Editorial Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
Artif Intell Gastroenterol. Apr 30, 2024; 5(1): 90096
Published online Apr 30, 2024. doi: 10.35712/aig.v5.i1.90096
Application of artificial intelligence in the prediction of immunotherapy efficacy in hepatocellular carcinoma: Current status and prospects
Wei Zhang, Li-Ning Song, Yun-Fei You, Feng-Nan Qi, Ming-Xun Yi, Ren-An Chang, Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
Xiao-Hong Cui, Department of General Surgery, Shanghai Electric Power Hospital, Shanghai 200050, China
Guang Zhu, Hai-Jian Zhang, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
Hai-Jian Zhang, Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
ORCID number: Xiao-Hong Cui (0000-0002-7435-4317); Hai-Jian Zhang (0000-0003-2516-4215).
Author contributions: Zhang W and Zhang HJ have access to all the data in this study and take responsibility for the integrity and accuracy of the data analyses. Zhang HJ, Zhu G, and Chang RA study concept and design; Zhang W drafted the manuscript; Song LN revised the manuscript; You YF, Qi FN, Cui XH, and Yi MX supervised the study and provided modification suggestions; All authors have read and approved the final manuscript; Zhang W and Song LN contributed equally to this work.
Supported by the National Natural Science Foundation of China, No. 81401988; China Postdoctoral Science Foundation, No. 2019M661907; Jiangsu Postdoctoral Science Foundation, No. 2019K159, and No. 2019Z153; General Project of Jiangsu Provincial Health Committee, No. H2023136; General Project of Nantong Municipal Health Committee, No. MS2023013; Jiangsu Provincial Research Hospital, No. YJXYY202204-YSB28; and College Student Innovation Program, No. 202210304128Y, and No. 2023103041055.
Conflict-of-interest statement: All authors certify that they have no conflicts of interest related to this work.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Hai-Jian Zhang, MD, PhD, Professor, Research Scientist, Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong 226001, Jiangsu Province, China. hjzhang@ntu.edu.cn
Received: November 23, 2023
Peer-review started: November 23, 2023
First decision: January 12, 2024
Revised: January 28, 2024
Accepted: March 12, 2024
Article in press: March 12, 2024
Published online: April 30, 2024
Processing time: 158 Days and 5.8 Hours

Abstract

Artificial Intelligence (AI) has increased as a potent tool in medicine, with promising oncology applications. The emergence of immunotherapy has transformed the treatment terrain for hepatocellular carcinoma (HCC), offering new hope to patients with this challenging malignancy. This article examines the role and future of AI in forecasting the effectiveness of immunotherapy in HCC. We highlight the potential of AI to revolutionize the prediction of therapy response, thus improving patient selection and clinical outcomes. The article further outlines the challenges and future research directions in this emerging field.

Key Words: Artificial intelligence; Hepatocellular carcinoma; Immunotherapy; Predictive modeling

Core Tip: Recently, there has been a lot of progress in predicting the effect of immunotherapy for hepatocellular carcinoma using artificial intelligence, but it also faces serious challenges. Therefore, in this article we summarize and discuss these issues.



INTRODUCTION

Hepatocellular carcinoma (HCC), the most prevalent primary liver cancer and a top contributor to global cancer mortality, is frequently detected at an advanced stage, offering few treatment choices and a bleak prognosis[1,2]. Traditional treatment modalities, such as surgery, radiotherapy, and chemotherapy, have been the mainstay of HCC management, but their efficacy is frequently limited by tumor recurrence and adverse side effects[3-5]. With the advent of immunotherapy, the treatment landscape for HCC has been changed, offering new hope to patients with this aggressive form of liver cancer[6,7]. Immunotherapy has shown promising results in improving survival rates. It is being evaluated in various stages of HCC treatment, from its role in the adjuvant setting to its use in advanced stages of the disease[4,6,8].

Despite progress, the heterogeneity of HCC and the complexity of the tumor microenvironment (TME) hinder consistent, durable responses across all patient groups[9]. Predicting which patients will benefit from these treatments remains a significant challenge. Currently, ongoing clinical trials and research efforts are focused on understanding the mechanisms of resistance and identifying biomarkers to predict immunotherapy response[10,11]. This is where artificial intelligence (AI) comes into play, offering a new dimension to these efforts. AI has the potential to analyze complex biomedical data, identifying patterns that could predict treatment outcomes. Integrating AI into clinical practice may lead to more personalized, effective treatment strategies, optimizing patient care and resource use[12].

AI models have achieved remarkable success in various medical applications, such as diagnostic imaging, genomics, and drug discovery. In the context of HCC, AI applications extend to predicting patient prognosis, and treatment response, and even suggesting potential therapeutic targets[13,14]. However, the application of AI in predicting the efficacy of immunotherapy for HCC remains nascent, with numerous challenges yet to be overcome.

The evolution of immunotherapy for HCC

Historically, the initial attempts to harness the immune system to combat HCC centered around cytokine-based therapies, such as interferon-alpha and interleukin-2. Later, it was realized that immune checkpoints, such as CTLA-4 and PD-(L)1, could be manipulated to improve anti-tumor immunity[15].

