenia phenomenon in KD. Our data indicated the presence of inflammatory cytokine storm in patients with KD with CALs, caused by systemic upregulation of TNFSF13B (tumor necrosis factor superfamily member 13b), CXCL16 (C-X-C motif chemokine ligand 16), TNFSF10 (tumor necrosis factor superfamily member 10), and IL1RN (interleukin 1 receptor antagonist), mainly produced by monocytes (especially for the Mono_CD14-CD16 cluster) and megakaryocytes. We also found that myeloid cells of patients with KD, particularly in those with CALs, might play a role in vascular injury (eg, increased MMP [matrix metalloproteinase] 9, MMP17, and MMP25) and immune cell recruitment. The immune landscape of patients with KD with CALs was featured by lower exhaustion levels in natural killer cells, a high cytotoxic state in the CD8_Pro cluster, and activation of the complement system in monocytes. Additionally, the activation of B cells was more pronounced in the early stage of KD. CONCLUSIONS Collectively, this study provides a comprehensive understanding of the roles of various immune cells and inflammatory cytokine storms in the development of CALs in KD and offers a valuable resource for identifying novel therapeutic targets for patients with KD with CALs.
Collapse
Affiliation(s)
- Yeshi Chen
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Minna Yang
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Yang Zheng
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College Graduate School, Beijing, China (Y.Z.)
| | - Rui Sun
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| |
Collapse
|
5
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther 2023; 25:35. [PMID: 36879307 PMCID: PMC9990216 DOI: 10.1186/s13075-023-03025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness of metformin versus placebo in overweight patients with knee osteoarthritis (OA). In addition, to assess the effects of inflammatory mediators and apoptotic proteins in the pathogenesis of OA, the genetic polymorphisms of two genes, one related to apoptosis (rs2279115 of Bcl-2) and the other related to inflammation (rs2277680 of CXCL-16), were investigated. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided to two groups, one group receiving metformin (n = 44) and the other one receiving an identical inert placebo (n = 44) for 4 consecutive months (starting dose 0.5 g/day for the first week, increase to 1 g/day for the second week, and further increase to 1.5 g/day for the remaining period). Another group of healthy individuals (n = 92) with no history and diagnosis of OA were included in this study in order to evaluate the role of genetics in OA. The outcome of treatment regimen was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. The frequency of variants of rs2277680 (A181V) and rs2279115 (938C>A) were determined in extracted DNAs using PCR-RFLP method. RESULTS Our results indicated an increase in scores of pain (P ≤ 0.0001), activity of daily living (ADL) (P ≤ 0.0001), sport and recreation (Sport/Rec) (P ≤ 0.0001), and quality of life (QOL) (P = 0.003) and total scores of the KOOS questionnaire in the metformin group compared to the placebo group. Susceptibility to OA was associated with age, gender, family history, CC genotype of 938C>A (Pa = 0.001; OR = 5.2; 95% CI = 2.0-13.7), and GG+GA genotypes of A181V (Pa = 0.04; OR = 2.1; 95% CI = 1.1-10.5). The C allele of 938C>A (Pa = 0.04; OR = 2.2; 95% CI = 1.1-9.8) and G allele of A181V (Pa = 0.02; OR = 2.2; 95% CI = 1.1-4.8) were also associated with OA. CONCLUSION Our findings support the possible beneficial effects of metformin on improving pain, ADL, Sport/Rec, and QOL in OA patients. Our findings support the association between the CC genotype of Bcl-2 and GG+GA genotypes of CXCL-16 and OA.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tahami
- Bone and Joint Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Elham Haem
- Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
7
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Sardana Y, Bhatti GK, Singh C, Sharma PK, Reddy PH, Bhatti JS. Progression of pre-rheumatoid arthritis to clinical disease of joints: Potential role of mesenchymal stem cells. Life Sci 2023; 321:121641. [PMID: 36997059 DOI: 10.1016/j.lfs.2023.121641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints.
Collapse
Affiliation(s)
- Yogesh Sardana
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
Schropp V, Chunder R, Dietel B, Tacke S, Kuerten S. The presence of cerebellar B cell aggregates is associated with a specific chemokine profile in the cerebrospinal fluid in a mouse model of multiple sclerosis. J Neuroinflammation 2023; 20:18. [PMID: 36717913 PMCID: PMC9885581 DOI: 10.1186/s12974-023-02695-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The presence of meningeal ectopic lymphoid structures (ELS) in a subgroup of patients diagnosed with secondary progressive multiple sclerosis (SPMS) corresponds to a pronounced cortical inflammation and an aggravated disease course. In MP4-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), B cell aggregates develop in the central nervous system (CNS) in the chronic stage of the disease. Therefore, the model is suitable for studying key molecules of ELS development and maintenance. Here, we investigated whether there is a specific cytokine and chemokine signature in paired cerebrospinal fluid (CSF) and serum samples associated with the presence of cerebellar B cell and T cell pathology and B cell aggregates of MP4-immunized mice. METHODS Paired CSF and serum samples were collected from the cisterna magna and periphery of MP4-immunized mice at the chronic stage of disease. A control group with mice immunized only with the adjuvant (vehicle) was included in the study. A selected panel of 34 cytokines and chemokines were measured by MAGPIX® for both cohorts. For the assessment of B cell and T cell infiltration, immunohistochemical staining was performed and analyzed using light microscopy. To detect specific chemokine receptors additional staining was conducted. RESULTS While we detected several upregulated cytokines and chemokines in the CSF of MP4-immunized mice independent of the extent of B cell and T cell pathology compared to vehicle-immunized mice, C-C motif chemokine ligand (CCL)-1 was associated with high B cell and T cell infiltration. Furthermore, the level of certain chemokines, including CCL1, CCL5, CCL7, CCL12, CCL22 and C-X-C motif chemokine ligand (CXCL)-13, was significantly increased (p < 0.05) in MP4-immunized mice showing a high number of B cell aggregates. While C-C motif chemokine receptor (CCR)5 had a ubiquitous expression independent of the extent of B cell and T cell pathology, C-X-C motif chemokine receptor (CXCR)-5 and CXCR6 expression was specifically associated with high B cell and T cell pathology. CONCLUSION Our data suggest that multiple cytokines and chemokines are involved in the pathophysiology of MP4-induced EAE. Furthermore, the presence of B cell aggregates was associated with a specific chemokine profile in the CSF, which might be useful for predicting the presence of these aggregates without the necessity to histologically screen the CNS tissue.
