Copyright
©The Author(s) 2022.
Artif Intell Gastroenterol. Jun 28, 2022; 3(3): 88-95
Published online Jun 28, 2022. doi: 10.35712/aig.v3.i3.88
Published online Jun 28, 2022. doi: 10.35712/aig.v3.i3.88
Ref. | Year | Type of AI | Imaging modality | Training (#) | Testing (#) | AUC | Sensitivity (%) | Specificity (%) |
Matake et al[47], 2006 | 2006 | ANN | CT | 120 - patients | 120 - patients | 0.934 | 81.9 | 94.4 |
Ji et al[48], 2019 | 2019 | ANN | CT | 177 - patients | 70 - patients | 0.961 | 72 | 76.2 |
Logeswaran[49], 2009 | 2009 | MLP | MRI | 120 - images | 593 - images | N/A | N/A | |
Yang et al[37], 2020 | 2020 | ANN | MRI | 80 - patients | 20 - patients | 0.9 (LMN) | 85.8 (LMN) | 81.8 (LMN) |
0.8 (differentiation) | 73.2 (differentiation) | 68.8 (differentiation) | ||||||
Ghandour et al[51], 2021 | 2021 | CNN | Cholangioscopy | 254 - patients | 95 - patients | 0.86 | 0.81 | 0.91 |
Robles-Medrana et al[38], 2021 | 2021 | ML | Cholangioscopy | 1714 – images | 198 - images | N/A | 92 | N/A |
Pereira et al[50], 2022 | 2022 | CNN | Cholangioscopy | 5180 - images | 1295 - images | 1 | 99.3 | 99.4 |
Pattanpairoj et al[45], 2015 | 2015 | ANN | Multivariate | 85 - patients | 22 - patients | N/A | 98.71 | 96.94 |
Shao et al[44], 2018 | 2018 | ANN | Multivariate | 231 - patients | 57 - patients | 0.9544 | N/A | N/A |
Ji et al[41], 2019 | 2019 | N/A | Multivariate | 103 - patients | 52 - patients | 0.8462 | 86.8 | 76.3 |
Xu et al[42], 2019 | 2019 | SVM | Multivariate | 106 - patients | 42 - patients | 0.842 | 89.36 | 57.63 |
Zhao et al[43], 2019 | 2019 | N/A | Multivariate | 92 - patients | 33 - patients | 0.949 | 0.938 | 0.839 |
Müller et al[46], 2021 | 2021 | ANN | Multivariate | 233 - patients | 60 - patients | 0.89 | N/A | N/A |
- Citation: Brenner AR, Laoveeravat P, Carey PJ, Joiner D, Mardini SH, Jovani M. Artificial intelligence using advanced imaging techniques and cholangiocarcinoma: Recent advances and future direction. Artif Intell Gastroenterol 2022; 3(3): 88-95
- URL: https://www.wjgnet.com/2644-3236/full/v3/i3/88.htm
- DOI: https://dx.doi.org/10.35712/aig.v3.i3.88