Copyright
©The Author(s) 2020.
World J Psychiatr. Oct 19, 2020; 10(10): 234-244
Published online Oct 19, 2020. doi: 10.5498/wjp.v10.i10.234
Published online Oct 19, 2020. doi: 10.5498/wjp.v10.i10.234
Type of algorithm | Overall accuracy | Sensitivity | Specificity |
C-SVM: Linear | 92.5 | 92.0 | 93.3 |
C-SVM: Polynomial | 70.0 | 100 | 20.0 |
C-SVM: Gaussian | 87.5 | 96.0 | 73.3 |
C-SVM: Sigmoid | 85.0 | 88.0 | 80.0 |
Nu-SVM: Linear | 90.0 | 92.0 | 86.6 |
Nu-SVM: Polynomial | 92.5 | 92.0 | 93.3 |
Nu-SVM: Gaussian | 95.0 | 96.0 | 93.3 |
Nu-SVM: Sigmoid | 82.5 | 92.0 | 66.6 |
- Citation: Byeon H. Development of a depression in Parkinson's disease prediction model using machine learning. World J Psychiatr 2020; 10(10): 234-244
- URL: https://www.wjgnet.com/2220-3206/full/v10/i10/234.htm
- DOI: https://dx.doi.org/10.5498/wjp.v10.i10.234