Collapse
Affiliation(s)
- Verena Schropp
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rittika Chunder
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Barbara Dietel
- grid.5330.50000 0001 2107 3311Department of Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital, 91054 Erlangen, Germany
| | - Sabine Tacke
- grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Kuerten
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
10
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
12
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
13
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
14
|
Kim ST, Chu Y, Misoi M, Suarez-Almazor ME, Tayar JH, Lu H, Buni M, Kramer J, Rodriguez E, Hussain Z, Neelapu SS, Wang J, Shah AY, Tannir NM, Campbell MT, Gibbons DL, Cascone T, Lu C, Blumenschein GR, Altan M, Lim B, Valero V, Loghin ME, Tu J, Westin SN, Naing A, Garcia-Manero G, Abdel-Wahab N, Tawbi HA, Hwu P, Oliva ICG, Davies MA, Patel SP, Zou J, Futreal A, Diab A, Wang L, Nurieva R. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat Commun 2022; 13:1970. [PMID: 35413951 PMCID: PMC9005525 DOI: 10.1038/s41467-022-29539-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors are associated with immune-related adverse events (irAEs), including arthritis (arthritis-irAE). Management of arthritis-irAE is challenging because immunomodulatory therapy for arthritis should not impede antitumor immunity. Understanding of the mechanisms of arthritis-irAE is critical to overcome this challenge, but the pathophysiology remains unknown. Here, we comprehensively analyze peripheral blood and/or synovial fluid samples from 20 patients with arthritis-irAE, and unmask a prominent Th1-CD8+ T cell axis in both blood and inflamed joints. CX3CR1hi CD8+ T cells in blood and CXCR3hi CD8+ T cells in synovial fluid, the most clonally expanded T cells, significantly share TCR repertoires. The migration of blood CX3CR1hi CD8+ T cells into joints is possibly mediated by CXCL9/10/11/16 expressed by myeloid cells. Furthermore, arthritis after combined CTLA-4 and PD-1 inhibitor therapy preferentially has enhanced Th17 and transient Th1/Th17 cell signatures. Our data provide insights into the mechanisms, predictive biomarkers, and therapeutic targets for arthritis-irAE.
Collapse
Affiliation(s)
- Sang T Kim
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mercy Misoi
- Department of General Internal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria E Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean H Tayar
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huifang Lu
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maryam Buni
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jordan Kramer
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Emma Rodriguez
- Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zulekha Hussain
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina Cascone
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles Lu
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George R Blumenschein
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mehmet Altan
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vincente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Janet Tu
- Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Noha Abdel-Wahab
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Rheumatology and Rehabilitation, Assiut University Hospitals, Faculty of Medicine, Assiut University, El Fateh, Egypt
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zou
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Pan PJ, Wang JC, Tsai CC, Kuo HC. Identification of early response to hypertonic dextrose prolotherapy markers in knee osteoarthritis patients by an inflammation-related cytokine array. J Chin Med Assoc 2022; 85:525-531. [PMID: 35019866 DOI: 10.1097/jcma.0000000000000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common forms of arthritis, and hypertonic dextrose prolotherapy has long been used clinically to treat knee OA. The aim of this study was to investigate the inflammation-related protein-expression profile characterizing the efficacy of the hypertonic dextrose prolotherapy in knee OA as prognostic markers. METHODS OA patients over the age of 65 were recruited for Western Ontario McMaster University Osteoarthritis (WOMAC) index, knee X-ray evaluation and knee joint synovial fluid analysis before and after hypertonic dextrose prolotherapy. The expressions of inflammation-related factors were measured using a novel cytokine antibody array methodology. The cytokine levels were quantified by quantitative protein expression and analyzed by ELISA using the patients' knee-joint synovial fluid. RESULTS The WOMAC Index and minimum joint space width before receiving the intra-articular injection and at 2-week intervals were compared. Twelve patients who received OA intervention were enrolled and finally a clinical evaluation of 12 knee joints and knee synovial fluid samples were analyzed. In this study, after receiving hypertonic dextrose prolotherapy, the OA patients clearly demonstrated a significant improvement in WOMAC index and increasing tendency in the medial minimum joint space width after intervention. Meanwhile, we observed a significantly associated tendency between hypertonic dextrose treatment of knee OA and the upregulation of MMP2, TIMP-1, EGF, CXCL9 and IL-22. CONCLUSION The findings provide knee OA patients receiving hypertonic dextrose prolotherapy, which is accompained by the improvemeny of knee symptoms and associated tendency of upregulation of MMP2, EGF, CXCL 9 and IL-22.
Collapse
Affiliation(s)
- Po-Jung Pan
- Department of Physical Medicine and Rehabilitation, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan, ROC
- Department of Medicine, National Yang Ming Chiao Tung University University, Taipei, Taiwan, ROC
| | - Jia-Chi Wang
- Department of Medicine, National Yang Ming Chiao Tung University University, Taipei, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Chun Tsai
- Department of Mathematics, Tamkang University, Taipei, Taiwan, ROC
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC
- Research Fellow, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan, ROC
| |
Collapse
|
16
|
Lesch S, Blumenberg V, Stoiber S, Gottschlich A, Ogonek J, Cadilha BL, Dantes Z, Rataj F, Dorman K, Lutz J, Karches CH, Heise C, Kurzay M, Larimer BM, Grassmann S, Rapp M, Nottebrock A, Kruger S, Tokarew N, Metzger P, Hoerth C, Benmebarek MR, Dhoqina D, Grünmeier R, Seifert M, Oener A, Umut Ö, Joaquina S, Vimeux L, Tran T, Hank T, Baba T, Huynh D, Megens RTA, Janssen KP, Jastroch M, Lamp D, Ruehland S, Di Pilato M, Pruessmann JN, Thomas M, Marr C, Ormanns S, Reischer A, Hristov M, Tartour E, Donnadieu E, Rothenfusser S, Duewell P, König LM, Schnurr M, Subklewe M, Liss AS, Halama N, Reichert M, Mempel TR, Endres S, Kobold S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat Biomed Eng 2021; 5:1246-1260. [PMID: 34083764 PMCID: PMC7611996 DOI: 10.1038/s41551-021-00737-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
Collapse
Affiliation(s)
- Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Blumenberg
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Gottschlich
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klara Dorman
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Lutz
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin M Larimer
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Rapp
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alessia Nottebrock
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kruger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Metzger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christine Hoerth
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dario Dhoqina
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ruth Grünmeier
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Seifert
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arman Oener
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Öykü Umut
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sandy Joaquina
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Lene Vimeux
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Thi Tran
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc Huynh
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Department of BioMedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Svenja Ruehland
- LMU Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Munich, Germany
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jasper N Pruessmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Moritz Thomas
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Tartour
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
- Service d'Immunologie Biologique, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Simon Rothenfusser
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Duewell
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Lars M König
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Center for Functional Protein Assemblies (CPA), Technische Universität München, Garching, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
| |
Collapse
|
17
|
CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection. PLoS Pathog 2021; 17:e1009968. [PMID: 34614031 PMCID: PMC8523071 DOI: 10.1371/journal.ppat.1009968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
Collapse
|
18
|
Pentosan polysulfate sodium prevents functional decline in chikungunya infected mice by modulating growth factor signalling and lymphocyte activation. PLoS One 2021; 16:e0255125. [PMID: 34492036 PMCID: PMC8423248 DOI: 10.1371/journal.pone.0255125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.
