Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Apr 28, 2021; 2(2): 25-35
Published online Apr 28, 2021. doi: 10.37126/aige.v2.i2.25
Published online Apr 28, 2021. doi: 10.37126/aige.v2.i2.25
Ref. | Aim and disease | Prospective/retrospective | AI method | Endoscopy image | Training dataset | Validation dataset | Result sensitivity | Result specificity | Result accuracy/AUC |
Esophageal benign diseases | |||||||||
de Groof et al[12] | Detecting Barrett’sneoplasia | Retrospective | CAD | WLI images | 40 images | A leave one out cross validation | 92% | 95% | 85%1 |
Jisu et al[39] | Distinguishing BE | Retrospective | CNNs | Endomicroscopic images | 262 images | Image distortion methods | 80.77%1 | ||
Ebigbo et al[40] | Distinguishing BE | Retrospective | CNNs (ResNet) | WLI images | 129 images | 62 images | 83.7% | 100.0% | 89.9%1 |
Sehgal et al[41] | Detecting dysplasia in BE | Retrospective | ML (decision trees) | Video recordings(AAC) | 40 patients with NDBE and DBE | 97% | 88% | 92%1 | |
de Groof et al[14] | Detecting Barrett’sneoplasia | Retrospective | CNN (CAD (ResNet-UNet)) | WLI images | 494364 images | 1704 images (early stage neoplasia in BE and NDBE from 669 patients) | 90% | 88% | 89%1 |
Dong et al[16] | Screening high risk EV | Retrospective | ML (Random forest) | 238 patients | 109 patients | Training set (0.84); Validation set (0.82) | |||
Gastric benign diseases | |||||||||
Zhang et al[42] | Diagnosing CAG | Retrospective | CNNs (DenseNet) | WLI images | 5470 images | Five-fold cross validation | 94.5% | 94.0% | 94.2%1 |
Guimarães et al[43] | DiagnosingCAG | Retrospective | CNNs (VGG16) | WLI images | 200 images | 70 images(ten-fold cross validation) | 93%1/0.98 | ||
Horiuchi et al[44] | Differentiating CAG | Retrospective | CNNs (GoogLeNet) | ME-NBI images | 1078 images | 107 images | 95.4% | 71.0% | 85.3%1/0.85 |
Zhang et al[7] | Diagnosing PU | Retrospective | CNNs (ResNet34) | WLI images | 4200 images | 228 images | 78.9% | 88.4% | 86.4%1 |
Lee et al[45] | Differentiating PU | Retrospective | CNNs (ResNet-50/ Inception v3/VGG16 model) | WLI images | 200 images | 20 images | 92.6%1/85.24%1/91.2%1 | ||
Namikawa et al[46] | Classifying gastriccancers and ulcers | Retrospective | CNNs (SSD) | WLI/NBI/chromoendoscopy images | 373 images | 720 images | 93.3% | 99.0% | 93.3 %1 |
Zhang et al[26] | Detecting GP | Retrospective | CNNs (SSD-GPNet) | WLI images | 404 images | 50 images | 93.92%1 | ||
Intestinal benign diseases | |||||||||
Hwang et al[29] | Classifying hemorrhagic and ulcerations | Retrospective | CNNs (VGGNet) | Capsule endoscopy | 7556 images | 5760 images | Model 1 vs Model 2; 97.61% vs 95.07% | Model 1 vs Model 2; 96.04% vs 98.18% | Model 1 vs Model 2; 96.83%1 vs 96.62%1 |
Aoki et al[47] | Detecting erosions and ulcerations | Retrospective | CNNs (SSD) | Capsule endoscopy | 5360 images | 10440 images | 88.2% | 90.9% | 90.8%1/0.958 |
Aoki et al[48] | Detecting erosions and ulcerations | Retrospective | CNNs (SSD) | Capsule endoscopy | 20 videos | ||||
Ding et al[49] | Detecting small bowel diseases | Retrospective | CNNs (ResNet) | Capsule endoscopy | 158235 images | 5000 patients | 99.88% per patient99.90% per lesion | 100% per patient100 % per lesion | |
Fan et al[50] | Detecting erosions and ulcerations | Retrospective | CNNs (AlexNet) | Capsule endoscopy | Ulcer 2000; Erosion 2720 | Ulcer 500; Erosion 690 | Ulcer: 96.80%; Erosion: 93.67% | Ulcer: 94.79%; Erosion: 95.98% | Ulcer: 95.16%1; Erosion: 95.34%1/0.98 |
