Copyright
©The Author(s) 2020.
Artif Intell Gastrointest Endosc. Oct 28, 2020; 1(2): 28-32
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.28
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.28
Ref. | Year | Study design | Lesions | Imaging modality | Image qualification | Teaching dataset | Validation method | Outcomes | Compared to expert/current standard |
van der Sommen et al[11] | 2016 | Retrospective | HGD, early EAC | WLI | High quality, clear visible/absence of lesions | 100 images | LOO | Per-image SPEC/SENS: 83%/83%; Per-patient SPEC/SENS: 86%/87% | Inferior |
de Groof et al[12] | 2019 | Retrospective | Non-dysplastic and dysplastic BE | WLI | 1280 × 1024 pixels – HD | 60 images | LOO | Accuracy: 0.92; SENS: 0.95; SPEC: 0.85 | NA |
Swager et al[13] | 2017 | Retrospective | HGD, early EAC | VLE | High quality image database | 60 images | LOO | AUC: 0.95, 0.89, 0.91 | Superior |
Ebigbo et al[15] | 2020 | Prospective | Early EAC | WLI | 1350 × 1080 pixels and 1600 × 1200 pixels – HD | 129 images | LOO | Accuracy: 0.899; SENS: 0.837; SPEC: 1.00 | NA |
- Citation: Chang K, Jackson CS, Vega KJ. Artificial intelligence in Barrett’s esophagus: A renaissance but not a reformation. Artif Intell Gastrointest Endosc 2020; 1(2): 28-32
- URL: https://www.wjgnet.com/2689-7164/full/v1/i2/28.htm
- DOI: https://dx.doi.org/10.37126/aige.v1.i2.28