BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Li B, Cai SL, Tan WM, Li JC, Yalikong A, Feng XS, Yu HH, Lu PX, Feng Z, Yao LQ, Zhou PH, Yan B, Zhong YS. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. World J Gastroenterol 2021; 27(3): 281-293 [PMID: 33519142 DOI: 10.3748/wjg.v27.i3.281]
URL: https://www.wjgnet.com/1007-9327/full/v27/i3/281.htm
Number Citing Articles
1
浩 王. Research Progress on Artificial Intelligence-Assisted Endoscopic Identification of Esophageal CancerAdvances in Clinical Medicine 2024; 14(09): 715 doi: 10.12677/acm.2024.1492521
2
Sayaka Nagao, Yasuhiro Tani, Junichi Shibata, Yosuke Tsuji, Tomohiro Tada, Ryu Ishihara, Mitsuhiro Fujishiro. Implementation of artificial intelligence in upper gastrointestinal endoscopyDEN Open 2022; 2(1) doi: 10.1002/deo2.72
3
Qian-Qian Meng, Ye Gao, Han Lin, Tian-Jiao Wang, Yan-Rong Zhang, Jian Feng, Zhao-Shen Li, Lei Xin, Luo-Wei Wang. Application of an artificial intelligence system for endoscopic diagnosis of superficial esophageal squamous cell carcinomaWorld Journal of Gastroenterology 2022; 28(37): 5483-5493 doi: 10.3748/wjg.v28.i37.5483
4
Qing Li, Bing-Rong Liu. Application of artificial intelligence-assisted endoscopic detection of early esophageal cancerWorld Chinese Journal of Digestology 2021; 29(24): 1389 doi: 10.11569/wcjd.v29.i24.1389
Abstract() |  Core Tip() |  Full Article(HTML)() | Times Cited  (0) | Total Visits (0) | Open
5
Xiang-Lei Yuan, Xian-Hui Zeng, Wei Liu, Yi Mou, Wan-Hong Zhang, Zheng-Duan Zhou, Xin Chen, Yan-Xing Hu, Bing Hu. Artificial intelligence for detecting and delineating the extent of superficial esophageal squamous cell carcinoma and precancerous lesions under narrow-band imaging (with video)Gastrointestinal Endoscopy 2023; 97(4): 664 doi: 10.1016/j.gie.2022.12.003
6
Yongkang Tao, Long Fang, Geng Qin, Yingying Xu, Shuang Zhang, Xiangrong Zhang, Shiyu Du. Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancerThoracic Cancer 2024; 15(16): 1296 doi: 10.1111/1759-7714.15261
7
Paul T Kröner, Megan ML Engels, Benjamin S Glicksberg, Kipp W Johnson, Obaie Mzaik, Jeanin E van Hooft, Michael B Wallace, Hashem B El-Serag, Chayakrit Krittanawong. Artificial intelligence in gastroenterology: A state-of-the-art reviewWorld Journal of Gastroenterology 2021; 27(40): 6794-6824 doi: 10.3748/wjg.v27.i40.6794
8
Hemant Goyal, Syed A. A. Sherazi, Rupinder Mann, Zainab Gandhi, Abhilash Perisetti, Muhammad Aziz, Saurabh Chandan, Jonathan Kopel, Benjamin Tharian, Neil Sharma, Nirav Thosani. Scope of Artificial Intelligence in Gastrointestinal OncologyCancers 2021; 13(21): 5494 doi: 10.3390/cancers13215494
9
Min Liang, Chunhong Xu, Xinyan Zhang, Zongwang Zhang, Junli Cao. Effect of anesthesia assistance on the detection rate of precancerous lesions and early esophageal squamous cell cancer in esophagogastroduodenoscopy screening: A retrospective study based on propensity score matchingFrontiers in Medicine 2023; 10 doi: 10.3389/fmed.2023.1039979
10
Md. Mohaimenul Islam, Tahmina Nasrin Poly, Bruno Andreas Walther, Chih-Yang Yeh, Shabbir Seyed-Abdul, Yu-Chuan (Jack) Li, Ming-Chin Lin. Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-AnalysisCancers 2022; 14(23): 5996 doi: 10.3390/cancers14235996
11
Yuwei Pan, Lanying He, Weiqing Chen, Yongtao Yang. The current state of artificial intelligence in endoscopic diagnosis of early esophageal squamous cell carcinomaFrontiers in Oncology 2023; 13 doi: 10.3389/fonc.2023.1198941
12