The first breakthrough in the immunotherapy of HCC came with the approval of nivolumab, a PD-1 inhibitor, for use in patients with advanced HCC who had previously received sorafenib[7]. More recently, researchers have explored combination therapies, such as PD-L1 inhibitors with CTLA-4 inhibitors or with other therapeutic modalities like targeted therapies and locoregional treatments, which are predicated on the potential to synergize different mechanisms of action to enhance anti-tumor responses[16]. For example, the combination of atezolizumab and bevacizumab demonstrated improved survival outcomes relative to sorafenib in the IMbrave150 trial[5].

Despite these advances, the response to immunotherapy in HCC remains variable, with a significant proportion of patients not experiencing benefit. Consequently, this variability has spurred ongoing research into biomarkers that can predict response to immunotherapy.

The potential of AI in oncology

AI, encompassing a wide area of computer science, works toward building systems able to accomplish functions commonly needing human cognition. Among these subfields are machine learning (ML), deep learning (DL), natural language processing, and robotics[17,18]. In the field of oncology, the potential role of AI is to enhance diagnosis, and treatment, and predict treatment outcomes or disease progression.

For diagnosis, DL algorithms that analyze low-dose computed tomography (CT) scans can detect early-stage lung cancer with precision comparable to expert radiologists, potentially leading to earlier and more effective interventions[19]. Similarly, applying DL algorithms to whole-slide pathology images can aid pathologists in identifying cancerous tissues, thus significantly expediting the diagnostic process and enhancing diagnostic accuracy and efficiency[20]. Using AI integrated with machines and DL in radiomics can help to more accurately define tissue characteristics[21].

Regarding treatment, AI's integration and analysis of genomic data alongside clinical histories enable the creation of personalized treatment plans that predict patient benefits from specific therapies. Zhang et al[22] utilized Garson's algorithm, Lek's profile, local interpretable model-agnostic explanations, and partial dependence plots to aid clinicians and medical policymakers in understanding artificial neural networks, powerful tools for effectively predicting outcome variable relationships.

Additionally, AI also aids in anticipating treatment outcomes, helping to optimize treatment regimens by forecasting patient responses and potential side effects based on historical data. For instance, DL algorithms, in particular convolutional networks, utilize imaging data to track tumor advancement or decline, offering impartial markers for modifying the treatment process[23]. AI models integrate various patient data, such as genetic information, clinical histories, and imaging findings, to predict disease progression. This comprehensive approach leads to more accurate prognostic assessments than traditional methods, which often consider fewer data points[24]. Survival convolutional neural networks integrate histology images and genomic biomarkers using DL to predict patient outcomes, surpassing current clinical methods for predicting overall survival (OS) in glioma patients[25]. Huang et al[26] identified 10 signature genes from a pool of 166 stem cell-related genes using the least absolute shrinkage operator (LASSO) and multivariate Cox regression analysis. They found that this signature effectively predicted the response to chemotherapy in lung adenocarcinoma patients. Furthermore, in Ding et al's experiment, the mirlncRNA signature, comprising five notable lncRNAs, not only differentiates molecular typing and identifies the related tumor immune subtypes and their chromatin accessibility, but also underscores the immune efficacy and drug sensitivity of tumor immune subtypes[27].

The role of AI in predicting immunotherapy efficacy in HCC

ML, a subset of AI, may become a powerful tool for predicting the response of HCC patients to immunotherapy. ML models, like support vector machines (SVMs), have been utilized for predicting HCC recurrence, screening drugs, identifying potential targets, and determining which patients are more likely to experience recurrence with specific treatments[24,28-30]. Shi et al[31] examined peripheral blood mononuclear cells from various cohorts, creating an AdaBoost-SVM logistic model that can identify early-stage HCC via immune markers, surpassing alpha-fetoprotein in accuracy.

DL, another subset of AI, uses algorithms to model and understand complex patterns in data. Zeng et al[32] explored three DL approaches (patch-based, classic MIL, and CLAM) to create and verify AI-based pathology models for predicting immune and inflammatory gene signatures. Their findings suggest that these signatures could be associated with heightened sensitivity to immunotherapy in patients with advanced HCC.

Additionally, genomic data also play a crucial role in predicting treatment responses. AI models have been trained to identify genetic mutations and expression profiles that correlate with better immunotherapy outcomes. Gong et al[33] utilized ML to develop a risk scoring system known as ‘neutrophil-derived signature’ (NDS), comprising 10 crucial genes. The RiskScore of NDS showed higher accuracy compared to clinical variables and was associated with increased malignancy levels. Consequently, the predictive prowess of DL models can guide clinicians in identifying patients who stand to gain the most from immunotherapy, fostering personalized and efficacious treatment approaches. Xie et al[34] found that the m6A- and ferroptosis-lncRNA signature, which has significant prognostic value, provides new perspectives in distinguishing ‘cold’ and ‘hot’ tumors and could have important implications for personalized therapy to improve the survival rate of HCC patients. Feng et al[35] utilized the LASSO and CoxBoost algorithms to combine and create a signature from 11 natural killer cell-related genes. This provided a new method for evaluating the prognosis and immunotherapeutic response of HCC patients. Dai et al[36] employed the LASSO regression model to create an immune-related gene-based prognostic index. This index can predict immune cell infiltration in the HCC TME, as well as the response to immunotherapy. Shen et al[37] used genes related to aging to create a predictive model. Through Spearman correlation analysis, they found that the model's risk score was closely related to Mismatch Repair and expression of immune checkpoints.

