For: |
Jiang HB, Xu M, Wang XP. Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v14/i13/2023.htm |
Number | Citing Articles |
1 |
Georg Feldmann, Sherri Rauenzahn, Anirban Maitra. In vitromodels of pancreatic cancer for translational oncology research. Expert Opinion on Drug Discovery 2009; 4(4): 429 doi: 10.1517/17460440902821657
|
2 |
Dong Qian, Lei Tian, Zipeng Lu, Yi Miao. Pancreatic Cancer. Methods in Molecular Biology 2019; 1882: 157 doi: 10.1007/978-1-4939-8879-2_14
|
3 |
Tsutomu Kobayashi, Tatsuo Shimura, Toshiki Yajima, Norio Kubo, Kenichiro Araki, Soichi Tsutsumi, Hideki Suzuki, Hiroyuki Kuwano, Avraham Raz. Transient gene silencing of galectin‐3 suppresses pancreatic cancer cell migration and invasion through degradation of β‐catenin. International Journal of Cancer 2011; 129(12): 2775 doi: 10.1002/ijc.25946
|
4 |
Ratnakar R Bynigeri, Aparna Jakkampudi, Ramaiah Jangala, Chivukula Subramanyam, Mitnala Sasikala, G Venkat Rao, D Nageshwar Reddy, Rupjyoti Talukdar. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World Journal of Gastroenterology 2017; 23(3): 382-405 doi: 10.3748/wjg.v23.i3.382
|
5 |
Karly C. Sourris, Anna Watson, Karin Jandeleit-Dahm. Reactive Oxygen Species. Handbook of Experimental Pharmacology 2020; 264: 395 doi: 10.1007/164_2020_391
|
6 |
Wei Wang, Xinzhe Yu, Hengchao Li, Chuanxin Yang, Chen Jin, Xinyu Huang. hENT1’s role in adjuvant intra-arterial gemcitabine-based chemotherapy for resectable pancreatic cancer patients. BMC Gastroenterology 2023; 23(1) doi: 10.1186/s12876-023-02666-x
|
7 |
Tsutomu Kobayashi, Tatsuo Shimura, Toshiki Yajima, Norio Kubo, Kenichiro Araki, Wataru Wada, Soichi Tsutsumi, Hideki Suzuki, Hiroyuki Kuwano, Avraham Raz. Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells. Clinical & Experimental Metastasis 2011; 28(4): 367 doi: 10.1007/s10585-011-9376-x
|
8 |
Lin Song, Jian-wu Tang, Lawrence Owusu, Ming-Zhong Sun, Jun Wu, Jun Zhang. Galectin-3 in cancer. Clinica Chimica Acta 2014; 431: 185 doi: 10.1016/j.cca.2014.01.019
|
9 |
Serena Lunardi, Ruth J. Muschel, Thomas B. Brunner. The stromal compartments in pancreatic cancer: Are there any therapeutic targets?. Cancer Letters 2014; 343(2): 147 doi: 10.1016/j.canlet.2013.09.039
|
10 |
Jonathan Haqq, Lynne M Howells, Giuseppe Garcea, Matthew S Metcalfe, Will P Steward, Ashley R Dennison. Pancreatic stellate cells and pancreas cancer: Current perspectives and future strategies. European Journal of Cancer 2014; 50(15): 2570 doi: 10.1016/j.ejca.2014.06.021
|
11 |
Oladimeji Abudu, Duy Nguyen, Isabel Millward, Julia E. Manning, Mussarat Wahid, Abbey Lightfoot, Francesca Marcon, Reena Merard, Sandra Margielewska-Davies, Keith Roberts, Rachel Brown, Sarah Powell-Brett, Samantha M. Nicol, Fouzia Zayou, Wayne D. Croft, Hayden Pearce, Paul Moss, Asif J. Iqbal, Helen M. McGettrick. Interplay in galectin expression predicts patient outcomes in a spatially restricted manner in PDAC. Biomedicine & Pharmacotherapy 2024; 172: 116283 doi: 10.1016/j.biopha.2024.116283
|
12 |
Zhenjun Gao, Xingpeng Wang, Kai Wu, Yan Zhao, Guoyong Hu. Pancreatic Stellate Cells Increase the Invasion of Human Pancreatic Cancer Cells through the Stromal Cell-Derived Factor-1/CXCR4 Axis. Pancreatology 2010; 10(2-3): 186 doi: 10.1159/000236012
|
13 |
