For: | Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol 2020; 26(46): 7287-7298 [PMID: 33362384 DOI: 10.3748/wjg.v26.i46.7287] |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v26/i46/7287.htm |
Number | Citing Articles |
1 |
Hai-Yang Chen, Peng Ge, Jia-Yue Liu, Jia-Lin Qu, Fang Bao, Cai-Ming Xu, Hai-Long Chen, Dong Shang, Gui-Xin Zhang. Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease. World Journal of Gastroenterology 2022; 28(20): 2152-2162 doi: 10.3748/wjg.v28.i20.2152
|
2 |
Caesar Ferrari, Micheal Tadros. Enhancing the Quality of Upper Gastrointestinal Endoscopy: Current Indicators and Future Trends. Gastroenterology Insights 2023; 15(1): 1 doi: 10.3390/gastroent15010001
|
3 |
Joanna Ejdys, Magdalena Czerwińska, Romualdas Ginevičius . Social acceptance of artificial intelligence (AI) application for improving medical service diagnostics. Human Technology 2024; 20(1): 155 doi: 10.14254/1795-6889.2024.20-1.8
|
4 |
Utkarsh Ojha, James Ayathamattam, Kenneth Okonkwo, Innocent Ogunmwonyi. Recent Updates and Technological Developments in Evaluating Cardiac
Syncope in the Emergency Department. Current Cardiology Reviews 2022; 18(6) doi: 10.2174/1573403X18666220421110935
|
5 |
Liang Wang, Hui Song, Ming Wang, Hui Wang, Ran Ge, Yan Shen, Yongli Yu, Kalidoss Rajakani. Utilization of Ultrasonic Image Characteristics Combined with Endoscopic Detection on the Basis of Artificial Intelligence Algorithm in Diagnosis of Early Upper Gastrointestinal Cancer. Journal of Healthcare Engineering 2021; 2021: 1 doi: 10.1155/2021/2773022
|
6 |
Hasan Maulahela, Nagita Gianty Annisa. Current advancements in application of artificial intelligence in clinical decision-making by gastroenterologists in gastrointestinal bleeding. Artificial Intelligence in Gastroenterology 2022; 3(1): 13-20 doi: 10.35712/aig.v3.i1.13
|
7 |
Kareem Khalaf, Maria Terrin, Manol Jovani, Tommy Rizkala, Marco Spadaccini, Katarzyna M. Pawlak, Matteo Colombo, Marta Andreozzi, Alessandro Fugazza, Antonio Facciorusso, Fabio Grizzi, Cesare Hassan, Alessandro Repici, Silvia Carrara. A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound. Journal of Clinical Medicine 2023; 12(11): 3757 doi: 10.3390/jcm12113757
|
8 |
Shuangyang Mo, Cheng Huang, Yingwei Wang, Huaying Zhao, Haixiao Wei, Haiyan Qin, Haixing Jiang, Shanyu Qin. Construction and validation of an endoscopic ultrasonography-based ultrasomics nomogram for differentiating pancreatic neuroendocrine tumors from pancreatic cancer. Frontiers in Oncology 2024; 14 doi: 10.3389/fonc.2024.1359364
|
9 |
Nan Yi, Shuangyang Mo, Yan Zhang, Qi Jiang, Yingwei Wang, Cheng Huang, Shanyu Qin, Haixing Jiang. An endoscopic ultrasound-based interpretable deep learning model and nomogram for distinguishing pancreatic neuroendocrine tumors from pancreatic cancer. Scientific Reports 2025; 15(1) doi: 10.1038/s41598-024-84749-7
|
10 |
Tao Yan, Pak Kin Wong, Ye-Ying Qin. Deep learning for diagnosis of precancerous lesions in upper gastrointestinal endoscopy: A review. World Journal of Gastroenterology 2021; 27(20): 2531-2544 doi: 10.3748/wjg.v27.i20.2531
|
11 |