AI models, particularly those based on ML and DL, have several advantages over traditional statistical methods in predicting outcomes and treatment responses in HCC. Traditional methods often rely on predefined clinical and pathological criteria, which may not capture the complex biological interactions underlying HCC progression and response to treatment. In contrast, AI models can integrate a wide range of data types and identify non-linear relationships within the data[30,38]. Comparative studies have shown that AI models can outperform traditional scoring systems and clinical judgment in prognostication and treatment prediction. For instance, the random survival forests model showed greater accuracy in predicting early recurrence of HCC after surgery compared to COX proportional hazard models[39]. Moreover, AI-driven tools can continuously learn and improve as they are exposed to new data, a feature that static traditional models lack.

Moreover, AI has been instrumental in discovering novel biomarkers for HCC. Through the analysis of large datasets, DL can uncover subtle correlations between biomarkers and treatment responses that may not be apparent to human investigators. Liang et al[40] introduced an interpretable human-centric DL-guided framework, Pathological-biomarker-finder, to aid pathologists in identifying new tissue biomarkers using effective DL models.

Given the promising prospects of AI in predicting the immunotherapy efficacy of HCC, an increasing array of predictive variables is being incorporated into clinical practice. These variables include risk-scoring systems, gene phenotypes, and other types of biomarkers. For instance, Hatanaka et al[41] conducted a multicenter retrospective analysis that employed the modified Gustave Roussy Immune (GRIm) score as a new prognostic tool for HCC patients treated with atezolizumab and bevacizumab. Their findings indicated that a high GRIm score is a significant adverse factor for both progression-free survival (PFS) and OS. The retrospective analysis by Sangro et al[42] revealed an inflammatory gene signature consisting of four genes: CD274, CD8A, LAG3, and STAT1, which correlated with improved response rates and OS in advanced HCC patients treated with nivolumab. Similarly, the atezolizumab-bevacizumab response signature (ABRS), associated with PFS after starting treatment with atezolizumab-bevacizumab, includes genes like CXCR2P1, ICOS, and TIMD4[43]. Building on this, Zeng et al[44] developed a prediction model (ABRS-P) and found that patients with ABRS-P-high tumors had a significantly longer median PFS than those with ABRS-P-low tumors. In addition, Sun et al[45] used specific patient cohorts with advanced solid tumors to develop and validate a radiomic signature capable of predicting immunotherapy responses by assessing CD8 T cell infiltration in tumors. In another clinical trial, researchers identified pre-existing CD8 T cells as a promising biomarker for forecasting responses to combined lenvatinib and PD-1 inhibitors in unresectable HCC[46].

Challenges in AI application to HCC immunotherapy

Despite these advancements, several challenges still impede the broader application of AI in predicting HCC immunotherapy efficacy. A significant challenge is the availability of high-quality, annotated datasets. AI models require large amounts of data to learn effectively; however, the scarcity of such datasets can limit the performance of these models[47]. Furthermore, AI models predicting immunotherapy outcomes need to be updated regularly to incorporate the latest clinical knowledge and patient data. Additionally, the heterogeneity of HCC presents another challenge, as it can vary greatly in its genetic makeup and clinical presentation. This variability can hinder AI models from generalizing their predictions effectively across different patient populations[11]. Furthermore, the interpretability of AI models, particularly DL models, remains a significant concern. The unclear and puzzling nature of these models can make it tough for healthcare professionals to comprehend the logic behind the predictions, which is essential for making well-informed clinical decisions[48].

The use of AI in healthcare also raises important ethical and regulatory considerations. Issues including patient privacy, data security, and informed consent must be addressed to ensure the ethical application of AI in predicting immunotherapy response[49].

Prospects and future directions

The integration of AI into clinical practice for predicting HCC immunotherapy response is an ongoing endeavor. A crucial part of this integration process is the thorough validation of AI models across various patient groups to ensure that the predictions are strong and dependable[50]. Additionally, the development of user-friendly AI platforms that healthcare professionals can easily access and utilize is another important aspect. To facilitate their adoption in routine practice, these platforms must be explicitly designed with a focus on clinical workflow integration[51].