Collapse
|
19
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
20
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. A Tale of Two Immune Cells in Rheumatoid Arthritis: The Crosstalk Between Macrophages and T Cells in the Synovium. Front Immunol 2021; 12:655477. [PMID: 34220809 PMCID: PMC8248486 DOI: 10.3389/fimmu.2021.655477] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Joint inflammation of RA is closely related to infiltration of immune cells, synovium hyperplasia, and superfluous secretion of proinflammatory cytokines, which lead to cartilage degradation and bone erosion. The joint synovium of RA patients contains a variety of immune cellular types, among which monocytes/macrophages and T cells are two essential cellular components. Monocytes/macrophages can recruit and promote the differentiation of T cells into inflammatory phenotypes in RA synovium. Similarly, different subtypes of T cells can recruit monocytes/macrophages and promote osteoblast differentiation and production of inflammatory cytokines. In this review, we will discuss how T cell-monocyte/macrophage interactions promote the development of RA, which will provide new perspectives on RA pathogenesis and the development of targeted therapy.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Karaki S, Blanc C, Tran T, Galy-Fauroux I, Mougel A, Dransart E, Anson M, Tanchot C, Paolini L, Gruel N, Gibault L, Lepimpec-Barhes F, Fabre E, Benhamouda N, Badoual C, Damotte D, Donnadieu E, Kobold S, Mami-Chouaib F, Golub R, Johannes L, Tartour E. CXCR6 deficiency impairs cancer vaccine efficacy and CD8 + resident memory T-cell recruitment in head and neck and lung tumors. J Immunother Cancer 2021; 9:e001948. [PMID: 33692218 PMCID: PMC7949477 DOI: 10.1136/jitc-2020-001948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Resident memory T lymphocytes (TRM) are located in tissues and play an important role in immunosurveillance against tumors. The presence of TRM prior to treatment or their induction is associated to the response to anti-Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1) immunotherapy and the efficacy of cancer vaccines. Previous work by our group and others has shown that the intranasal route of vaccination allows more efficient induction of these cells in head and neck and lung mucosa, resulting in better tumor protection. The mechanisms of in vivo migration of these cells remains largely unknown, apart from the fact that they express the chemokine receptor CXCR6. METHODS We used CXCR6-deficient mice and an intranasal tumor vaccination model targeting the Human Papillomavirus (HPV) E7 protein expressed by the TC-1 lung cancer epithelial cell line. The role of CXCR6 and its ligand, CXCL16, was analyzed using multiparametric cytometric techniques and Luminex assays.Human biopsies obtained from patients with lung cancer were also included in this study. RESULTS We showed that CXCR6 was preferentially expressed by CD8+ TRM after vaccination in mice and also on intratumoral CD8+ TRM derived from human lung cancer. We also demonstrate that vaccination of Cxcr6-deficient mice induces a defect in the lung recruitment of antigen-specific CD8+ T cells, preferentially in the TRM subsets. In addition, we found that intranasal vaccination with a cancer vaccine is less effective in these Cxcr6-deficient mice compared with wild-type mice, and this loss of efficacy is associated with decreased recruitment of local antitumor CD8+ TRM. Interestingly, intranasal, but not intramuscular vaccination induced higher and more sustained concentrations of CXCL16, compared with other chemokines, in the bronchoalveolar lavage fluid and pulmonary parenchyma. CONCLUSIONS This work demonstrates the in vivo role of CXCR6-CXCL16 axis in the migration of CD8+ resident memory T cells in lung mucosa after vaccination, resulting in the control of tumor growth. This work reinforces and explains why the intranasal route of vaccination is the most appropriate strategy for inducing these cells in the head and neck and pulmonary mucosa, which remains a major objective to overcome resistance to anti-PD-1/PD-L1, especially in cold tumors.
Collapse
Affiliation(s)
- Soumaya Karaki
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlotte Blanc
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Thi Tran
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Isabelle Galy-Fauroux
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alice Mougel
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 75248 Paris Cedex 05, France
| | - Marie Anson
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Corinne Tanchot
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lea Paolini
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Nadege Gruel
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, 75248 Paris Cedex 05, France
- Institut Curie, PSL Research University, Department of Translational Research, 75248 Paris Cedex 05, France
| | - Laure Gibault
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Francoise Lepimpec-Barhes
- Department of Thoracic Surgery, INSERM UMRS 1138, APHP, Hôpital Europeen Georges Pompidou, 75015 Paris, France
| | - Elizabeth Fabre
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | | | - Cecile Badoual
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Diane Damotte
- Department of Pathology, APHP, Hôpital Cochin, 75014 Paris, Île-de-France, France
| | - Emmanuel Donnadieu
- Departement Immunologie, Inflammation et Infection, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, Île-de-France, France
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL), Munchen, Germany
- German Center for Translational Cancer Research (DKTK), partner site, Munchen, Germany
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Institut Gustave Roussy, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Rachel Golub
- Unit for Lymphopoiesis, Department of Immunology, Institut Pasteur, INSERM U1223, 75006 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 75248 Paris Cedex 05, France
| | - Eric Tartour
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- Immunology, APHP,Hôpital Europeen Georges Pompidou, Paris, France
| |
Collapse
|
22
|
High miR-451 expression in peripheral blood mononuclear cells from subjects at risk of developing rheumatoid arthritis. Sci Rep 2021; 11:4719. [PMID: 33633196 PMCID: PMC7907058 DOI: 10.1038/s41598-021-84004-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals carrying anti-citrullinated protein antibodies (ACPA) are considered at high risk of developing rheumatoid arthritis (RA). The altered expression of miRNAs contributes to the pathogenesis of RA. We aimed to identify differentially expressed miRNAs in the peripheral blood of ACPA-positive individuals with arthralgia at risk of RA compared to healthy controls (HC) and to determine their implications in the preclinical phase of RA. A comprehensive analysis of miRNAs revealed the dysregulation of miR-451 in peripheral blood mononuclear cells (PBMC) and plasma from RA-risk individuals. Higher miR-451 expression in PBMC from RA-risk individuals was further validated. Notably, miR-451 was previously shown to regulate CXCL16, a protein involved in RA pathogenesis. The expression of miR-451 in PBMC positively correlated with the CXCL16 mRNA, which could be secondary to the inflammation-induced expression of miR-451. Transfection of monocytes with pre-miR-451 in vitro resulted in the downregulation of CXCL16. Moreover, flow cytometry revealed a lower count of CXCL16-positive monocytes in RA-risk individuals. We propose that the constitutive or inflammation-induced upregulation of miR-451 in PBMC downregulates the expression of CXCL16, reduces the inflammatory milieu and thereby strives to delay the shift from the preclinical phase to the clinical manifestation of RA. This hypothesis warrants further investigation.