Cherylane Dubé-Delarosbil, Yves St-Pierre. The emerging role of galectins in high-fatality cancers. Cellular and Molecular Life Sciences 2018; 75(7): 1215 doi: 10.1007/s00018-017-2708-5
|
14 |
Kai Wang, Hong He. Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology 2020; 1296: 243 doi: 10.1007/978-3-030-59038-3_15
|
15 |
Alexander Hann, Anja Gruner, Ying Chen, Thomas M. Gress, Malte Buchholz, Iris Schrijver. Comprehensive Analysis of Cellular Galectin-3 Reveals No Consistent Oncogenic Function in Pancreatic Cancer Cells. PLoS ONE 2011; 6(6): e20859 doi: 10.1371/journal.pone.0020859
|
16 |
Emmanouil Fokas, Eric O'Neill, Alex Gordon-Weeks, Somnath Mukherjee, W. Gillies McKenna, Ruth J. Muschel. Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2015; 1855(1): 61 doi: 10.1016/j.bbcan.2014.12.001
|
17 |
Sara Chiblak, Fevzi Demircioglu, Azadeh Fahim Golestaneh, Amir Abdollahi. Systems Biology in Cancer Research and Drug Discovery. 2012; : 135 doi: 10.1007/978-94-007-4819-4_6
|
18 |
Md. Arifuzzaman, Amir Hamza, Syeda Sakiatuz Zannat, Rubaiyat Fahad, Azizur Rahman, S. M. Zahid Hosen, Raju Dash, Md. Kamrul Hossain. Targeting galectin-3 by natural glycosides: a computational approach. Network Modeling Analysis in Health Informatics and Bioinformatics 2020; 9(1) doi: 10.1007/s13721-020-0219-z
|
19 |
Niharika B. Mettu, James L. Abbruzzese. Clinical Insights Into the Biology and Treatment of Pancreatic Cancer. Journal of Oncology Practice 2016; 12(1): 17 doi: 10.1200/JOP.2015.009092
|
20 |
Dong Zhang, Zheng-gang Chen, Shao-hua Liu, Zuo-qing Dong, Martin Dalin, Shi-san Bao, Ying-wei Hu, Feng-cai Wei. Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating β-catenin. Acta Pharmacologica Sinica 2013; 34(1): 176 doi: 10.1038/aps.2012.150
|
21 |
Noemí Manero-Rupérez, Neus Martínez-Bosch, Luis E. Barranco, Laura Visa, Pilar Navarro. The Galectin Family as Molecular Targets: Hopes for Defeating Pancreatic Cancer. Cells 2020; 9(3): 689 doi: 10.3390/cells9030689
|
22 |
Emma Eriksson, Ioanna Milenova, Jessica Wenthe, Rafael Moreno, Ramon Alemany, Angelica Loskog. IL-6 Signaling Blockade during CD40-Mediated Immune Activation Favors Antitumor Factors by Reducing TGF-β, Collagen Type I, and PD-L1/PD-1. The Journal of Immunology 2019; 202(3): 787 doi: 10.4049/jimmunol.1800717
|
23 |
Jie Shen, Rong Wan, Guoyong Hu, Lijuan Yang, Jie Xiong, Feng Wang, Jiaqing Shen, Shanshan He, Xiaoyan Guo, Jianbo Ni, Chuanyong Guo, Xingpeng Wang. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology 2012; 12(2): 91 doi: 10.1016/j.pan.2012.02.008
|
24 |
Siri Dunér, Jacob Lopatko Lindman, Daniel Ansari, Chinmay Gundewar, Roland Andersson. Pancreatic Cancer: The Role of Pancreatic Stellate Cells in Tumor Progression. Pancreatology 2011; 10(6): 673 doi: 10.1159/000320711
|
25 |
Srinivasa P. Pothula, Romano C. Pirola, Jeremy S. Wilson, Minoti V. Apte. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020; 20(3): 409 doi: 10.1016/j.pan.2020.01.003
|
26 |
MARIA C. VLADOIU, MARILYNE LABRIE, YVES ST-PIERRE. Intracellular galectins in cancer cells: Potential new targets for therapy. International Journal of Oncology 2014; 44(4): 1001 doi: 10.3892/ijo.2014.2267
|
27 |
Dong Qian, Zipeng Lu, Qingcheng Xu, Pengfei Wu, Lei Tian, Liangtao Zhao, Baobao Cai, Jie Yin, Yang Wu, Kevin F. Staveley-O'Carroll, Kuirong Jiang, Yi Miao, Guangfu Li. Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Letters 2017; 397: 43 doi: 10.1016/j.canlet.2017.03.024
|