As biomedical data continuously accumulates and AI technology advances, we can expect the predictive capabilities of AI models to improve correspondingly. One promising area of future development involves integrating AI with other emerging technologies, such as liquid biopsy and single-cell sequencing. Analyses of circulating nucleic acids, often called ‘liquid biopsies’, can monitor treatment response, evaluate drug resistance emergence, and measure minimal residual disease[52]. Compared to traditional bulk sequencing, single-cell sequencing can analyze HCC at single-cell resolution, accurately identify different cell types, and uncover the heterogeneity of HCC cells[53]. Lu et al[54] previously developed a new diagnostic model for HCC using single-cell RNA sequencing data and discovered that patients with high-risk scores were less likely to benefit from immunotherapy. Another area of exploration is AI’s role in dynamic prediction models, which can monitor patient responses in real time and adjust predictions accordingly. This approach has the potential to result in more predictable outcomes and treatment strategies that are personalized and adaptable[55].

In the future, AI applications are expected to benefit from the development of more advanced algorithms capable of processing complex biological data, which includes genomics, proteomics, and metabolomics. The goal of these algorithms will be to identify novel biomarkers and molecular signatures that can predict immunotherapy response in HCC patients[56]. The effectiveness of immunotherapy often relies on the interaction of immunomodulation in the TME[57]. By integrating multi-omics data, we will gain a more comprehensive understanding of the TME and its interactions with the immune system[58,59]. In addition, AI is poised to play a critical role in the design and implementation of clinical trials for HCC immunotherapy by identifying patient subgroups that are more likely to benefit from specific treatments. This will help categorize participants and improve the results of trials (Figure 1).

CONCLUSION

The current status of AI in predicting the efficacy of immunotherapy for HCC is marked by significant advancements and potential, tempered by challenges and considerations that must be addressed. The schematic diagram in Figure 1 displays the application of AI in predicting the effectiveness of immunotherapy for HCC. As AI technology evolves and becomes more integrated into healthcare, it possesses the potential to transform HCC prognosis and treatment through personalized and precise predictions for immunotherapy.

Figure 1
Figure 1 Schematic diagram of artificial intelligence in the prediction of immunotherapy efficacy in hepatocellular carcinoma. This schematic diagram displays the application of artificial intelligence in the prediction of immunotherapy efficacy in hepatocellular carcinoma. It mentions several artificial intelligence prediction models closely connected to this article, along with risk scoring systems, gene phenotypes, and other types of biomarkers that have surfaced in recent research. AI: Artificial intelligence.
Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Computer science, artificial intelligence

Country/Territory of origin: China

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): B

Grade C (Good): 0

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Liakina V, Lithuania S-Editor: Liu JH L-Editor: Webster JR P-Editor: Zhao YQ

