Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Jun 28, 2021; 2(3): 71-78
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Table 1 Detailed information on studies concerning automatic detection by convolutional neural network in gastric cancer
Ref. | Endoscopic images | Training dataset | Test dataset | Resolution | Sensitivity % | Specificity % | Accuracy/AUC % | PPV % | NPV % |
Hirasawa et al[10] (2018) | WLI/NBI/chromoendoscopy images | 13584 | 2296 | 300 × 300 | 92.2 | NA | NA | 30.6 | NA |
Ishioka et al[21] (2019) | Video images | NA | 68 | NA | 94.1 | NA | NA | NA | NA |
Li et al[23] (2020) | M-NBI images | 20000 | 341 | 512 × 512 | 91.18 | 90.64 | 90.91 | 90.64 | 91.18 |
Ikenoyama et al[24](2021) | WLI/NBI/chromoendoscopy images | 13584 | 2940 | 300 × 300 | 58.4 | 87.3 | 75.7 | 26.0 | 96.5 |
Table 2 Detailed information on studies concerning histological classification by convolutional neural network in gastric cancer
Ref. | Training dataset | Test dataset | Resolution | Group | AUC % |
Cho et al[25] (2019) | 4205 | 812 | 1280 × 640 | Five-category classification | 84.6 |
Cancer vs non-cancer | 87.7 | ||||
Neoplasm vs non-neoplasm | 92.7 | ||||
Sharma et al[27] (2017) | 231000 for cancer classification | NA | 512 × 512 | Cancer classification | 69.9 |
47130 for necrosis detection | Necrosis detection | 81.4 | |||
Iizuka et al[28] (2020) | 3628 | 500 | 512 × 512 | Adenocarcinoma | 98 |
Adenoma | 93.6 | ||||
Song et al[29] (2020) | 2123 | 3212 from PLAGH | 320 × 320 | Benign and malignant cases and tumour subtypes | 98.6 |
595 from PUMCH | 99.0 | ||||
987 from CHCAMS | 99.6 |
Table 3 Detailed information on studies concerning prediction of depth of tumor invasion by convolutional neural network in gastric cancer
Ref. | Dataset | Resolution | Sensitivity % | Specificity % | Accuracy/AUC % | PPV % | NPV % |
Zhu et al[11] (2019) | Development datasets: 5056; Validation datasets: 1264; Test dataset: 203 | 299 × 299 | 76.47 | 95.56 | 89.16 | 89.66 | 88.97 |
Yoon et al[32] (2019) | 11539 images were randomly organized into five different folds, and at each fold, the training: validation: testing dataset ratio was 3:1:1 | NA | 79.2 | 77.8 | 85.1 | 79.3 | 77.7 |
Zheng et al[34] (2020) | Totally 5855, training:verification dataset ratio was 4:1 | 512 × 557 | NA | NA | T2 stage: 90; T3 stage: 93; T4 stage: 95 | NA | NA |
- Citation: Feng XY, Xu X, Zhang Y, Xu YM, She Q, Deng B. Application of convolutional neural network in detecting and classifying gastric cancer. Artif Intell Gastrointest Endosc 2021; 2(3): 71-78
- URL: https://www.wjgnet.com/2689-7164/full/v2/i3/71.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i3.71