Copyright
©The Author(s) 2020.
Artif Intell Gastroenterol. Jul 28, 2020; 1(1): 5-11
Published online Jul 28, 2020. doi: 10.35712/aig.v1.i1.5
Published online Jul 28, 2020. doi: 10.35712/aig.v1.i1.5
Samples | Diagnosis | AI technique | Accuracy, % | AUROC | Ref. | |
Focal liver disease detection | US | Benign tumors | DL | 97.2 | NA | [23] |
Serum tests, clinical data | HCC | ML (gradient boosting)/DL | 87.34/83.54 | 0.940/0.884 | [25] | |
Diffuse liver disease staging | US | FLD | DL/SVM/ELM | 100/82/92 | 1.0/0.79/0.92 | [26] |
US | NAFLD | DL | NA | 0.9777 | [27] | |
Elastography | Cirrhosis | DL | NA | 0.97 | [32] | |
Risk assessment | Clinical, pathohistological data | Poorer survival after HCC resection | 2 DL models | NA | 0.78, 0.75 (c-index) | [35] |
Sequence data | Poorer survival after HCC resection | DL | NA | 0.68 (c-index) | [36] | |
Clinical data | HCC development | ML | NA | 0.64 (c-index) | [37] | |
Clinical, histological data | 1-yr and 3-yr clinical outcomes | ML | NA | 0.78, 0.76 | [38] |
- Citation: Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Moriyama M. Application of artificial intelligence in hepatology: Minireview. Artif Intell Gastroenterol 2020; 1(1): 5-11
- URL: https://www.wjgnet.com/2644-3236/full/v1/i1/5.htm
- DOI: https://dx.doi.org/10.35712/aig.v1.i1.5