References
1.  Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, Henrikson HJ, Lu D, Pennini A, Xu R, Ababneh E, Abbasi-Kangevari M, Abbastabar H, Abd-Elsalam SM, Abdoli A, Abedi A, Abidi H, Abolhassani H, Adedeji IA, Adnani QES, Advani SM, Afzal MS, Aghaali M, Ahinkorah BO, Ahmad S, Ahmad T, Ahmadi A, Ahmadi S, Ahmed Rashid T, Ahmed Salih Y, Akalu GT, Aklilu A, Akram T, Akunna CJ, Al Hamad H, Alahdab F, Al-Aly Z, Ali S, Alimohamadi Y, Alipour V, Aljunid SM, Alkhayyat M, Almasi-Hashiani A, Almasri NA, Al-Maweri SAA, Almustanyir S, Alonso N, Alvis-Guzman N, Amu H, Anbesu EW, Ancuceanu R, Ansari F, Ansari-Moghaddam A, Antwi MH, Anvari D, Anyasodor AE, Aqeel M, Arabloo J, Arab-Zozani M, Aremu O, Ariffin H, Aripov T, Arshad M, Artaman A, Arulappan J, Asemi Z, Asghari Jafarabadi M, Ashraf T, Atorkey P, Aujayeb A, Ausloos M, Awedew AF, Ayala Quintanilla BP, Ayenew T, Azab MA, Azadnajafabad S, Azari Jafari A, Azarian G, Azzam AY, Badiye AD, Bahadory S, Baig AA, Baker JL, Balakrishnan S, Banach M, Bärnighausen TW, Barone-Adesi F, Barra F, Barrow A, Behzadifar M, Belgaumi UI, Bezabhe WMM, Bezabih YM, Bhagat DS, Bhagavathula AS, Bhardwaj N, Bhardwaj P, Bhaskar S, Bhattacharyya K, Bhojaraja VS, Bibi S, Bijani A, Biondi A, Bisignano C, Bjørge T, Bleyer A, Blyuss O, Bolarinwa OA, Bolla SR, Braithwaite D, Brar A, Brenner H, Bustamante-Teixeira MT, Butt NS, Butt ZA, Caetano Dos Santos FL, Cao Y, Carreras G, Catalá-López F, Cembranel F, Cerin E, Cernigliaro A, Chakinala RC, Chattu SK, Chattu VK, Chaturvedi P, Chimed-Ochir O, Cho DY, Christopher DJ, Chu DT, Chung MT, Conde J, Cortés S, Cortesi PA, Costa VM, Cunha AR, Dadras O, Dagnew AB, Dahlawi SMA, Dai X, Dandona L, Dandona R, Darwesh AM, das Neves J, De la Hoz FP, Demis AB, Denova-Gutiérrez E, Dhamnetiya D, Dhimal ML, Dhimal M, Dianatinasab M, Diaz D, Djalalinia S, Do HP, Doaei S, Dorostkar F, Dos Santos Figueiredo FW, Driscoll TR, Ebrahimi H, Eftekharzadeh S, El Tantawi M, El-Abid H, Elbarazi I, Elhabashy HR, Elhadi M, El-Jaafary SI, Eshrati B, Eskandarieh S, Esmaeilzadeh F, Etemadi A, Ezzikouri S, Faisaluddin M, Faraon EJA, Fares J, Farzadfar F, Feroze AH, Ferrero S, Ferro Desideri L, Filip I, Fischer F, Fisher JL, Foroutan M, Fukumoto T, Gaal PA, Gad MM, Gadanya MA, Gallus S, Gaspar Fonseca M, Getachew Obsa A, Ghafourifard M, Ghashghaee A, Ghith N, Gholamalizadeh M, Gilani SA, Ginindza TG, Gizaw ATT, Glasbey JC, Golechha M, Goleij P, Gomez RS, Gopalani SV, Gorini G, Goudarzi H, Grosso G, Gubari MIM, Guerra MR, Guha A, Gunasekera DS, Gupta B, Gupta VB, Gupta VK, Gutiérrez RA, Hafezi-Nejad N, Haider MR, Haj-Mirzaian A, Halwani R, Hamadeh RR, Hameed S, Hamidi S, Hanif A, Haque S, Harlianto NI, Haro JM, Hasaballah AI, Hassanipour S, Hay RJ, Hay SI, Hayat K, Heidari G, Heidari M, Herrera-Serna BY, Herteliu C, Hezam K, Holla R, Hossain MM, Hossain MBH, Hosseini MS, Hosseini M, Hosseinzadeh M, Hostiuc M, Hostiuc S, Househ M, Hsairi M, Huang J, Hugo FN, Hussain R, Hussein NR, Hwang BF, Iavicoli I, Ibitoye SE, Ida F, Ikuta KS, Ilesanmi OS, Ilic IM, Ilic MD, Irham LM, Islam JY, Islam RM, Islam SMS, Ismail NE, Isola G, Iwagami M, Jacob L, Jain V, Jakovljevic MB, Javaheri T, Jayaram S, Jazayeri SB, Jha RP, Jonas JB, Joo T, Joseph N, Joukar F, Jürisson M, Kabir A, Kahrizi D, Kalankesh LR, Kalhor R, Kaliyadan F, Kalkonde Y, Kamath A, Kameran Al-Salihi N, Kandel H, Kapoor N, Karch A, Kasa AS, Katikireddi SV, Kauppila JH, Kavetskyy T, Kebede SA, Keshavarz P, Keykhaei M, Khader YS, Khalilov R, Khan G, Khan M, Khan MN, Khan MAB, Khang YH, Khater AM, Khayamzadeh M, Kim GR, Kim YJ, Kisa A, Kisa S, Kissimova-Skarbek K, Kopec JA, Koteeswaran R, Koul PA, Koulmane Laxminarayana SL, Koyanagi A, Kucuk Bicer B, Kugbey N, Kumar GA, Kumar N, Kurmi OP, Kutluk T, La Vecchia C, Lami FH, Landires I, Lauriola P, Lee SW, Lee SWH, Lee WC, Lee YH, Leigh J, Leong E, Li J, Li MC, Liu X, Loureiro JA, Lunevicius R, Magdy Abd El Razek M, Majeed A, Makki A, Male S, Malik AA, Mansournia MA, Martini S, Masoumi SZ, Mathur P, McKee M, Mehrotra R, Mendoza W, Menezes RG, Mengesha EW, Mesregah MK, Mestrovic T, Miao Jonasson J, Miazgowski B, Miazgowski T, Michalek IM, Miller TR, Mirzaei H, Mirzaei HR, Misra S, Mithra P, Moghadaszadeh M, Mohammad KA, Mohammad Y, Mohammadi M, Mohammadi SM, Mohammadian-Hafshejani A, Mohammed S, Moka N, Mokdad AH, Molokhia M, Monasta L, Moni MA, Moosavi MA, Moradi Y, Moraga P, Morgado-da-Costa J, Morrison SD, Mosapour A, Mubarik S, Mwanri L, Nagarajan AJ, Nagaraju SP, Nagata C, Naimzada MD, Nangia V, Naqvi AA, Narasimha Swamy S, Ndejjo R, Nduaguba SO, Negoi I, Negru SM, Neupane Kandel S, Nguyen CT, Nguyen HLT, Niazi RK, Nnaji CA, Noor NM, Nuñez-Samudio V, Nzoputam CI, Oancea B, Ochir C, Odukoya OO, Ogbo FA, Olagunju AT, Olakunde BO, Omar E, Omar Bali A, Omonisi AEE, Ong S, Onwujekwe OE, Orru H, Ortega-Altamirano DV, Otstavnov N, Otstavnov SS, Owolabi MO, P A M, Padubidri JR, Pakshir K, Pana