Copyright
©The Author(s) 2023.
Artif Intell Gastroenterol. Dec 8, 2023; 4(3): 48-63
Published online Dec 8, 2023. doi: 10.35712/aig.v4.i3.48
Published online Dec 8, 2023. doi: 10.35712/aig.v4.i3.48
Table 1 Studies on differentiation of indeterminate lesions using artificial intelligence
No. | Ref. | Number of patients | Organ of interest | Sub-type of AI | Outcome |
1 | Ippolito et al[12], 2004 | 453 | Thyroid nodule (benign vs malignant) | ANN | Refinement of risk stratification of FNAB and clinical data |
2 | Daniels et al[13], 2020 | 121 | Indeterminant thyroid nodule | ML | ML and ultrasonography can identify genetically high risk lesions |
3 | Becker et al[14], 2018 | 632 | Breast lesion (benign vs malignant) | Generic DLS | Aids diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists |
4 | Scott et al[15], 2019 | 125 | Lung GGO (benign vs malignant) | ANN | Improve diagnostic ability using CT scan, PET, and clinical data |
5 | Guo et al[16], 2022 | 20 | Indeterminant small lung lesions | DNN | DNN based method may detect small lesions < 10 mm at an effective radiation dose < 0.1 mSv. |
6 | Yasaka et al[17], 2018 | 460 | Liver mass (HCC vs others) | CNN | High diagnostic performance in differentiation of liver masses using dynamic CT |
7 | Moawad et al[18], 2021 | 40 | Adrenal incidentaloma (benign vs malignant) | ML | Machine learning and CT texture analysis can differentiate between benign and malignant indeterminate adrenal tumors |
8 | Stanzione et al[19], 2021 | 55 | Indeterminant solid adrenal lesions | ML | MRI handcrafted radiomics and ML can be used to different adrenal incidentalomas |
9 | Massa'a et al[20], 2022 | 160 | Indeterminant solid renal mass (benign vs malignant) | ML | MRI-based radiomics and ML can be useful in differentiation |
10 | Saraiva et al[21], 2022 | 85 | Indeterminant biliary strictures | CNN | CNN can accurately differentiate benign strictures from malignant ones |
Table 2 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on computed tomography images
No. | Ref. | Number of patients | Primary objective | Sub-type of AI used | Outcome |
1 | Qureshi et al[36], 2022 | 108 | Identification of PDAC | ML | Accuracy: 86% |
2 | Ebrahimian et al[121], 2022 | 103 | Differentiation of benign vs malignant pancreatic lesions | RF | AUC: 0.94 |
3 | Chakraborty et al[59], 2018 | 103 | High risk vs low risk IPMN | RF, SVM | AUC: 0.81 |
4 | Polk et al[60], 2020 | 29 | High risk vs low risk IPMN | LR | AUC: 0.90 |
5 | Ikeda et al[122], 1997 | 71 | PDAC vs pancreatitis | NN | AUC: 0.916 |
6 | Chen et al[58], 2021 | 100 | SCN vs MCN | LASSO and RFE_Linear SVC | AUC: 0.932 |
7 | Yang et al[57], 2019 | 53 | SCN vs MCN | LASSO | AUC: 0.66 |
8 | Yang et al[123], 2022 | 63 | SCN vs MCN | MMRF-ResNet | AUC: 0.98 |
9 | Ren et al[124], 2020 | 112 | PDAC vs pancreatic adenosquamous carcinoma | RF | AUC: 0.98 |
10 | Xie et al[125], 2021 | 226 | MCN vs ASCN | RF | AUC: 0.734 |
11 | Ziegelmayer et al[126], 2020 | 86 | AIP vs PDAC | CNN, ML | AUC: 0.90 |
12 | Li et al[62], 2022 | 97 | Focal-type AIP vs PDAC | LASSO regression | AUC: 0.97 |
13 | Gao et al[127], 2021 | 170 | MCN vs SCN | mRMR + LASSO | AUC: 0.91 |
14 | Dmitriev et al[53], 2017 | 134 | Classification of pancreatic cyst | RF, CNN | Accuracy: 83.6% |
15 | Li et al[54], 2019 | 206 | Classification of pancreatic cysts | DNN (Dense-Net) | Accuracy: 72.8% |
16 | Wei et al[56], 2019 | 260 | SCN vs other cystic neoplasms | ML | AUC: 0.767 |
Table 3 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on magnetic resonance images
No. | Ref. | Number of patients | Primary objective | Sub-type of AI used | Outcome |
1 | Li et al[62], 2022 | 267 | PDAC detection | UDA + meta learning + GCN | DSC (62.08%, T1), (61.35%, T2), (61.88%, DWI), (60.43%, AP) |
