Review
Copyright ©The Author(s) 2023.
Artif Intell Gastroenterol. Dec 8, 2023; 4(3): 48-63
Published online Dec 8, 2023. doi: 10.35712/aig.v4.i3.48
Table 1 Studies on differentiation of indeterminate lesions using artificial intelligence
No.
Ref.
Number of patients
Organ of interest
Sub-type of AI
Outcome
1Ippolito et al[12], 2004453Thyroid nodule (benign vs malignant)ANNRefinement of risk stratification of FNAB and clinical data
2Daniels et al[13], 2020121Indeterminant thyroid noduleMLML and ultrasonography can identify genetically high risk lesions
3Becker et al[14], 2018632Breast lesion (benign vs malignant)Generic DLSAids diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists
4Scott et al[15], 2019125Lung GGO (benign vs malignant)ANNImprove diagnostic ability using CT scan, PET, and clinical data
5Guo et al[16], 202220Indeterminant small lung lesionsDNNDNN based method may detect small lesions < 10 mm at an effective radiation dose < 0.1 mSv.
6Yasaka et al[17], 2018460Liver mass (HCC vs others)CNNHigh diagnostic performance in differentiation of liver masses using dynamic CT
7Moawad et al[18], 202140Adrenal incidentaloma (benign vs malignant)MLMachine learning and CT texture analysis can differentiate between benign and malignant indeterminate adrenal tumors
8Stanzione et al[19], 202155Indeterminant solid adrenal lesionsMLMRI handcrafted radiomics and ML can be used to different adrenal incidentalomas
9Massa'a et al[20], 2022160Indeterminant solid renal mass (benign vs malignant)MLMRI-based radiomics and ML can be useful in differentiation
10Saraiva et al[21], 202285Indeterminant biliary stricturesCNNCNN can accurately differentiate benign strictures from malignant ones
Table 2 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on computed tomography images
No.
Ref.
Number of patients
Primary objective
Sub-type of AI used
Outcome
1Qureshi et al[36], 2022108Identification of PDACMLAccuracy: 86%
2Ebrahimian et al[121], 2022103Differentiation of benign vs malignant pancreatic lesionsRFAUC: 0.94
3Chakraborty et al[59], 2018103High risk vs low risk IPMNRF, SVMAUC: 0.81
4Polk et al[60], 202029High risk vs low risk IPMNLRAUC: 0.90
5Ikeda et al[122], 199771PDAC vs pancreatitisNNAUC: 0.916
6Chen et al[58], 2021100SCN vs MCNLASSO and RFE_Linear SVCAUC: 0.932
7Yang et al[57], 201953SCN vs MCNLASSOAUC: 0.66
8Yang et al[123], 202263SCN vs MCNMMRF-ResNetAUC: 0.98
9Ren et al[124], 2020112PDAC vs pancreatic adenosquamous carcinomaRFAUC: 0.98
10Xie et al[125], 2021226MCN vs ASCNRFAUC: 0.734
11Ziegelmayer et al[126], 202086AIP vs PDACCNN, MLAUC: 0.90
12Li et al[62], 202297Focal-type AIP vs PDACLASSO regressionAUC: 0.97
13Gao et al[127], 2021170MCN vs SCNmRMR + LASSOAUC: 0.91
14Dmitriev et al[53], 2017134Classification of pancreatic cystRF, CNNAccuracy: 83.6%
15Li et al[54], 2019206Classification of pancreatic cystsDNN (Dense-Net)Accuracy: 72.8%
16Wei et al[56], 2019260SCN vs other cystic neoplasmsMLAUC: 0.767
Table 3 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on magnetic resonance images
No.
Ref.
