Minireviews
Copyright ©The Author(s) 2022.
Artif Intell Gastroenterol. Feb 28, 2022; 3(1): 21-27
Published online Feb 28, 2022. doi: 10.35712/aig.v3.i1.21
Table 1 Overview of original works on artificial intelligence applied to liver allocation
Ref.
Sample size and location
AI model(s)
Outcomes analyzed
Results
Comments
Briceño et al[37], 20141003 LT recipients (multicenter in Spain)ANN with PS and NS model with D-R pairing3-mo Graft survival (PS); 3-mo Graft failure (NS)AUROC 0.81 (PS); AUROC 0.82 (NS)Superior to BAR score (0.68 for PS, 0.61 for NS). Other conventional statistics fared worse
Ayllón et al[30], 2018858 LT recipients (single-center in England)ANN (PS and NS) with D-R pairing3-mo Graft survival (PS); 3-mo Graft failure (NS)AUROC 0.90 (PS); AUROC 0.90 (NS)Superior to BAR score (AUROC 0.71). Same model above on a different population (external validation)
Lau et al[39], 2017180 LT recipients (single-center in Australia)ANN and RF30-d and 3-mo Graft failure (NS)30-d prediction: AUROC 0.82 (RF) AUROC 0.835 (ANN)Superior to SOFT and DRI scores
Guijo-Rubio et al[40], 202120456 LT recipients (5-yr survival) to 37646 LT recipients (3-mo survival) UNOS databaseANN, RF, DT, SVM, MLP3-mo, 1 yr, 2 yr, 5 yr survivalAUROC up to 0.618 (3-mo), 0.614 (1-yr), 0.611 (2-yr), 0.644 (5-yr)No superiority compared to conventional statistics (LR was slightly superior)