A, Panagiotakos D, Panda-Jonas S, Pardhan S, Park EC, Park EK, Pashazadeh Kan F, Patel HK, Patel JR, Pati S, Pattanshetty SM, Paudel U, Pereira DM, Pereira RB, Perianayagam A, Pillay JD, Pirouzpanah S, Pishgar F, Podder I, Postma MJ, Pourjafar H, Prashant A, Preotescu L, Rabiee M, Rabiee N, Radfar A, Radhakrishnan RA, Radhakrishnan V, Rafiee A, Rahim F, Rahimzadeh S, Rahman M, Rahman MA, Rahmani AM, Rajai N, Rajesh A, Rakovac I, Ram P, Ramezanzadeh K, Ranabhat K, Ranasinghe P, Rao CR, Rao SJ, Rawassizadeh R, Razeghinia MS, Renzaho AMN, Rezaei N, Rezapour A, Roberts TJ, Rodriguez JAB, Rohloff P, Romoli M, Ronfani L, Roshandel G, Rwegerera GM, S M, Sabour S, Saddik B, Saeed U, Sahebkar A, Sahoo H, Salehi S, Salem MR, Salimzadeh H, Samaei M, Samy AM, Sanabria J, Sankararaman S, Santric-Milicevic MM, Sardiwalla Y, Sarveazad A, Sathian B, Sawhney M, Saylan M, Schneider IJC, Sekerija M, Seylani A, Shafaat O, Shaghaghi Z, Shaikh MA, Shamsoddin E, Shannawaz M, Sharma R, Sheikh A, Sheikhbahaei S, Shetty A, Shetty JK, Shetty PH, Shibuya K, Shirkoohi R, Shivakumar KM, Shivarov V, Siabani S, Siddappa Malleshappa SK, Silva DAS, Singh JA, Sintayehu Y, Skryabin VY, Skryabina AA, Soeberg MJ, Sofi-Mahmudi A, Sotoudeh H, Steiropoulos P, Straif K, Subedi R, Sufiyan MB, Sultan I, Sultana S, Sur D, Szerencsés V, Szócska M, Tabarés-Seisdedos R, Tabuchi T, Tadbiri H, Taherkhani A, Takahashi K, Talaat IM, Tan KK, Tat VY, Tedla BAA, Tefera YG, Tehrani-Banihashemi A, Temsah MH, Tesfay FH, Tessema GA, Thapar R, Thavamani A, Thoguluva Chandrasekar V, Thomas N, Tohidinik HR, Touvier M, Tovani-Palone MR, Traini E, Tran BX, Tran KB, Tran MTN, Tripathy JP, Tusa BS, Ullah I, Ullah S, Umapathi KK, Unnikrishnan B, Upadhyay E, Vacante M, Vaezi M, Valadan Tahbaz S, Velazquez DZ, Veroux M, Violante FS, Vlassov V, Vo B, Volovici V, Vu GT, Waheed Y, Wamai RG, Ward P, Wen YF, Westerman R, Winkler AS, Yadav L, Yahyazadeh Jabbari SH, Yang L, Yaya S, Yazie TSY, Yeshaw Y, Yonemoto N, Younis MZ, Yousefi Z, Yu C, Yuce D, Yunusa I, Zadnik V, Zare F, Zastrozhin MS, Zastrozhina A, Zhang J, Zhong C, Zhou L, Zhu C, Ziapour A, Zimmermann IR, Fitzmaurice C, Murray CJL, Force LM. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8:420-444.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 222]  [Cited by in F6Publishing: 919]  [Article Influence: 306.3]  [Reference Citation Analysis (0)]
2.  Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301-1314.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2800]  [Cited by in F6Publishing: 3809]  [Article Influence: 544.1]  [Reference Citation Analysis (5)]
3.  Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345-1362.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 877]  [Article Influence: 292.3]  [Reference Citation Analysis (41)]
4.  Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1343]  [Cited by in F6Publishing: 3227]  [Article Influence: 806.8]  [Reference Citation Analysis (3)]
5.  Cheng AL, Hsu C, Chan SL, Choo SP, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72:307-319.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 207]  [Cited by in F6Publishing: 330]  [Article Influence: 66.0]  [Reference Citation Analysis (1)]
6.  Ziogas IA, Evangeliou AP, Giannis D, Hayat MH, Mylonas KS, Tohme S, Geller DA, Elias N, Goyal L, Tsoulfas G. The Role of Immunotherapy in Hepatocellular Carcinoma: A Systematic Review and Pooled Analysis of 2,402 Patients. Oncologist. 2021;26:e1036-e1049.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 30]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
7.  El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492-2502.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2536]  [Cited by in F6Publishing: 3141]  [Article Influence: 392.6]  [Reference Citation Analysis (1)]
8.  Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, Tovoli F, Knox JJ, Ruth He A, El-Rayes BF, Acosta-Rivera M, Lim HY, Neely J, Shen Y, Wisniewski T, Anderson J, Hsu C. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020;6:e204564.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 505]  [Cited by in F6Publishing: 861]  [Article Influence: 172.2]  [Reference Citation Analysis (0)]
9.  Greten TF, Lai CW, Li G, Staveley-O'Carroll KF. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology. 2019;156:510-524.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 168]  [Cited by in F6Publishing: 186]  [Article Influence: 31.0]  [Reference Citation Analysis (0)]
10.  Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika I, Do RK, Sun Y, Kingham TP, D'Angelica MI, Berger MF, Hyman DM, Jarnagin W, Klimstra DS, Janjigian YY, Solit DB, Schultz N, Abou-Alfa GK. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res. 2019;25:2116-2126.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 254]  [Cited by in F6Publishing: 386]  [Article Influence: 55.1]  [Reference Citation Analysis (0)]