2 | Chen et al[63], 2022 | 73 | PDAC detection | Spiral-ResUNet | DSC: 65.60%, Jaccard index: 49.64% |
3 | Liang Y et al[128], 2020 | 56 | PDAC detection | CNN | DSC: 71% |
5 | Cui et al[129], 2021 | 202 | Grading-BD IPMN | LASSO | AUC: 0.903 |
6 | Corral et al[67], 2019 | 139 | Classification of IPMN | CNN | AUC: 0.783 |
7 | Cheng et al[68], 2022 | 60 | Malignant IPMN | LR, SVM | MRI + SVM: AUC: 0.940, CT + SVM: AUC: 0.864 |
8 | Hussein et al[130], 2019 | 171 | Classification of IPMN | SVM, RF, 3D, CNN | Accuracy 84.22% |
Table 4 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on endoscopic ultrasonography images
No. | Ref. | Number of patients | Primary outcome | Sub type of AI used | Outcome |
1 | Zhu et al[78], 2013 | 262 | PDAC vs CP | SVM | Accuracy: 94.2% |
2 | Zhu et al[131], 2015 | 100 | AIP vs CP | SVM | Accuracy: 89.3% |
3 | Zhang et al[74], 2010 | 216 | Normal pancreas vs PDAC | SVM | Accuracy: 97.98% |
4 | Ozkan et al[76], 2016 | 332 | Recognition of pancreatic cancer amongst various age group | ANN | Accuracy: Average: 87.5% (all ages), Min: 88.46% (40-60 yr), Max: 92% (< 40 yr) |
5 | Kuwahara et al[83], 2019 | 50 | Benign vs malignant IPMN | CNN | Accuracy: 94% |
6 | Das et al[75], 2008 | 56 | PDAC vs normal pancreas vs CP | ANN | AUC: 0.93 |
7 | Săftoiu et al[80], 2008 | 68 | Benign vs malignant pancreatic lesion | ANN | Accuracy: 89.7% |
8 | Tonozuka et al[132], 2021 | 139 | PDAC vs CP | CNN | AUC: 0.94 |
9 | Marya et al[133], 2021 | 583 | PDAC vs benign causes of pancreatic SOL | CNN | AUC: 0.976 |
10. | Xu et al[134], 2013 | Systemic Analysis of 6 studies | Benign vs malignant pancreatic lesion | - | AUC: 0.962 |
Table 5 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on different biomarkers
No. | Ref. | Number of samples | Type of biomarker used | Sub-type of AI used | Conclusion |
1 | Chen et al[104], 2019 | 28 | Exosomes | LDA | Accuracy: 100% |
2 | Zheng et al[105], 2022 | 220 | Exosomes | ANN | AUC: 0.86 |
3 | Ko et al[106], 2017 | 28 | Exosomes | LDA | Accuracy: 100% |
4 | Cristiano et al[107], 2019 | 34 | Cell-free DNA | GBM | AUC: 0.86 |
5 | Yu et al[108], 2020 | 501 | extracellular vesicles long RNA | SVM | AUC: 0.96 |
6 | Gao et al[109], 2012 | 199 | Proteomes | SVM, KNN, ANN | AUC: 0.971 |
7 | Yu et al[110], 2005 | 100 | Proteomes | DT | Sensitivity: 88.9%, specificity: 74.1% |
8 | Qiao et al[112], 2022 | 136 | Proteomes | CNN | Accuracy: 87.63% |
9 | Alizadeh et al[113], 2020 | 671 | Circulating micro RNA | ANN | Accuracy: 0.86 |
Table 6 Studies demonstrating impact of artificial intelligence on increasing efficacy of diagnostic modalities
No. | Ref. | Objective | Modality | Sensitivity | Specificity | Accuracy |
1 | Corral et al[67], 2019 | Differentiate cystic SOL of pancreas | Fukuoka guideline | 62% | 77 | 77.5% |
Deep learning | 75% | 78% | 78.3% | |||
2 | Kuwahara et al[83], 2019 | Detection of malignant IPMN | Human pre-operative diagnosis (Clinical + lab + imaging) | 95.7% | 22.2% | 56% |
Artificial intelligence | 95.7% | 92.66 | 94% | |||
3 | Gao et al[135], 2020 | Ability to differentiate pancreatic disease | CE-MR | NA | NA | 83.93% |
GAN | NA | NA | 76.79% | |||
4 | Rigiroli et al[136], 2021 | Detection of pancreatic cancer and SMA involvement | CT scan | NA | NA | 71% |
Artificial intelligence | 62% | 77% | 54% | |||
5 | Chen et al[137], 2023 | Detection of pancreatic cancer | CT scan | 89.9% | 95.9% | AUC: 0.96 |
CNN | 90% | 93% | NA | |||
6 | Tang et al[138], 2023 | Pancreatic mass diagnosis | EUS FNA | 81.6% | 100% | 87.9% |
CE EUS Master-guided FNA | 90.9% | 100% | 93.8% |
- Citation: Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4(3): 48-63
- URL: https://www.wjgnet.com/2644-3236/full/v4/i3/48.htm
- DOI: https://dx.doi.org/10.35712/aig.v4.i3.48