Collapse
|
23
|
Basic M, Peppermüller PP, Bolsega S, Bleich A, Bornemann M, Bode U, Buettner M. Lymph Node Stromal Cells From Different Draining Areas Distinctly Regulate the Development of Chronic Intestinal Inflammation. Front Immunol 2021; 11:549473. [PMID: 33664727 PMCID: PMC7921801 DOI: 10.3389/fimmu.2020.549473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The balance between the responsiveness of the intestinal immune system and the gut environment is fundamental for the maintenance of intestinal homeostasis, which is required for an adequate recognition of entering antigens. The disruption of this homeostasis by exaggerated immune response to harmless antigens can lead to the development of intestinal disorders such as inflammatory bowel disease. Stromal cells are sessile non-hematopoietic cells that build the backbone of the lymph node, an important site for the immune response induction, but also contribute to immune response and tolerance induction. However, the knowledge about the role of stromal cells in the regulation of inflammatory responses is still limited. Therefore, in this study we analyzed the influence of stromal cells on the development of chronic intestinal inflammation. Here, we show that intestinal inflammation alters the immune activation of the mesenteric lymph node-derived stromal cells. Podoplanin+ and CD21/35+ stromal cells showed increased expression of MHC class II molecules, but CD106 expression on CD21/35+ cells was reduced. Stromal cells secreted cytokines and chemokines such as CCL7 and CXCL16 influenced the gut-homing phenotype and proliferation of CD4+ and CD8+ T cells. Furthermore, stromal cells of peripheral lymph nodes transplanted into the mesentery attenuated colitis severity in B6-Il10-/- mice. The reduced colitis severity in these mice was associated with increased expression of IL4 and distinct activation pattern of stromal cells derived from transplanted peripheral lymph nodes. Altogether, our results demonstrate that lymph node stromal cells impact development of chronic colitis via T cell induction. Moreover, lymph node stromal cells from different draining area due to neonatally imprinted processes distinctly regulate the induction of immune responses.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Melanie Bornemann
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ulrike Bode
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.,Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, De Zutter A, Siddiquei MM, Blanter M, Allegaert E, Gikandi PW, De Hertogh G, Van Damme J, Opdenakker G, Struyf S. Evaluation of Proteoforms of the Transmembrane Chemokines CXCL16 and CX3CL1, Their Receptors, and Their Processing Metalloproteinases ADAM10 and ADAM17 in Proliferative Diabetic Retinopathy. Front Immunol 2021; 11:601639. [PMID: 33552057 PMCID: PMC7854927 DOI: 10.3389/fimmu.2020.601639] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
The transmembrane chemokine pathways CXCL16/CXCR6 and CX3CL1/CX3CR1 are strongly implicated in inflammation and angiogenesis. We investigated the involvement of these chemokine pathways and their processing metalloproteinases ADAM10 and ADAM17 in the pathophysiology of proliferative diabetic retinopathy (PDR). Vitreous samples from 32 PDR and 24 non-diabetic patients, epiretinal membranes from 18 patients with PDR, rat retinas, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis. In vitro angiogenesis assays were performed and the adherence of leukocytes to CXCL16-stimulated HRMECs was assessed. CXCL16, CX3CL1, ADAM10, ADAM17 and vascular endothelial growth factor (VEGF) levels were significantly increased in vitreous samples from PDR patients. The levels of CXCL16 were 417-fold higher than those of CX3CL1 in PDR vitreous samples. Significant positive correlations were found between the levels of VEGF and the levels of CXCL16, CX3CL1, ADAM10 and ADAM17. Significant positive correlations were detected between the numbers of blood vessels expressing CD31, reflecting the angiogenic activity of PDR epiretinal membranes, and the numbers of blood vessels and stromal cells expressing CXCL16, CXCR6, ADAM10 and ADAM17. CXCL16 induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB and VEGF in cultured Müller cells and tumor necrosis factor-α induced upregulation of soluble CXCL16 and ADAM17 in Müller cells. Treatment of HRMECs with CXCL16 resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and increased leukocyte adhesion to HRMECs. CXCL16 induced HRMEC proliferation, formation of sprouts from HRMEC spheroids and phosphorylation of ERK1/2. Intravitreal administration of CXCL16 in normal rats induced significant upregulation of the p65 subunit of NF-κB, VEGF and ICAM-1 in the retina. Our findings suggest that the chemokine axis CXCL16/CXCR6 and the processing metalloproteinases ADAM10 and ADAM17 might serve a role in the initiation and progression of PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | - Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Cho YN, Jeong HS, Park KJ, Kim HS, Kim EH, Jin HM, Jung HJ, Ju JK, Choi SE, Kang JH, Park DJ, Kim TJ, Lee SS, Kee SJ, Park YW. Altered distribution and enhanced osteoclastogenesis of mucosal-associated invariant T cells in gouty arthritis. Rheumatology (Oxford) 2021; 59:2124-2134. [PMID: 32087015 DOI: 10.1093/rheumatology/keaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the role of mucosal-associated invariant T (MAIT) cells in gouty arthritis (GA) and their effects on osteoclastogenesis. METHODS Patients with GA (n = 61), subjects with hyperuricaemia (n = 11) and healthy controls (n = 30) were enrolled in this study. MAIT cells, cytokines, CD69, programmed death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells in the presence of M-CSF and RANK ligand. RESULTS Circulating MAIT cell levels were significantly reduced in GA patients. However, their capacities for IFN-γ, IL-17 and TNF-α production were preserved. Expression levels of CD69, PD-1 and LAG-3 in MAIT cells were found to be elevated in GA patients. In particular, CD69 expression in circulating MAIT cells was increased by stimulation with MSU crystals, suggesting that deposition of MSU crystals might contribute to MAIT cell activation. Interestingly, MAIT cells were found to be accumulated in synovial fluid and infiltrated into gouty tophus tissues within joints. Furthermore, activated MAIT cells secreted pro-resorptive cytokines (i.e. IL-6, IL-17 and TNF-α) and facilitated osteoclastogenesis. CONCLUSION This study demonstrates that circulating MAIT cells are activated and numerically deficient in GA patients. In addition, MAIT cells have the potential to migrate to inflamed tissues and induce osteoclastogenesis. These findings provide an important role of MAIT cells in the pathogenesis of inflammation and bone destruction in GA patients.
