Minireviews
Copyright ©The Author(s) 2022.
Artif Intell Gastroenterol. Jun 28, 2022; 3(3): 88-95
Published online Jun 28, 2022. doi: 10.35712/aig.v3.i3.88
Table 1 Summary of studies assessing computed tomography, magnetic resonance, and endoscopic ultrasound using artificial intelligence-based approach for pancreatic cancer
Ref.
Year
Type of AI
Imaging modality
Training (#)
Testing (#)
AUC
Sensitivity (%)
Specificity (%)
Matake et al[47], 20062006ANNCT120 - patients120 - patients0.93481.994.4
Ji et al[48], 2019 2019ANNCT177 - patients70 - patients0.9617276.2
Logeswaran[49], 2009 2009MLPMRI120 - images593 - imagesN/AN/A
Yang et al[37], 2020 2020ANNMRI80 - patients20 - patients0.9 (LMN)85.8 (LMN)81.8 (LMN)
0.8 (differentiation)73.2 (differentiation)68.8 (differentiation)
Ghandour et al[51], 20212021CNNCholangioscopy254 - patients95 - patients0.860.810.91
Robles-Medrana et al[38], 2021 2021MLCholangioscopy1714 – images198 - imagesN/A92N/A
Pereira et al[50], 2022 2022CNNCholangioscopy5180 - images1295 - images199.399.4
Pattanpairoj et al[45], 2015 2015ANNMultivariate85 - patients22 - patientsN/A98.7196.94
Shao et al[44], 2018 2018ANNMultivariate231 - patients57 - patients0.9544N/AN/A
Ji et al[41], 2019 2019N/AMultivariate103 - patients52 - patients0.846286.876.3
Xu et al[42], 2019 2019SVMMultivariate106 - patients42 - patients0.84289.3657.63
Zhao et al[43], 2019 2019N/AMultivariate92 - patients33 - patients0.9490.9380.839
Müller et al[46], 2021 2021ANNMultivariate233 - patients60 - patients0.89N/AN/A