11.  Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, Putra J, Camprecios G, Bassaganyas L, Akers N, Losic B, Waxman S, Thung SN, Mazzaferro V, Esteller M, Friedman SL, Schwartz M, Villanueva A, Llovet JM. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology. 2017;153:812-826.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 475]  [Cited by in F6Publishing: 625]  [Article Influence: 78.1]  [Reference Citation Analysis (0)]
12.  Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550-1558.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1184]  [Cited by in F6Publishing: 3016]  [Article Influence: 430.9]  [Reference Citation Analysis (0)]
13.  Sabottke CF, Spieler BM, Moawad AW, Elsayes KM. Artificial Intelligence in Imaging of Chronic Liver Diseases: Current Update and Future Perspectives. Magn Reson Imaging Clin N Am. 2021;29:451-463.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
14.  Chen D, Liu J, Zang L, Xiao T, Zhang X, Li Z, Zhu H, Gao W, Yu X. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int J Biol Sci. 2022;18:360-373.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 72]  [Article Influence: 24.0]  [Reference Citation Analysis (0)]
15.  Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252-264.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9936]  [Cited by in F6Publishing: 9903]  [Article Influence: 761.8]  [Reference Citation Analysis (34)]
16.  Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Xu DZ, Hernandez S, Liu J, Huang C, Mulla S, Wang Y, Lim HY, Zhu AX, Cheng AL; IMbrave150 Investigators. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382:1894-1905.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2542]  [Cited by in F6Publishing: 4112]  [Article Influence: 822.4]  [Reference Citation Analysis (2)]
17.  LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36149]  [Cited by in F6Publishing: 18783]  [Article Influence: 1878.3]  [Reference Citation Analysis (0)]
18.  Froń A, Semianiuk A, Lazuk U, Ptaszkowski K, Siennicka A, Lemiński A, Krajewski W, Szydełko T, Małkiewicz B. Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers (Basel). 2023;15.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 6]  [Reference Citation Analysis (0)]
19.  Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954-961.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 662]  [Cited by in F6Publishing: 839]  [Article Influence: 139.8]  [Reference Citation Analysis (0)]
20.  Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak JAWM; the CAMELYON16 Consortium, Hermsen M, Manson QF, Balkenhol M, Geessink O, Stathonikos N, van Dijk MC, Bult P, Beca F, Beck AH, Wang D, Khosla A, Gargeya R, Irshad H, Zhong A, Dou Q, Li Q, Chen H, Lin HJ, Heng PA, Haß C, Bruni E, Wong Q, Halici U, Öner MÜ, Cetin-Atalay R, Berseth M, Khvatkov V, Vylegzhanin A, Kraus O, Shaban M, Rajpoot N, Awan R, Sirinukunwattana K, Qaiser T, Tsang YW, Tellez D, Annuscheit J, Hufnagl P, Valkonen M, Kartasalo K, Latonen L, Ruusuvuori P, Liimatainen K, Albarqouni S, Mungal B, George A, Demirci S, Navab N, Watanabe S, Seno S, Takenaka Y, Matsuda H, Ahmady Phoulady H, Kovalev V, Kalinovsky A, Liauchuk V, Bueno G, Fernandez-Carrobles MM, Serrano I, Deniz O, Racoceanu D, Venâncio R. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318:2199-2210.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1871]  [Cited by in F6Publishing: 1443]  [Article Influence: 180.4]  [Reference Citation Analysis (0)]
21.  Parekh VS, Jacobs MA. Deep learning and radiomics in precision medicine. Expert Rev Precis Med Drug Dev. 2019;4:59-72.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 132]  [Cited by in F6Publishing: 129]  [Article Influence: 21.5]  [Reference Citation Analysis (0)]
22.  Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med. 2018;6:216.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 150]  [Cited by in F6Publishing: 125]  [Article Influence: 17.9]  [Reference Citation Analysis (0)]
23.  Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5573]  [Cited by in F6Publishing: 4561]  [Article Influence: 570.1]  [Reference Citation Analysis (0)]
24.  Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8-17.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1362]  [Cited by in F6Publishing: 1163]  [Article Influence: 105.7]  [Reference Citation Analysis (0)]
25.  Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A. 2018;115:E2970-E2979.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 426]  [Cited by in F6Publishing: 528]  [Article Influence: 75.4]  [Reference Citation Analysis (0)]
26.  Huang Z, Shi M, Zhou H, Wang J, Zhang HJ, Shi J-. Prognostic signature of lung adenocarcinoma based on stem cell-related genes. Sci Rep. 2021;11:1687.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
