Review
Copyright ©The Author(s) 2022.
Artif Intell Gastroenterol. Dec 28, 2022; 3(5): 117-141
Published online Dec 28, 2022. doi: 10.35712/aig.v3.i5.117
Table 1 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for Barrett’s esophagus-related neoplasia
Ref.CountryStudy designAI ClassifierLesionsTraining datasetTest datasetSensitivity (%)Specificity (%)Accuracy (%)AUROC
Swager et al[11], 2017NetherlandsRetrospectiveML2 methodsNPL-60 VLE images9093-0.95
van der Sommen et al[10], 2016NetherlandsRetrospectiveSVMNPL-100 WLE images8383--
Hong et al[17], 2017South KoreaRetrospectiveCNNNPL, IM, GM236 endomicroscopy images26 endomicroscopy images--80.77-
de Groof et al[13], 2019Netherlands, Germany, BelgiumProspectiveSVMNPL-60 WLE images958591.70.92
Ebigbo et al[21], 2019Germany, BrazilRetrospectiveCNNEACAugsburg dataset: 148 WLE images and NBI; MICCAI dataset: 100 WLE images97; 94a; 9288; 80a; 100--
Ghatwary et al[24], 2019England, EgyptRetrospectiveMultiple CNNsEACImages from 21 patientsImages from 9 patients9692--
de Groof et al[14], 2020Netherlands, France, Sweden, Germany, Belgium, AustraliaAmbispectiveCNNNPLDataset 1: 494364 images; Dataset 2:1; 247 images; Dataset 3: 297 imagesDataset 3: 297 images; Dataset 4: 80 images; Dataset 5: 80 images90b87.5b88.8b-
de Groof et al[15], 2020Netherlands, BelgiumProspectiveCNNNPL495611 images20 patients; 144 WLE images75.886.584-
Ebigbo et al[18], 2020Germany, BrazilProspectiveCNNEAC129 images62 images83.710089.9-
Hashimoto et al[19], 2020United StatesRetrospectiveCNNNPL1374 images458 images96.494.295.4-
Struyvenberg et al[12], 2020NetherlandsProspectiveML2 methodsNPL-3060 VLE frames---0.91
Iwagami et al[25], 2021JapanRetrospectiveCNNEJC3443 images232 images944266-
Struyvenberg et al[16], 2021Netherlands, Sweden, BelgiumRetrospectiveCNNNPL495611 images157 NBI zoom videos; 30021 frames851; 75831; 90831; 85-
Hussein et al[20], 2022England, Spain, Belgium, AustriaProspectiveCNNDPL148936 frames264 iscan-1 images9179-0.93
Table 2 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for gastric cancer
Ref.CountryStudy designAI classifierLesionsTraining datasetTest datasetSensitivity (%)Specificity (%)Accuracy (%)AUROC
Miyaki et al[47], 2013 JapanProspectiveaSVMGastric cancer493 FICE-derived magnifying endoscopic images92 FICE-derived magnifying endoscopic images84.89785.9-
Kanesaka et al[48], 2018Japan, TaiwanRetrospectiveSVMEGC126 M-NBI images81 M-NBI images96.79596.3-
Wu et al[50], 2019ChinaRetrospectiveCNNEGC9151 images200 images949192.5-
Cho et al[51], 2019South KoreaAmbispectiveCNNAdvanced gastric cancer, EGC, high grade dysplasia, low grade dysplasia, non-neoplasm4205 WLE images812 WLE images; 200 WLE images--86.6b; 76.40.877b
Tang et al[49], 2020ChinaRetrospectiveCNNEGC35823 WLE imagesInternal: 9417 WLE images; External: 1514 WLE images195.51; 85.9-92.181.71; 84.4-90.387.81; 85.1-91.20.941; 0.887-0.925
Namikawa et al[52], 2020JapanRetrospectiveCNNGastric cancer18410 images1459 images9993.399-
Horiuchi et al[56], 2020JapanRetrospectiveCNNEGC2570 M-NBI images258 M-NBI images95.47185.30.852
Horiuchi et al[57], 2020JapanRetrospectiveCNNEGC2570 M-NBI images174 videos87.482.885.10.8684
Guo et al[54], 2021ChinaRetrospectiveCNNGastric cancer, erosions/ulcers, polyps, varices293162 WLE images33959 WLE images67.52; 85.170.92; 90.3--
Ikenoyama et al[55], 2021JapanRetrospectiveCNNEGC13584 WLE and NBI images2940 WLE and NBI images58.487.3--
Hu et al[58], 2021ChinaRetrospectiveCNNEGCM-NBI images from 170 patientsInternal: M-NBI from 73 patients External: M-NBI images from 52 patients79.23; 78.274.53; 74.1773; 76.30.8083; 0.813
Ueyama et al[59], 2021JapanRetrospectiveCNNEGC5574 M-NBI images2300 M-NBI9810098.7-
Yuan et al[53], 2022ChinaRetrospectiveCNNEGC, advanced gastric cancer, submucosal tumor, polyp, peptic ulcer, erosion, and lesion-free gastric mucosa29809 WLE images1579 WLE images59.24; 10099.34; 98.193.54; 98.4-
Table 3 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for colonic polyps