Collapse
Affiliation(s)
- Young-Nan Cho
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae-Seong Jeong
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Eun-Hee Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sung-Eun Choi
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ji-Hyoun Kang
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Dong-Jin Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Shin-Seok Lee
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Miyabe Y, Miyabe C, Iwai Y, Luster AD. Targeting the Chemokine System in Rheumatoid Arthritis and Vasculitis. JMA J 2020; 3:182-192. [PMID: 33150252 PMCID: PMC7590389 DOI: 10.31662/jmaj.2020-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Arrest of circulating leukocytes and subsequent diapedesis is a fundamental component of inflammation. In general, the leukocyte migration cascade is tightly regulated by chemoattractants, such as chemokines. Chemokines, small secreted chemotactic cytokines, as well as their G-protein-coupled seven transmembrane spanning receptors, control the migratory patterns, positioning and cellular interactions of immune cells. Increased levels of chemokines and their receptors are found in the blood and within inflamed tissue in patients with rheumatoid arthritis (RA) and vasculitis. Chemokine ligand-receptor interactions regulate the recruitment of leukocytes into tissue, thus contributing in important ways to the pathogenesis of RA and vasculitis. Despite the fact that blockade of chemokines and chemokine receptors in animal models have yielded promising results, human clinical trials in RA using inhibitors of chemokines and their receptors have generally failed to show clinical benefits. However, recent early phase clinical trials suggest that strategies blocking specific chemokines may have clinical benefits in RA, demonstrating that the chemokine system remains a promising therapeutic target for rheumatic diseases, such as RA and vasuculitis and requires further study.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Chie Miyabe
- Department of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiko Iwai
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
27
|
Elemam NM, Hachim MY, Hannawi S, Maghazachi AA. Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls. Genes (Basel) 2020; 11:genes11050492. [PMID: 32365786 PMCID: PMC7290970 DOI: 10.3390/genes11050492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1β were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
- Correspondence:
| | - Mahmood Yaseen Hachim
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| | - Suad Hannawi
- Department of Rheumatology, Ministry of Health and Prevention, Dubai 1853, UAE;
| | - Azzam A. Maghazachi
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| |
Collapse
|
28
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
29
|
Steel KJA, Srenathan U, Ridley M, Durham LE, Wu SY, Ryan SE, Hughes CD, Chan E, Kirkham BW, Taams LS. Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+CD8+ T Cells in Psoriatic Arthritis. Arthritis Rheumatol 2020; 72:435-447. [PMID: 31677365 PMCID: PMC7065207 DOI: 10.1002/art.41156] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Objective Genetic associations imply a role for CD8+ T cells and the interleukin‐23 (IL‐23)/IL‐17 axis in psoriatic arthritis (PsA) and other spondyloarthritides (SpA). IL‐17A+CD8+ (Tc17) T cells are enriched in the synovial fluid (SF) of patients with PsA, and IL‐17A blockade is clinically efficacious in PsA/SpA. This study was undertaken to determine the immunophenotype, molecular profile, and function of synovial Tc17 cells in order to elucidate their role in PsA/SpA pathogenesis. Methods Peripheral blood (PB) and SF mononuclear cells were isolated from patients with PsA or other types of SpA. Cells were phenotypically, transcriptionally, and functionally analyzed by flow cytometry (n = 6–18), T cell receptor β (TCRβ) sequencing (n = 3), RNA‐Seq (n = 3), quantitative reverse transcriptase–polymerase chain reaction (n = 4), and Luminex or enzyme‐linked immunosorbent assay (n = 4–16). Results IL‐17A+CD8+ T cells were predominantly TCRαβ+ and their frequencies were increased in the SF versus the PB of patients with established PsA (P < 0.0001) or other SpA (P = 0.0009). TCRβ sequencing showed that these cells were polyclonal in PsA (median clonality 0.08), while RNA‐Seq and deep immunophenotyping revealed that PsA synovial Tc17 cells had hallmarks of Th17 cells (RORC/IL23R/CCR6/CD161) and Tc1 cells (granzyme A/B). Synovial Tc17 cells showed a strong tissue‐resident memory T (Trm) cell signature and secreted a range of proinflammatory cytokines. We identified CXCR6 as a marker for synovial Tc17 cells, and increased levels of CXCR6 ligand CXCL16 in PsA SF (P = 0.0005), which may contribute to their retention in the joint. Conclusion Our results identify synovial Tc17 cells as a polyclonal subset of Trm cells characterized by polyfunctional, proinflammatory mediator production and CXCR6 expression. The molecular signature and functional profiling of these cells may help explain how Tc17 cells can contribute to synovial inflammation and disease persistence in PsA and possibly other types of SpA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catherine D Hughes
- King's College London, Guy's Hospital, and St. Thomas' Hospital, London, UK
| | - Estee Chan
- Guy's Hospital and St. Thomas' Hospital, London, UK
| | | | | |
Collapse
|
30
|
Yamada S, Miyoshi S, Nishio J, Mizutani S, Yamada Z, Kusunoki N, Sato H, Kuboi Y, Hoshino-Negishi K, Ishii N, Imai T, Mikami T, Nakano H, Kawai S, Nanki T. Effects of CX3CL1 inhibition on murine bleomycin-induced interstitial pneumonia. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220959903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Treatment for interstitial pneumonia (IP) associated with collagen diseases has not been established. There is a need to elucidate the pathogenesis of IP and develop a novel therapy. We aimed to clarify the role of chemokine (C-X3-C motif) ligand 1 (CX3CL1, also known as fractalkine) in IP. Methods: Bleomycin (BLM) was intratracheally administered to C57BL/6 mice to induce IP. For treatment with control Ab or anti-CX3CL1 mAb, the mice were administered either Ab three times per week for 2 weeks from the day of BLM administration until euthanasia. Expressions of CX3CL1 and its unique receptor CX3CR1 in the lung tissue were examined by immunohistochemical analysis. Cellular infiltration and lung fibrosis were evaluated based on hematoxylin-eosin-staining and Sirius red staining of the lung tissue sections, respectively. Bronchoalveolar lavage fluid (BALF) cells were analyzed by flow cytometry. Results: CX3CL1 and CX3CR1 were strongly expressed in the lung tissue from mice with BLM-induced IP (BLM-IP). Treatment with anti-CX3CL1 mAb did not significantly alter inflammatory cell infiltration or fibrosis in the lung tissue. However, the number of M1-like macrophages in BALF was decreased and surface CD3 expression on T cells was increased by anti-CX3CL1 mAb treatment. Conclusions: Inhibition of CX3CL1 decreased inflammatory cells and may attenuate T cell activation in BALF. CX3CL1 inhibitor may have the potential to suppress the infiltration and activation of immune cells in IP.
Collapse
Affiliation(s)
- Soichi Yamada
- Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Shion Miyoshi
- Department of Respiratory Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Junko Nishio
- Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Satoshi Mizutani
- Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
| | - Zento Yamada
- Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Natsuko Kusunoki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
- Department of Inflammation and Pain Control Research, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Hiroshi Sato
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | | | | | - Naoto Ishii
- KAN Research Institute, Inc., Kobe, Hyogo, Japan
| | - Toshio Imai
- KAN Research Institute, Inc., Kobe, Hyogo, Japan
| | - Tetsuo Mikami
- Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Toshihiro Nanki
- Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| |
Collapse
|
31
|
Ma Z, Yu R, Zhu Q, Sun L, Jian L, Wang X, Zhao J, Li C, Liu X. CXCL16/CXCR6 axis promotes bleomycin-induced fibrotic process in MRC-5 cells via the PI3K/AKT/FOXO3a pathway. Int Immunopharmacol 2019; 81:106035. [PMID: 31753588 DOI: 10.1016/j.intimp.2019.106035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a progressive and irreversible lung disease with very limited therapeutic options. Previous studies have found that chemokine ligands CXCL16 and CXCR6 play critical roles in organ fibrosis. However, whether CXCL16 and CXCR6 are also involved in the pathogenesis of ILD, as well as their regulatory role in pulmonary fibrosis, has not been reported. METHODS In this study, we detected CXCL16 levels in patients with rheumatoid arthritis-associated ILD (RA-ILD) and examined the critical role of the CXCL16/CXCR6 axis in the proliferation and collagen production of human pulmonary fibroblasts (MRC-5 cells). The effect of anti-CXCL16 antibody on the bleomycin-induced fibrogenesis in cultured MRC-5 cells was also evaluated. RESULTS Our results indicated that serum soluble CXCL16 was significantly higher in RA-ILD patients and also associated with the severity of lung fibrosis. CXCL16 facilitates fibrosis by enhancing proliferation, migration, and collagen production of MRC-5 cells. Furthermore, a synergistic fibrogenic effect of CXCL16 and bleomycin has been found. CXCL16 stimulated the activation of PI3K/AKT/FOXO3a signaling pathway in MRC-5 cells, and the inhibition by specific inhibitors Wortmannin and LY294002, or knockdown of CXCR6 by siRNA also suppressed the biological functions of MRC-5 cells mediated by CXCL16. Similarly, down-regulation of CXCR6 also partly blocked BLM-induced fibrogenesis in MRC-5 cells. CONCLUSIONS CXCL16/CXCR6 axis promotes proliferation and collagen production of MRC-5 cells by the PI3K/AKT/FOXO3a signaling pathway, and inhibition of the CXCL16/CXCR6 axis may provide a new therapeutic strategy targeting pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Ruohan Yu
- Department of Rheumatology and Immunology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Qiao Zhu
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
32
|
Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat Rev Rheumatol 2019; 15:731-746. [PMID: 31705045 DOI: 10.1038/s41584-019-0323-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Chemokines, a family of small secreted chemotactic cytokines, and their G protein-coupled seven transmembrane spanning receptors control the migratory patterns, positioning and cellular interactions of immune cells. The levels of chemokines and their receptors are increased in the blood and within inflamed tissue of patients with rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis or idiopathic inflammatory myopathies. Chemokine ligand-receptor interactions control the recruitment of leukocytes into tissue, which are central to the pathogenesis of these rheumatic diseases. Although the blockade of various chemokines and chemokine receptors has yielded promising results in preclinical animal models of rheumatic diseases, human clinical trials have, in general, been disappointing. However, there have been glimmers of hope from several early-phase clinical trials that suggest that sufficiently blocking the relevant chemokine pathway might in fact have clinical benefits in rheumatic diseases. Hence, the chemokine system remains a promising therapeutic target for rheumatic diseases and requires further study.