Number of patients
Primary objective
Sub-type of AI used
Outcome
1Li et al[62], 2022267PDAC detectionUDA + meta learning + GCNDSC (62.08%, T1), (61.35%, T2), (61.88%, DWI), (60.43%, AP)
2Chen et al[63], 202273PDAC detectionSpiral-ResUNetDSC: 65.60%, Jaccard index: 49.64%
3Liang Y et al[128], 202056PDAC detectionCNNDSC: 71%
5Cui et al[129], 2021202Grading-BD IPMNLASSOAUC: 0.903
6Corral et al[67], 2019139Classification of IPMNCNNAUC: 0.783
7Cheng et al[68], 202260Malignant IPMNLR, SVMMRI + SVM: AUC: 0.940, CT + SVM: AUC: 0.864
8Hussein et al[130], 2019171Classification of IPMNSVM, RF, 3D, CNNAccuracy 84.22%
Table 4 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on endoscopic ultrasonography images
No.
Ref.
Number of patients
Primary outcome
Sub type of AI used
Outcome
1Zhu et al[78], 2013262PDAC vs CPSVMAccuracy: 94.2%
2Zhu et al[131], 2015100AIP vs CPSVMAccuracy: 89.3%
3Zhang et al[74], 2010216Normal pancreas vs PDACSVMAccuracy: 97.98%
4Ozkan et al[76], 2016332Recognition of pancreatic cancer amongst various age groupANNAccuracy: Average: 87.5% (all ages), Min: 88.46% (40-60 yr), Max: 92% (< 40 yr)
5Kuwahara et al[83], 201950Benign vs malignant IPMNCNNAccuracy: 94%
6Das et al[75], 200856PDAC vs normal pancreas vs CPANN AUC: 0.93
7Săftoiu et al[80], 200868Benign vs malignant pancreatic lesionANNAccuracy: 89.7%
8Tonozuka et al[132], 2021139PDAC vs CPCNNAUC: 0.94
9Marya et al[133], 2021583PDAC vs benign causes of pancreatic SOLCNNAUC: 0.976
10.Xu et al[134], 2013Systemic Analysis of 6 studiesBenign vs malignant pancreatic lesion-AUC: 0.962
Table 5 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on different biomarkers
No.
Ref.
Number of samples
Type of biomarker used
Sub-type of AI used
Conclusion
1Chen et al[104], 201928Exosomes LDAAccuracy: 100%
2Zheng et al[105], 2022220Exosomes ANNAUC: 0.86
3Ko et al[106], 201728Exosomes LDAAccuracy: 100%
4Cristiano et al[107], 201934Cell-free DNAGBMAUC: 0.86
5Yu et al[108], 2020501extracellular vesicles long RNASVMAUC: 0.96
6Gao et al[109], 2012199ProteomesSVM, KNN, ANNAUC: 0.971
7Yu et al[110], 2005100ProteomesDTSensitivity: 88.9%, specificity: 74.1%
8Qiao et al[112], 2022136Proteomes CNNAccuracy: 87.63%
9Alizadeh et al[113], 2020671Circulating micro RNAANNAccuracy: 0.86
Table 6 Studies demonstrating impact of artificial intelligence on increasing efficacy of diagnostic modalities
No.
Ref.
Objective
Modality
Sensitivity
Specificity
Accuracy
1Corral et al[67], 2019Differentiate cystic SOL of pancreasFukuoka guideline62%7777.5%
Deep learning75%78%78.3%
2Kuwahara et al[83], 2019Detection of malignant IPMNHuman pre-operative diagnosis (Clinical + lab + imaging)95.7%22.2%56%
Artificial intelligence95.7%92.6694%
3Gao et al[135], 2020Ability to differentiate pancreatic diseaseCE-MRNANA83.93%
GAN NANA76.79%
4Rigiroli et al[136], 2021Detection of pancreatic cancer and SMA involvementCT scanNANA71%
Artificial intelligence62%77%54%
5Chen et al[137], 2023Detection of pancreatic cancerCT scan89.9%95.9%AUC: 0.96
CNN90%93%NA
6Tang et al[138], 2023Pancreatic mass diagnosisEUS FNA81.6%100%87.9%
CE EUS Master-guided FNA90.9%100%93.8%