Editorial
Copyright ©The Author(s) 2020.
Artif Intell Gastrointest Endosc. Oct 28, 2020; 1(2): 28-32
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.28
Table 1 Computer-aided diagnosis of Barrett’s esophagus
Ref.
Year
Study design
Lesions
Imaging modality
Image qualification
Teaching dataset
Validation method
Outcomes
Compared to expert/current standard
van der Sommen et al[11]2016RetrospectiveHGD, early EACWLIHigh quality, clear visible/absence of lesions 100 imagesLOOPer-image SPEC/SENS: 83%/83%; Per-patient SPEC/SENS: 86%/87%Inferior
de Groof et al[12]2019RetrospectiveNon-dysplastic and dysplastic BEWLI1280 × 1024 pixels – HD60 imagesLOOAccuracy: 0.92; SENS: 0.95; SPEC: 0.85NA
Swager et al[13]2017RetrospectiveHGD, early EACVLEHigh quality image database60 imagesLOOAUC: 0.95, 0.89, 0.91Superior
Ebigbo et al[15]2020ProspectiveEarly EACWLI1350 × 1080 pixels and 1600 × 1200 pixels – HD129 imagesLOOAccuracy: 0.899; SENS: 0.837; SPEC: 1.00NA