Ref.CountryStudy designLesionsTraining datasetTest datasetSensitivity (%)Specificity (%)Accuracy (%)AUROC
Komeda et al[139], 2017JapanRetrospectiveAdenomas1200 images10 images806070-
Misawa et al[140], 2018JapanRetrospectivePolyps411 video clips135 video clips9063.376.50.87
Wang et al[149], 2018China, United StatesRetrospectivePolyps4495 imagesDataset A: 27113 images; Dataset C: 138 video clips; Dataset D: 54 full-length videosDataset A: 94.38; Dataset C: 91.64Dataset A: 95.92; Dataset D: 95.4-Dataset A: 0.984
Horiuchi et al[154], 2019JapanProspectiveDiminutive polyps-a8095.391.5-
Hassan et al[141], 2020Italy, United StatesRetrospectivePolyps-338 video clips99.7---
Guo et al[142], 2021JapanRetrospectivePolyps1991 images100 video clips; 15 full videos87b98.3b--
Neumann et al[143], 2021GermanyRetrospective1Polyps> 500 videos240 polyps within full-length videos1000--
Li et al[144], 2021SingaporeRetrospectivePolyps6038 images2571 images74.185.1--
Livovsky et al[151], 2021IsraelAmbispectivePolyps3611 h of videos1393 h of videos97.10--
Pfeifer et al[158], 2021Germany, Italy, NetherlandsRetrospectivePolyps10467 images45 videos9080-0.92
Ahmad et al[145], 20222EnglandProspectivePolypsDataset A: 58849 frames; Dataset B: 10993 videos and still imagesDataset C: 110985 frames; Dataset D: 8950 frames; Dataset E: 542484 framesDataset C: 100, 84.1; Dataset D&E: 98.9, 85.2Dataset C: 79.6; Dataset D&E: 79.3%
Hori et al[146], 2022JapanProspectivePolyps1456 images600 images9797.797.3-
Pacal et al[152], 2022TurkeyRetrospectivePolypsUsed images from 3 publicly available datasets (SUN, PICCOLO, Etis-Larib) to create training and test datasets91.04---
Yoon et al[184], 2022South KoreaRetrospectiveSSL4397 imagesValidation Set 2106; SSL Temporal Validation set 13395.44; 93.8990.192.950.96
Nemoto et al[185], 2022JapanRetrospectiveTA, SSL1849 images400 images7289820.86
Lux et al[148], 2022GermanyRetrospectivePolyps506338 images41 full-length videos--95.3-
Table 4 Overview of findings from studies evaluating computer-aided detection for adenoma detection rate and polyp detection rate
Ref.CountryStudy designPatients (n)
PDR (%)
ADR (%)
CADe
SC
CADe
SC
P value
CADe
SC
P value
Wang et al[168], 2019China, United StatesRandomized52253645.0229.1< 0.00129.1220.34< 0.001
Becq et al[155], 2020United States, Turkey, Costa RicaProspective50b8262Not reported---
Gong et al[166], 2020ChinaRandomized35534947340.00161680.001
Liu et al[171], 2020China, United StatesRandomized39339747.0733.25< 0.00129.0120.910.009
Liu et al[173], 2020ChinaProspective50851843.6527.81< 0.00139.123.89< 0.001
Repici et al[170], 2020Italy, Kuwait, United States, GermanyRandomized341344---54.840.4< 0.001
Su et al[169], 2020ChinaRandomized30831538.325.40.00128.916.5< 0.001
Wang et al[156], 2020China, United StatesProspective, Tandem118418565.5955.140.09942.3935.680.186
Wang et al[167], 2020China, United StatesRandomized 4844785237< 0.000134280.03
Kamba et al[164], 2021JapanRandomized, Tandem217217469.860.90.08464.553.60.036
Luo et al[174], 2021ChinaRandomized, Tandem1727838.734< 0.001---
Pfeifer et al[158], 2021Germany, Italy, NetherlandsProspective, Tandem142b50380.02336260.044
Shaukat et al[157], 2021United States, EnglandProspective83283---54.240.60.028
Shen et al[150], 2021ChinaAmbispective646478.156.30.00853.129.70.007
Xu et al[172], 2021ChinaRandomized1177117538.836.20.183---
Glissen Brown et al[163], 2022China, United StatesRandomized, Tandem211311070.865.450.392350.4443.640.3091
Ishiyama et al[159], 2022Japan, NorwayProspective9189185952.10.00326.419.90.001
Lux et al[148], 2022GermanyRetrospective41 -----41.5-
Quan et al[153], 2022United StatesProspective300300---43.7a; 66.737.8a; 59.720.37a; 0.35
Repici et al[165], 2022Italy, Switzerland, United States, GermanyRandomized330330---53.344.50.017
Shaukat et al[162], 2022United StatesRandomized68267764.461.20.24247.843.90.065
Zippelius et al[160], 2022Germany, United StatesProspective150b---50.7520.5