Review
Copyright
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
Artif Intell Gastroenterol. Dec 8, 2023; 4(3): 48-63
Published online Dec 8, 2023. doi: 10.35712/aig.v4.i3.48
Table 1 Studies on differentiation of indeterminate lesions using artificial intelligence
No. Ref. Number of patients Organ of interest Sub-type of AI Outcome 1 Ippolito et al [12 ], 2004 453 Thyroid nodule (benign vs malignant) ANN Refinement of risk stratification of FNAB and clinical data 2 Daniels et al [13 ], 2020 121 Indeterminant thyroid nodule ML ML and ultrasonography can identify genetically high risk lesions 3 Becker et al [14 ], 2018 632 Breast lesion (benign vs malignant) Generic DLS Aids diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists 4 Scott et al [15 ], 2019 125 Lung GGO (benign vs malignant) ANN Improve diagnostic ability using CT scan, PET, and clinical data 5 Guo et al [16 ], 2022 20 Indeterminant small lung lesions DNN DNN based method may detect small lesions < 10 mm at an effective radiation dose < 0.1 mSv. 6 Yasaka et al [17 ], 2018 460 Liver mass (HCC vs others) CNN High diagnostic performance in differentiation of liver masses using dynamic CT 7 Moawad et al [18 ], 2021 40 Adrenal incidentaloma (benign vs malignant) ML Machine learning and CT texture analysis can differentiate between benign and malignant indeterminate adrenal tumors 8 Stanzione et al [19 ], 2021 55 Indeterminant solid adrenal lesions ML MRI handcrafted radiomics and ML can be used to different adrenal incidentalomas 9 Massa'a et al [20 ], 2022 160 Indeterminant solid renal mass (benign vs malignant) ML MRI-based radiomics and ML can be useful in differentiation 10 Saraiva et al [21 ], 2022 85 Indeterminant biliary strictures CNN CNN can accurately differentiate benign strictures from malignant ones
Table 2 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on computed tomography images
No. Ref. Number of patients Primary objective Sub-type of AI used Outcome 1 Qureshi et al [36 ], 2022 108 Identification of PDAC ML Accuracy: 86% 2 Ebrahimian et al [121 ], 2022 103 Differentiation of benign vs malignant pancreatic lesions RF AUC: 0.94 3 Chakraborty et al [59 ], 2018 103 High risk vs low risk IPMN RF, SVM AUC: 0.81 4 Polk et al [60 ], 2020 29 High risk vs low risk IPMN LR AUC: 0.90 5 Ikeda et al [122 ], 1997 71 PDAC vs pancreatitis NN AUC: 0.916 6 Chen et al [58 ], 2021 100 SCN vs MCN LASSO and RFE_Linear SVC AUC: 0.932 7 Yang et al [57 ], 2019 53 SCN vs MCN LASSO AUC: 0.66 8 Yang et al [123 ], 2022 63 SCN vs MCN MMRF-ResNet AUC: 0.98 9 Ren et al [124 ], 2020 112 PDAC vs pancreatic adenosquamous carcinoma RF AUC: 0.98 10 Xie et al [125 ], 2021 226 MCN vs ASCN RF AUC: 0.734 11 Ziegelmayer et al [126 ], 2020 86 AIP vs PDAC CNN, ML AUC: 0.90 12 Li et al [62 ], 2022 97 Focal-type AIP vs PDAC LASSO regression AUC: 0.97 13 Gao et al [127 ], 2021 170 MCN vs SCN mRMR + LASSO AUC: 0.91 14 Dmitriev et al [53 ], 2017 134 Classification of pancreatic cyst RF, CNN Accuracy: 83.6% 15 Li et al [54 ], 2019 206 Classification of pancreatic cysts DNN (Dense-Net) Accuracy: 72.8% 16 Wei et al [56 ], 2019 260 SCN vs other cystic neoplasms ML AUC: 0.767
Table 3 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on magnetic resonance images