Collapse
|
33
|
Therapeutic Potential of “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling: Exosomes d-MAPPS” is Based on the Effects of Exosomes, Immunosuppressive and Trophic Factors. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Due to their differentiation capacity and potent immunosuppressive and pro-angiogenic properties, mesenchymal stem cells (MSCs) have been considered as new therapeutic agents in regenerative medicine. Since most of MSC-mediated beneficent effects are a consequence of their paracrine action, we designed MSC-based product “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exosomes d-MAPPS), which activity is based on MSCs-derived growth factors and immunomodulatory cytokines capable to attenuate inflammation and to promote regeneration of injured tissues. Interleukin 1 receptor antagonist (IL-1Ra) and IL-27 were found in high concentrations in Exosomes d-MAPPS samples indicating strong anti-inflammatory and immunosuppressive potential of Exosomes d-MAPPS. Additionally, high concentrations of vascular endothelial growth factor receptor (VEGFR1) and chemokines (CXCL16, CCL21, CXCL14) were noticed at Exosomes d-MAPPS samples suggesting their potential to promote generation of new blood vessels and migration of CXCR6, CCR7 and CXCR4 expressing cells. Since all proteins which were found in high concentration in Exosomes d-MAPPS samples (IL-1Ra, CXCL16, CXCL14, CCL21, IL-27 and VEGFR1) are involved in modulation of lung, eye, and synovial inflammation, Exosomes d-MAPPS samples were prepared as inhalation and ophthalmic solutions in addition to injection formulations; their application in several patients suffering from chronic obstructive pulmonary disease, osteoarthritis, and dry eye syndrome resulted with significant improvement of biochemical and functional parameters. In conclusion, Exosomes d-MAPPS, due to the presence of important anti-inflammatory, immunomodulatory, and pro-angiogenic factors, represents potentially new therapeutic agent in regenerative medicine that should be further tested in large clinical studies.
Collapse
|
34
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. Long Non-Coding RNAs Target Pathogenetically Relevant Genes and Pathways in Rheumatoid Arthritis. Cells 2019; 8:cells8080816. [PMID: 31382516 PMCID: PMC6721587 DOI: 10.3390/cells8080816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio Puccetti
- Department of Experimental Medicine-Section of Histology, University of Genova, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
35
|
Zhu H, Zhang Q, Chen G. CXCR6 deficiency ameliorates ischemia-reperfusion injury by reducing the recruitment and cytokine production of hepatic NKT cells in a mouse model of non-alcoholic fatty liver disease. Int Immunopharmacol 2019; 72:224-234. [PMID: 31002999 DOI: 10.1016/j.intimp.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Fatty liver is used for transplantation due to organ shortage, but prone to cause complications like ischemia-reperfusion injury (IRI). NKT cells as a bridge between innate and adaptive immunity were reported to infiltrate the liver at the early phase of IRI induced in normal liver. However, the localization mechanism of NKT cells is not precise, and the role of NKT cells in fatty liver IRI is poorly understood. In present murine IRI model of non-alcoholic fatty liver disease, we demonstrated that although the number reduced in fatty liver, NKT cells still activated and accumulated to fatty liver following IRI, and contributed to IRI by producing inflammatory cytokine IFN-γ. We revealed that NKT cells in fatty liver expressed more CXCR6, a vital chemokine receptor; meanwhile, the ligand CXCL16 mRNA expression level in fatty liver was up-regulated. The up-regulation of the CXCR6/CXCL16 axis in fatty liver happened in IRI, which maybe endow NKT cells more chemotaxis. We further found CXCR6 deficiency reduced the recruitment of NKT cells in a tissue-dependent manner, and impaired the IFN-γ producing capacity of hepatic NKT cells. Serum ALT level and hepatic histology were both improved in CXCR6 deficient mice. The results provide evidence of the pathogenic role of NKT cells in fatty liver IRI, and important localization mechanism involving up-regulated CXCR6/CXCL16. Deficiency of CXCR6 protects the fatty liver from IRI by reducing the recruitment and cytokine production of hepatic NKT cells.
Collapse
Affiliation(s)
- Huanbing Zhu
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America.
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
36
|
Chemin K, Gerstner C, Malmström V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation-Lessons From Rheumatoid Arthritis. Front Immunol 2019; 10:353. [PMID: 30915067 PMCID: PMC6422991 DOI: 10.3389/fimmu.2019.00353] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Infiltration of memory CD4+ T cells in synovial joints of Rheumatoid Arthritis (RA) patients has been reported since decades. Moreover, several genome wide association studies (GWAS) pinpointing a key genetic association between the HLA-DR locus and RA have led to the generally agreed hypothesis that CD4+ T cells are directly implicated in the disease. Still, RA is a heterogeneous disease and much effort has been made to understand its different facets. T cell differentiation is driven by mechanisms including antigen stimulation, co-stimulatory signals and cytokine milieu, all of which are abundant in the rheumatic joint, implying that any T cells migrating into the joint may be further affected locally. In parallel to the characterization and classification of T-cell subsets, the contribution of different effector T cells to RA has been investigated in numerous studies though sometimes with contradictory results. In particular, the frequency of Th1 and Th17 cells has been assessed in the synovial joints with various results that could, at least partly, be explained by the stage of the disease. For regulatory T cells, it is largely accepted that they accumulate in RA synovial fluid and that the equilibrium between regulatory T cells and effector cells is a key factor in controlling inflammation processes involved in RA. Recent phenotypic studies describe the possible implication of a novel subset of peripheral T helper cells (Tph) important for T-B cell cross talk and plasma cell differentiation in the RA joint of ACPA+ (autoantibodies against citrullinated proteins) RA patients. Finally, cytotoxic CD4+ T cells, historically described as increased in the peripheral blood of RA patients have attracted new attention in the last years. In view of the recently identified peripheral T-cell subsets, we will integrate immunological data as well as information on genetic variants and therapeutic strategy outcomes into our current understanding of the width of effector T cells. We will also integrate tissue-resident memory T cell aspects, and discuss similarities and differences with inflammatory conditions in skin (psoriasis) and mucosal organs (Crohn's disease).