Mohadeseh Mahmoudi Ghehsareh, Nastaran Asri, Sepehr Maleki, Mostafa Rezaei-Tavirani, Somayeh Jahani-Sherafat, Mohammad Rostami-Nejad. Application of Artificial Intelligence in Celiac Disease: from diagnosis to patient follow-up. Iranian Journal of Blood and Cancer 2023; 15(3): 125 doi: 10.61186/ijbc.15.3.125
|
12 |
Glen Purnomo, Seng-Jin Yeo, Ming Han Lincoln Liow. Artificial intelligence in arthroplasty. Arthroplasty 2021; 3(1) doi: 10.1186/s42836-021-00095-3
|
13 |
Danny Con, Daniel R van Langenberg, Abhinav Vasudevan. Deep learning <i>vs</i> conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study. World Journal of Gastroenterology 2021; 27(38): 6476-6488 doi: 10.3748/wjg.v27.i38.6476
|
14 |
Shuangyang Mo, Yingwei Wang, Cheng Huang, Wenhong Wu, Shanyu Qin. A novel endoscopic ultrasomics-based machine learning model and nomogram to predict the pathological grading of pancreatic neuroendocrine tumors. Heliyon 2024; 10(14): e34344 doi: 10.1016/j.heliyon.2024.e34344
|
15 |
Jie-Hyun Kim, Sang-Il Oh, So-Young Han, Ji-Soo Keum, Kyung-Nam Kim, Jae-Young Chun, Young-Hoon Youn, Hyojin Park. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers 2022; 14(23): 6000 doi: 10.3390/cancers14236000
|
16 |
Muhammed Mubarak, Rahma Rashid, Fnu Sapna, Shaheera Shakeel. Expanding role and scope of artificial intelligence in the field of gastrointestinal pathology. Artificial Intelligence in Gastroenterology 2024; 5(2): 91550 doi: 10.35712/aig.v5.i2.91550
|
17 |
Jeffrey R. Fetzer, Renisha Redij, Joshika Agarwal, Anjali Rajagopal, Keerthy Gopalakrishnan, Akhila Sai Sree Cherukuri, John League, Daniela Guerrero Vinsard, Cadman L. Leggett, Coelho-Prabhu Nayantara, Shivaram P. Arunachalam. Endoscopic Image Enhanced Deep Learning Algorithm for Inflammatory Bowel Disease (IBD) Polyp Detection: Feasibility Study. 2023 IEEE International Conference on Electro Information Technology (eIT) 2023; : 655 doi: 10.1109/eIT57321.2023.10187234
|
18 |
Peng-fei Lyu, Yu Wang, Qing-Xiang Meng, Ping-ming Fan, Ke Ma, Sha Xiao, Xun-chen Cao, Guang-Xun Lin, Si-yuan Dong. Mapping intellectual structures and research hotspots in the application of artificial intelligence in cancer: A bibliometric analysis. Frontiers in Oncology 2022; 12 doi: 10.3389/fonc.2022.955668
|
19 |
Shiv Bahadur, Prashant Kumar. Deep Learning for Targeted Treatments. 2022; : 229 doi: 10.1002/9781119857983.ch8
|
20 |
Sravani Kommuru, Faith Adekunle, Santiago Niño , Shamsul Arefin, Sai Prudhvi Thalvayapati, Dona Kuriakose, Yasmin Ahmadi, Suprada Vinyak, Zahra Nazir. Role of Artificial Intelligence in the Diagnosis of Gastroesophageal Reflux Disease. Cureus 2024; doi: 10.7759/cureus.62206
|
21 |
Ian I. Lei, Gohar J. Nia, Elizabeth White, Hagen Wenzek, Santi Segui, Angus J. M. Watson, Anastasios Koulaouzidis, Ramesh P. Arasaradnam. Clinicians’ Guide to Artificial Intelligence in Colon Capsule Endoscopy—Technology Made Simple. Diagnostics 2023; 13(6): 1038 doi: 10.3390/diagnostics13061038
|
22 |
Shuangyang Mo, Cheng Huang, Yingwei Wang, Huaying Zhao, Wenhong Wu, Haixing Jiang, Shanyu Qin. Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors. Frontiers in Endocrinology 2024; 15 doi: 10.3389/fendo.2024.1383814
|