Leenhardt et al[51] | Detecting small bowel angiectasia | Retrospective | CNNs | Capsule endoscopy | 300 videos with angiectasia | 300 videos with angiectasia | 100% | 96% | |
Tsuboi et al[52] | Detecting small bowel angiectasia | Retrospective | CNNs (SSD) | Capsule endoscopy | 141 patients | 28 patients | 98.8% | 98.4% | 0.998 |
Colonic benign diseases | |||||||||
Lui et al[34] | Detecting missed colonic lesions | Retrospective and prospective | R-FCN (ResNet101) | Endoscopic videos (WLI) | 52 videos | Real-time AI detected at least 1 missed adenoma in 14 patients (26.9%) and increased the total number of adenomas detected by 23.6%. | |||
Rodriguez-Diaz et al[53] | Histologically classifying CP | Retrospective | CAD | NBI | 745 images +65000 images | 96% | 84% | ||
Komeda et al[54] | Diagnosing CP | Retrospective | CNNs-CAD | WLI/NBI/ chromoendoscopy images | 1200 images | 10-fold cross validation | 75.1%1 | ||
Akbari et al[55] | Classifying CP | Retrospective | FCNs | WLI images | 200 images | 300 images | |||
Chen et al[56] | Classifying diminutive CP | Retrospective | DCNNs-CAD | NBI images | 96 images + 188 images | 96.3% | 78.1% | ||
Gong et al[57] | Detecting CA | Prospective | DCNNs | WLI images | DCNNs system (n = 355) or unassisted (control) colonoscopy (n = 349) | 58 (16%) of 35527 (8%) of 349 | |||
Byrne et al[58] | Differentiating adenomatous and hyperplastic polyps | Retrospective | DCNNs | Videos and NBI images | 223 polyp videos | 40 videos | 98% | 83% | |
Mori et al[59] | Identifying diminutive CP | Prospective | CAD | NBI/stained images | 791 consecutive patients undergoing colonoscopy and 23 endoscopists | Pathologic prediction rate of 98.1%1 | |||
Misawa et al[60] | DetectingCP | Retrospective | CAD | WLI images | 105 positive and 306 negative videos | 50 positive and 85 negative videos | 90.0% | 63.3% | 76.5%1 |
Taunk et al[61] | Classifying polyp histology | Retrospective | CAD | pCLE images | 125 images | 189 images | 95% | 94% | 94%1 |
Wang et al[62] | Detecting CA | Prospective | CAD | WLI images | 484 patients in the CADe group and 478 in the sham group | 165 (34%) of 484; 132 (28%) of 478 | |||
Tong et al[63] | Differentiating UC, CD, and ITB | Retrospective | CNNs/RF | WLI images | 6399 consecutive patients (5128 UC, 875 CD and 396 ITB) | RF (UC 97%, CD 65%, and ITB 68%); CNN (UC 99%, CD 87%, and ITB 52%) | RF (UC 97%, CD 53%, and ITB 76%); CNN (UC 97%, CD 83%, and ITB 81%) | RF (UC 0.97, CD 0.58, and ITB 0.72); CNN (UC 0.98, CD 0.85, and ITB 0.63) | |
Ozawa et al[36] | Diagnosing UC | Retrospective | CAD | WLI images | 26304 images | 3981 images | 0.86 (Mayo 0); 0.98 (Mayo 0–1) | ||
Stidham et al[37] | Grading the severity of ulcerative colitis | Retrospective | CNNs | WLI images | 2465 patients | 308 patients | 83.0% | 96.0% | 0.966 |
Maeda et al[38] | Identifying histologic inflammation associated with UC | Retrospective | CAD | Endocytoscopic images | 87 patients | 100 patients | 74% | 97% | 91%1 |
- Citation: Yang H, Hu B. Application of artificial intelligence to endoscopy on common gastrointestinal benign diseases. Artif Intell Gastrointest Endosc 2021; 2(2): 25-35
- URL: https://www.wjgnet.com/2689-7164/full/v2/i2/25.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i2.25