Collapse
Affiliation(s)
- Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christina Gerstner
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
37
|
Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 2018; 7:76274-76290. [PMID: 27517754 PMCID: PMC5342813 DOI: 10.18632/oncotarget.11187] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an antimicrobial MR1-restricted T cell subset and play an important role in immune defense response to bacteria. However, little is known about the role of MAIT cells in cancer. The aims of this study were to examine the level and function of MAIT cells in cancer patients and to evaluate the clinical relevance of MAIT cell levels. Ninety-nine patients with cancer and 20 healthy controls were included in this study. Circulating MAIT cell levels were significantly reduced in patients with mucosal-associated cancers (MACs), such as gastric, colon and lung cancers, but their capacities for IFN-γ, IL-17, or TNF-α production were preserved. This MAIT cell deficiency was significantly correlated with N staging and carcinoembryonic antigen level. Percentages of MAIT cells were significantly higher in cancer tissue than in peripheral blood and immunofluorescent labeling showed MAIT cell infiltration into colon cancer tissues. Circulating MAIT cells exhibited high levels of CCR6 and CXCR6, and their corresponding chemokines, such as CCL20 and CXCL16, were strongly expressed in colon cancer tissues. Activated MAIT cells not only had lymphokine-activated killer activity, but they also had direct cytotoxicity on K562 cells via degranulation of granzyme B and perforin. This study primarily demonstrates that circulating MAIT cells are reduced in MAC patients due to migration to mucosal cancer tissues and they have the potential to kill cancer cells. In addition, this circulating MAIT cell deficiency is related to the degree of cancer progression in mucosal tissues.
Collapse
|
38
|
Hao Y, Li Y, Li H, Lyu M, Zhang D, Fu R, Guan Y, Wang S, Sun B, Dou X, Zhang L, Yang R. Increased plasma sCXCL16 levels may have a relationship with Th1/Th2 imbalance in primary immune thrombocytopenia. Cytokine 2017; 99:124-131. [PMID: 28886489 DOI: 10.1016/j.cyto.2017.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Primary immune thrombocytopenia (ITP) is a disease of autoimmunity in which there are Th1/Th2 imbalance and disordered cytokine profiles. CXC chemokine ligand 16 (CXCL16) was proved to implicate in some autoimmune diseases. Our research aimed to determine plasma soluble CXCL16 (sCXCL16) levels and its effects in ITP. We used ELISA to measure plasma sCXCL16, IFN-γ and IL-4 and flow cytometry to determine expression of CXCR6 on lymphocyte subsets. We used real-time PCR to detect the CXCL16 and CXCR6 mRNA expression. Additionally, plasma sCXCL16, CXCL16 and CXCR6 mRNA levels of 8 patients were monitored before and after treatment. We found that patients with active ITP had higher circulating sCXCL16 in plasma than healthy controls and patients in remission. Meanwhile, negative relationships between sCXCL16 and platelet count, IL-4 and positive relationships between sCXCL16 and IFN-γ, IFN-γ/IL-4 ratio were observed. Besides, expression of CXCR6 on lymphocyte subsets and mRNA levels of CXCL16 and CXCR6 were all increased in active ITP. Additionally, plasma sCXCL16 and IFN-γ levels and CXCR6 mRNA expression were down-regulated after effective treatment compared with those before treatment. Thus, increased plasma sCXCL16 might be implicated in the pathogenesis of ITP and have a relationship with Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Yating Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Yang Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Mingen Lyu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Yue Guan
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Shixuan Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Boyang Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Xueqing Dou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China.
| |
Collapse
|
39
|
Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017; 16:594-601. [PMID: 28414154 DOI: 10.1016/j.autrev.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
In Rheumatoid arthritis (RA), neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium. Endothelial cells are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis. Current therapies in RA target the inflammatory consequences of autoimmune activation and despite major improvements these last years still refractory patients or incomplete responders may be seen raising the point of the need to identify complementary additive and innovative therapies. This review resumes the mechanisms of synovial neoangiogenesis in RA, including recent insights on the implication of vasculogenesis, and the regulation of synovial neoangiogenesis by angiogenic and inflammatory mediators. In line with the recent development of vascular-targeted therapies used in cancer and beyond, we also discuss possible therapeutic implications in RA, in particular the combination of targeted immunotherapies with anti-angiogenic molecules.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France.
| |
Collapse
|
40
|
Abstract
INTRODUCTION Preeclampsia is a major pregnancy disease, explained partly by genetic predispositions. STOX1, a transcription factor discovered in 2005, was the first gene directly associated with genetic forms of the disease. Alterations of STOX1 expression as well as STOX1 variants have also been associated to Alzheimer's disease. These observations make of this gene a putative therapeutic target. Area covered: Two major isoforms (STOX1A and STOX1B) are encoded by the gene and are theoretically able to compete for the same binding site, while only the most complete (STOX1A) is supposed to be able to activate gene expression. This makes the ratio between STOX1A and STOX1B as well as their position inside the cell (nucleus or cytoplasm) crucial to understand how STOX1 functions. STOX1 appears to have multiple gene targets, especially in pathways connected to inflammation, oxidative stress, and cell cycle. Expert opinion: STOX1-directed therapies, could be directed either towards its targets (genes or pathways), or directly at STOX1. For this the addressing of STOX1 to various cell compartments could theoretically be modified; also it could be possible of altering the balance between the two isoforms, through selectively inhibiting one of them, possibly improving the outcomes in severe preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| | - Francisco Miralles
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| |
Collapse
|
41
|
Liao X, Pirapakaran T, Luo XM. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis. Mediators Inflamm 2016; 2016:6012715. [PMID: 27403037 PMCID: PMC4923605 DOI: 10.1155/2016/6012715] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tharshikha Pirapakaran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
42
|
CXCR6 expression in non-small cell lung carcinoma supports metastatic process via modulating metalloproteinases. Oncotarget 2016; 6:9985-98. [PMID: 25888629 PMCID: PMC4496412 DOI: 10.18632/oncotarget.3194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 01/29/2023] Open
Abstract
Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target.
Collapse
|
43
|
Affiliation(s)
- Toshihiro NANKI
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
| |
Collapse
|
44
|
Anderson CA, Solari R, Pease JE. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery? J Leukoc Biol 2015; 99:901-9. [PMID: 26701135 DOI: 10.1189/jlb.2mr0815-392r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.