No. Ref. Number of patients Primary objective Sub-type of AI used Outcome 1 Li et al [62 ], 2022 267 PDAC detection UDA + meta learning + GCN DSC (62.08%, T1), (61.35%, T2), (61.88%, DWI), (60.43%, AP) 2 Chen et al [63 ], 2022 73 PDAC detection Spiral-ResUNet DSC: 65.60%, Jaccard index: 49.64% 3 Liang Y et al [128 ], 2020 56 PDAC detection CNN DSC: 71% 5 Cui et al [129 ], 2021 202 Grading-BD IPMN LASSO AUC: 0.903 6 Corral et al [67 ], 2019 139 Classification of IPMN CNN AUC: 0.783 7 Cheng et al [68 ], 2022 60 Malignant IPMN LR, SVM MRI + SVM: AUC: 0.940, CT + SVM: AUC: 0.864 8 Hussein et al [130 ], 2019 171 Classification of IPMN SVM, RF, 3D, CNN Accuracy 84.22%
Table 4 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on endoscopic ultrasonography images
No. Ref. Number of patients Primary outcome Sub type of AI used Outcome 1 Zhu et al [78 ], 2013 262 PDAC vs CP SVM Accuracy: 94.2% 2 Zhu et al [131 ], 2015 100 AIP vs CP SVM Accuracy: 89.3% 3 Zhang et al [74 ], 2010 216 Normal pancreas vs PDAC SVM Accuracy: 97.98% 4 Ozkan et al [76 ], 2016 332 Recognition of pancreatic cancer amongst various age group ANN Accuracy: Average: 87.5% (all ages), Min: 88.46% (40-60 yr), Max: 92% (< 40 yr) 5 Kuwahara et al [83 ], 2019 50 Benign vs malignant IPMN CNN Accuracy: 94% 6 Das et al [75 ], 2008 56 PDAC vs normal pancreas vs CP ANN AUC: 0.93 7 Săftoiu et al [80 ], 2008 68 Benign vs malignant pancreatic lesion ANN Accuracy: 89.7% 8 Tonozuka et al [132 ], 2021 139 PDAC vs CP CNN AUC: 0.94 9 Marya et al [133 ], 2021 583 PDAC vs benign causes of pancreatic SOL CNN AUC: 0.976 10. Xu et al [134 ], 2013 Systemic Analysis of 6 studies Benign vs malignant pancreatic lesion - AUC: 0.962
Table 5 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on different biomarkers
No. Ref. Number of samples Type of biomarker used Sub-type of AI used Conclusion 1 Chen et al [104 ], 2019 28 Exosomes LDA Accuracy: 100% 2 Zheng et al [105 ], 2022 220 Exosomes ANN AUC: 0.86 3 Ko et al [106 ], 2017 28 Exosomes LDA Accuracy: 100% 4 Cristiano et al [107 ], 2019 34 Cell-free DNA GBM AUC: 0.86 5 Yu et al [108 ], 2020 501 extracellular vesicles long RNA SVM AUC: 0.96 6 Gao et al [109 ], 2012 199 Proteomes SVM, KNN, ANN AUC: 0.971 7 Yu et al [110 ], 2005 100 Proteomes DT Sensitivity: 88.9%, specificity: 74.1% 8 Qiao et al [112 ], 2022 136 Proteomes CNN Accuracy: 87.63% 9 Alizadeh et al [113 ], 2020 671 Circulating micro RNA ANN Accuracy: 0.86
Table 6 Studies demonstrating impact of artificial intelligence on increasing efficacy of diagnostic modalities
No. Ref. Objective Modality Sensitivity Specificity Accuracy 1 Corral et al [67 ], 2019 Differentiate cystic SOL of pancreas Fukuoka guideline 62% 77 77.5% Deep learning 75% 78% 78.3% 2 Kuwahara et al [83 ], 2019 Detection of malignant IPMN Human pre-operative diagnosis (Clinical + lab + imaging) 95.7% 22.2% 56% Artificial intelligence 95.7% 92.66 94% 3 Gao et al [135 ], 2020 Ability to differentiate pancreatic disease CE-MR NA NA 83.93% GAN NA NA 76.79% 4 Rigiroli et al [136 ], 2021 Detection of pancreatic cancer and SMA involvement CT scan NA NA 71% Artificial intelligence 62% 77% 54% 5 Chen et al [137 ], 2023 Detection of pancreatic cancer CT scan 89.9% 95.9% AUC: 0.96 CNN 90% 93% NA 6 Tang et al [138 ], 2023 Pancreatic mass diagnosis EUS FNA 81.6% 100% 87.9% CE EUS Master-guided FNA 90.9% 100% 93.8%