Jun-Qi Zhang, Jun-Jie Mi, Rong Wang. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysisWorld Journal of Gastrointestinal Oncology 2023; 15(11): 1998-2016 doi: 10.4251/wjgo.v15.i11.1998
13
Suigu Tang, Xiaoyuan Yu, Chak Fong Cheang, Xiaoyu Ji, Hon Ho Yu, I Cheong Choi. CLELNet: A continual learning network for esophageal lesion analysis on endoscopic imagesComputer Methods and Programs in Biomedicine 2023; 231: 107399 doi: 10.1016/j.cmpb.2023.107399
14
Pierfrancesco Visaggi, Nicola de Bortoli, Brigida Barberio, Vincenzo Savarino, Roberto Oleas, Emma M. Rosi, Santino Marchi, Mentore Ribolsi, Edoardo Savarino. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal DiseasesJournal of Clinical Gastroenterology 2022; 56(1): 23 doi: 10.1097/MCG.0000000000001629
15
De Luo, Fei Kuang, Juan Du, Mengjia Zhou, Xiangdong Liu, Xinchen Luo, Yong Tang, Bo Li, Song Su. Artificial Intelligence–Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-AnalysisFrontiers in Oncology 2022; 12 doi: 10.3389/fonc.2022.855175
16
Ji-Han Qi, Shi-Ling Huang, Shi-Zhu Jin. Novel milestones for early esophageal carcinoma: From bench to bedWorld Journal of Gastrointestinal Oncology 2024; 16(4): 1104-1118 doi: 10.4251/wjgo.v16.i4.1104
17
Charalampos Theocharopoulos, Spyridon Davakis, Dimitrios C. Ziogas, Achilleas Theocharopoulos, Dimitra Foteinou, Adam Mylonakis, Ioannis Katsaros, Helen Gogas, Alexandros Charalabopoulos. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal CancerCancers 2024; 16(19): 3285 doi: 10.3390/cancers16193285
18
Wan-Yue Zhang, Yong-Jian Chang, Rui-Hua Shi. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology eraWorld Journal of Gastroenterology 2024; 30(39): 4267-4280 doi: 10.3748/wjg.v30.i39.4267
19
Hari Mohan Rai, Joon Yoo, Abdul Razaque. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniquesExpert Systems with Applications 2024; 255: 124838 doi: 10.1016/j.eswa.2024.124838
20
Ming-Wun Wong, Benjamin D. Rogers, Min-Xiang Liu, Wei-Yi Lei, Tso-Tsai Liu, Chih-Hsun Yi, Jui-Sheng Hung, Shu-Wei Liang, Chiu-Wang Tseng, Jen-Hung Wang, Ping-An Wu, Chien-Lin Chen. Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERDDiagnostics 2023; 13(5): 960 doi: 10.3390/diagnostics13050960
21
T. A. Sadulaeva, L. A. Edilgireeva, M. B. Bimurzaeva, A. O. Morozov. Use of artificial intelligence in diagnostic cystoscopy of bladder cancerCancer Urology 2023; 19(2): 146 doi: 10.17650/1726-9776-2023-19-2-148-152
22
Shaleen Vasavada, Sharmila Anandasabapathy. Image Enhanced Endoscopy in Esophageal Squamous Cell CarcinomaForegut: The Journal of the American Foregut Society 2024; 4(1): 82 doi: 10.1177/26345161231211752
23
Pierfrancesco Visaggi, Brigida Barberio, Dario Gregori, Danila Azzolina, Matteo Martinato, Cesare Hassan, Prateek Sharma, Edoardo Savarino, Nicola de Bortoli. Systematic review with meta‐analysis: artificial intelligence in the diagnosis of oesophageal diseasesAlimentary Pharmacology & Therapeutics 2022; 55(5): 528 doi: 10.1111/apt.16778
24
Silvia Pecere, Sebastian Manuel Milluzzo, Gianluca Esposito, Emanuele Dilaghi, Andrea Telese, Leonardo Henry Eusebi. Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal DiseasesDiagnostics 2021; 11(9): 1575 doi: 10.3390/diagnostics11091575
25
Nadia Guidozzi, Nainika Menon, Swathikan Chidambaram, Sheraz Rehan Markar. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysisDiseases of the Esophagus 2023; 36(12) doi: 10.1093/dote/doad048
26
Jonathan S Galati, Robert J Duve, Matthew O'Mara, Seth A Gross. Artificial intelligence in gastroenterology: A narrative reviewArtificial Intelligence in Gastroenterology 2022; 3(5): 117-141 doi: 10.35712/aig.v3.i5.117