Collapse
Affiliation(s)
- Caroline A Anderson
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, United Kingdom
| | - James E Pease
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| |
Collapse
|
45
|
Li CH, Xu LL, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, Yang L, Xing R, Liu XY. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway. Inflamm Res 2015; 65:193-202. [PMID: 26621504 DOI: 10.1007/s00011-015-0905-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore the influence of chemokine, CXCL16, on the expression of the receptor activator nuclear factor κB ligand (RANKL) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS). METHODS The expression of CXCL16/CXCR6 and RANKL in RA or osteoarthritis (OA) patient synovia was examined by Western blot and immunohistochemistry. The serum concentration of CXCL16 and RANKL was measured by enzyme-linked immunosorbent assay (ELISA). RA-FLS were treated with recombinant CXCL16, and RANKL mRNA and protein were measured using PCR, Western blot and ELISA. RESULTS The synovial expression of CXCL16, CXCR6, and RANKL was higher in RA patients than in patients with OA. The serum CXCL16 and RANKL levels were higher in RA patients compared with OA patients and healthy controls. CXCL16 correlated with erythrocyte sedimentation rate, C reactive protein, disease activity, serum rheumatoid factor, and RANKL. RA-FLS treated with CXCL16 showed markedly increased expression of RANKL. When STAT3 or p38 activation was blocked by an inhibitor, CXCL16 failed to upregulate RANKL expression. In contrast, inhibiting the Akt or Erk pathway did not achieve the same effect. CONCLUSIONS CXCL16 upregulates RANKL expression in RA-FLS and these effects are mainly mediated by the JAK2/STAT3 and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Chang-hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin-lin Xu
- Department of Clinical Nutrition, First Hospital of Tsinghua Univiersity, Beijing, 100016, People's Republic of China
| | - Jin-xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhong-qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiao-li Deng
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiang-yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
46
|
Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 2015; 12:5-13. [PMID: 26607389 DOI: 10.1038/nrrheum.2015.157] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines and chemokine receptors are involved in leukocyte recruitment and angiogenesis underlying the pathogenesis of rheumatoid arthritis (RA) and other inflammatory rheumatic diseases. Numerous chemokines, along with both conventional and atypical cell-surface chemokine receptors, are found in inflamed synovia. Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors have yielded promising results. However, most human trials of treatment of RA with antibodies and synthetic compounds targeting chemokine signalling have failed to show clinical improvements. Chemokines can have overlapping actions, and their activities can be altered by chemical modification or proteolytic degradation. Effective targeting of chemokine pathways must take acount of these properties, and can also require high levels of receptor occupancy by therapeutic agents to prevent signalling. CCR1 is a promising target for chemokine-receptor blockade.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen, H-4004, Hungary
| | - Alisa E Koch
- University of Michigan Health System, Department of Internal Medicine, Division of Rheumatology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
47
|
Zampeli E, Vlachoyiannopoulos PG, Tzioufas AG. Treatment of rheumatoid arthritis: Unraveling the conundrum. J Autoimmun 2015; 65:1-18. [PMID: 26515757 DOI: 10.1016/j.jaut.2015.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous disease with a complex and yet not fully understood pathophysiology, where numerous different cell-types contribute to a destructive process of the joints. This complexity results into a considerable interpatient variability in clinical course and severity, which may additionally involve genetics and/or environmental factors. After three decades of focused efforts scientists have now achieved to apply in clinical practice, for patients with RA, the "treat to target" approach with initiation of aggressive therapy soon after diagnosis and escalation of the therapy in pursuit of clinical remission. In addition to the conventional synthetic disease modifying anti-rheumatic drugs, biologics have greatly improved the management of RA, demonstrating efficacy and safety in alleviating symptoms, inhibiting bone erosion, and preventing loss of function. Nonetheless, despite the plethora of therapeutic options and their combinations, unmet therapeutic needs in RA remain, as current therapies sometimes fail or produce only partial responses and/or develop unwanted side-effects. Unfortunately the mechanisms of 'nonresponse' remain unknown and most probable lie in the unrevealed heterogeneity of the RA pathophysiology. In this review, through the effort of unraveling the complex pathophysiological pathways, we will depict drugs used throughout the years for the treatment of RA, the current and future biological therapies and their molecular or cellular targets and finally will suggest therapeutic algorithms for RA management. With multiple biologic options, there is still a need for strong predictive biomarkers to determine which drug is most likely to be effective, safe, and durable in a given individual. The fact that available biologics are not effective in all patients attests to the heterogeneity of RA, yet over the long term, as research and treatment become more aggressive, efficacy, toxicity, and costs must be balanced within the therapeutic equation to enhance the quality of life in patients with RA.
Collapse
Affiliation(s)
- Evangelia Zampeli
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | | | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece.
| |
Collapse
|
48
|
Nakamoto T, Izu Y, Kawasaki M, Notomi T, Hayata T, Noda M, Ezura Y. Mice Deficient in CIZ/NMP4 Develop an Attenuated Form of K/BxN-Serum Induced Arthritis. J Cell Biochem 2015; 117:970-7. [PMID: 26378628 DOI: 10.1002/jcb.25382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1β was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1β promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis.
Collapse
Affiliation(s)
- Tetsuya Nakamoto
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takuya Notomi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
49
|
Huang S, Mao J, Wei B, Pei G. The anti-spasticity drug baclofen alleviates collagen-induced arthritis and regulates dendritic cells. J Cell Physiol 2015; 230:1438-47. [PMID: 25556830 DOI: 10.1002/jcp.24884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/05/2014] [Indexed: 12/27/2022]
Abstract
Baclofen is used clinically as a drug that treats spasticity, which is a syndrome characterized by excessive contraction of the muscles and hyperflexia in the central nervous system (CNS), by activating GABA(B) receptors (GABA(B)Rs). Baclofen was recently reported to desensitize chemokine receptors and to suppress inflammation through the activation of GABA(B)Rs. GABA(B)Rs are expressed in various immune cells, but the functions of these receptors in autoimmune diseases remain largely unknown. In this study, we investigated the effects of baclofen in murine collagen-induced arthritis (CIA). Oral administration of baclofen alleviated the clinical development of CIA, with a reduced number of IL-17-producing T helper 17 (T(H)17) cells. In addition, baclofen treatment suppressed dendritic cell (DC)-primed T(H)17 cell differentiation by reducing the production of IL-6 by DCs in vitro. Furthermore, the pharmacological and genetic blockade of GABA(B)Rs in DCs weakened the effects of baclofen, indicating that GABA(B)Rs are the molecular targets of baclofen on DCs. Thus, our findings revealed a potential role for baclofen in the treatment of CIA, as well as a previously unknown signaling pathway that regulates DC function.
Collapse
Affiliation(s)
- Shichao Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | | | |
Collapse
|
50
|
Zou J, Redmond AK, Qi Z, Dooley H, Secombes CJ. The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. Gen Comp Endocrinol 2015; 215:117-31. [PMID: 25623148 DOI: 10.1016/j.ygcen.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|