Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Apr 28, 2021; 2(2): 25-35
Published online Apr 28, 2021. doi: 10.37126/aige.v2.i2.25
Table 1 Application of artificial intelligence on common gastrointestinal benign diseases
Ref.
Aim and disease
Prospective/retrospective
AI method
Endoscopy image
Training dataset
Validation dataset
Result sensitivity
Result specificity
Result accuracy/AUC
Esophageal benign diseases
de Groof et al[12] Detecting Barrett’sneoplasiaRetrospectiveCADWLI images40 imagesA leave one out cross validation92%95%85%1
Jisu et al[39] Distinguishing BERetrospectiveCNNsEndomicroscopic images262 imagesImage distortion methods 80.77%1
Ebigbo et al[40]Distinguishing BERetrospectiveCNNs (ResNet) WLI images129 images62 images83.7%100.0%89.9%1
Sehgal et al[41]Detecting dysplasia in BERetrospectiveML (decision trees)Video recordings(AAC)40 patients with NDBE and DBE97%88%92%1
de Groof et al[14]Detecting Barrett’sneoplasiaRetrospectiveCNN (CAD (ResNet-UNet))WLI images494364 images1704 images (early stage neoplasia in BE and NDBE from 669 patients)90%88%89%1
Dong et al[16] Screening high risk EVRetrospectiveML (Random forest)238 patients109 patientsTraining set (0.84); Validation set (0.82)
Gastric benign diseases
Zhang et al[42]Diagnosing CAGRetrospectiveCNNs (DenseNet)WLI images5470 imagesFive-fold cross validation94.5%94.0%94.2%1
Guimarães et al[43]DiagnosingCAGRetrospectiveCNNs (VGG16)WLI images200 images70 images(ten-fold cross validation)93%1/0.98
Horiuchi et al[44]Differentiating CAGRetrospectiveCNNs (GoogLeNet)ME-NBI images1078 images107 images95.4%71.0%85.3%1/0.85
Zhang et al[7] Diagnosing PURetrospectiveCNNs (ResNet34)WLI images4200 images228 images78.9%88.4%86.4%1
Lee et al[45]Differentiating PURetrospectiveCNNs (ResNet-50/ Inception v3/VGG16 model)WLI images200 images20 images92.6%1/85.24%1/91.2%1
Namikawa et al[46] Classifying gastriccancers and ulcersRetrospectiveCNNs (SSD)WLI/NBI/chromoendoscopy images373 images720 images93.3%99.0%93.3 %1
Zhang et al[26] Detecting GPRetrospectiveCNNs (SSD-GPNet)WLI images404 images50 images93.92%1
Intestinal benign diseases
Hwang et al[29]Classifying hemorrhagic and ulcerationsRetrospectiveCNNs (VGGNet)Capsule endoscopy7556 images5760 imagesModel 1 vs Model 2; 97.61% vs 95.07%Model 1 vs Model 2; 96.04% vs 98.18%Model 1 vs Model 2; 96.83%1 vs 96.62%1
Aoki et al[47] Detecting erosions and ulcerationsRetrospectiveCNNs (SSD)Capsule endoscopy5360 images10440 images88.2%90.9%90.8%1/0.958
Aoki et al[48] Detecting erosions and ulcerationsRetrospectiveCNNs (SSD)Capsule endoscopy20 videos
Ding et al[49]Detecting small bowel diseasesRetrospectiveCNNs (ResNet)Capsule endoscopy158235 images5000 patients99.88% per patient99.90% per lesion100% per patient100 % per lesion
Fan et al[50] Detecting erosions and ulcerationsRetrospectiveCNNs (AlexNet)Capsule endoscopyUlcer 2000; Erosion 2720Ulcer 500; Erosion 690Ulcer: 96.80%; Erosion: 93.67%Ulcer: 94.79%; Erosion: 95.98%Ulcer: 95.16%1; Erosion: 95.34%1/0.98
Leenhardt et al[51]Detecting small bowel angiectasiaRetrospectiveCNNsCapsule endoscopy300 videos with angiectasia300 videos with angiectasia100%96%
Tsuboi et al[52] Detecting small bowel angiectasiaRetrospectiveCNNs (SSD)Capsule endoscopy141 patients28 patients98.8%98.4%0.998
Colonic benign diseases
Lui et al[34] Detecting missed colonic lesionsRetrospective and prospectiveR-FCN (ResNet101)Endoscopic videos (WLI) 52 videosReal-time AI detected at least 1 missed adenoma in 14 patients (26.9%) and increased the total number of adenomas detected by 23.6%.
Rodriguez-Diaz et al[53] Histologically classifying CPRetrospectiveCADNBI745 images +65000 images96%84%
Komeda et al[54] Diagnosing CPRetrospectiveCNNs-CADWLI/NBI/ chromoendoscopy images1200 images10-fold cross validation75.1%1
Akbari et al[55] Classifying CPRetrospectiveFCNsWLI images200 images300 images
Chen et al[56] Classifying diminutive CPRetrospectiveDCNNs-CADNBI images96 images + 188 images96.3%78.1%
Gong et al[57] Detecting CAProspectiveDCNNsWLI imagesDCNNs system (n = 355) or unassisted (control) colonoscopy (n = 349)58 (16%) of 35527 (8%) of 349
Byrne et al[58] Differentiating adenomatous and hyperplastic polypsRetrospectiveDCNNsVideos and NBI images223 polyp videos40 videos98%83%
Mori et al[59] Identifying diminutive CPProspectiveCADNBI/stained images791 consecutive patients undergoing colonoscopy and 23 endoscopistsPathologic prediction rate of 98.1%1
Misawa et al[60] DetectingCPRetrospectiveCADWLI images 105 positive and 306 negative videos50 positive and 85 negative videos90.0%63.3%76.5%1
Taunk et al[61] Classifying polyp histologyRetrospectiveCADpCLE images125 images189 images95%94%94%1
Wang et al[62]Detecting CAProspectiveCADWLI images 484 patients in the CADe group and 478 in the sham group165 (34%) of 484; 132 (28%) of 478
Tong et al[63] Differentiating UC, CD, and ITBRetrospectiveCNNs/RFWLI images6399 consecutive patients (5128 UC, 875 CD and 396 ITB)RF (UC 97%, CD 65%, and ITB 68%); CNN (UC 99%, CD 87%, and ITB 52%)RF (UC 97%, CD 53%, and ITB 76%); CNN (UC 97%, CD 83%, and ITB 81%)RF (UC 0.97, CD 0.58, and ITB 0.72); CNN (UC 0.98, CD 0.85, and ITB 0.63)
Ozawa et al[36]Diagnosing UCRetrospectiveCAD WLI images26304 images3981 images0.86 (Mayo 0); 0.98 (Mayo 0–1)
Stidham et al[37] Grading the severity of ulcerative colitisRetrospectiveCNNsWLI images2465 patients308 patients83.0%96.0%0.966
Maeda et al[38] Identifying histologic inflammation associated with UCRetrospectiveCADEndocytoscopic images87 patients 100 patients74%97%91%1