27.  Ding Z, Liu Y, Huang Q, Cheng C, Song L, Zhang C, Cui X, Yan W, Han Y, Zhang H. m6A‐ and immune‐related lncRNA signature confers robust predictive power for immune efficacy in lung squamous cell carcinoma. VIEW. 2023;4.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
28.  Yang WL, Lee YE, Chen MH, Chao KM, Huang CY. In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result. Gene. 2013;518:201-208.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 6]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
29.  Liang JD, Ping XO, Tseng YJ, Huang GT, Lai F, Yang PM. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods. Comput Methods Programs Biomed. 2014;117:425-434.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 27]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
30.  Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, Speck-Planche A, Singh SK. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. Curr Drug Targets. 2021;22:631-655.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 21]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
31.  Shi J, Liu J, Tu X, Li B, Tong Z, Wang T, Zheng Y, Shi H, Zeng X, Chen W, Yin W, Fang W. Single-cell immune signature for detecting early-stage HCC and early assessing anti-PD-1 immunotherapy efficacy. J Immunother Cancer. 2022;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 20]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
32.  Zeng Q, Klein C, Caruso S, Maille P, Laleh NG, Sommacale D, Laurent A, Amaddeo G, Gentien D, Rapinat A, Regnault H, Charpy C, Nguyen CT, Tournigand C, Brustia R, Pawlotsky JM, Kather JN, Maiuri MC, Loménie N, Calderaro J. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J Hepatol. 2022;77:116-127.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 37]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
33.  Gong Q, Chen X, Liu F, Cao Y. Machine learning-based integration develops a neutrophil-derived signature for improving outcomes in hepatocellular carcinoma. Front Immunol. 2023;14:1216585.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 9]  [Reference Citation Analysis (0)]
34.  Xie H, Shi M, Liu Y, Cheng C, Song L, Ding Z, Jin H, Cui X, Wang Y, Yao D, Wang P, Yao M, Zhang H. Identification of m6A- and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front Immunol. 2022;13:914977.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
35.  Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res. 2023;28:306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
36.  Dai Y, Qiang W, Lin K, Gui Y, Lan X, Wang D. An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma. Cancer Immunol Immunother. 2021;70:967-979.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 96]  [Article Influence: 19.2]  [Reference Citation Analysis (0)]
37.  Shen J, Gao H, Li B, Huang Y, Shi Y. The integration of machine learning and multi-omics analysis provides a powerful approach to screen aging-related genes and predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Aging (Albany NY). 2023;15:6848-6864.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
38.  Konerman MA, Beste LA, Van T, Liu B, Zhang X, Zhu J, Saini SD, Su GL, Nallamothu BK, Ioannou GN, Waljee AK. Machine learning models to predict disease progression among veterans with hepatitis C virus. PLoS One. 2019;14:e0208141.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 39]  [Article Influence: 6.5]  [Reference Citation Analysis (0)]
39.  Zeng J, Zeng J, Lin K, Lin H, Wu Q, Guo P, Zhou W, Liu J. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection. Hepatobiliary Surg Nutr. 2022;11:176-187.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 16]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
40.  Liang J, Zhang W, Yang J, Wu M, Dai Q, Yin H, Xiao Y, Kong L. Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer. Nat Mach Intell. 2023;5:408-420.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
41.  Hatanaka T, Naganuma A, Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Ochi H, Yasuda S, Toyoda H, Ogawa C, Nishimura T, Shimada N, Kawata K, Kosaka H, Kakizaki S, Tanaka T, Ohama H, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Imai M, Koizumi Y, Nakamura S, Kaibori M, Iijima H, Hiasa Y, Kumada T; Real-life Practice Experts for HCC (RELPEC) Study Group, and HCC 48 Group (hepatocellular carcinoma experts from 48 clinics in Japan). The hepatocellular carcinoma modified Gustave Roussy Immune score (HCC-GRIm score) as a novel prognostic score for patients treated with atezolizumab and bevacizumab: A multicenter retrospective analysis. Cancer Med. 2023;12:4259-4269.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 9]  [Reference Citation Analysis (0)]
42.  Sangro B, Melero I, Wadhawan S, Finn RS, Abou-Alfa GK, Cheng AL, Yau T, Furuse J, Park JW, Boyd Z, Tang HT, Shen Y, Tschaika M, Neely J, El-Khoueiry A. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73:1460-1469.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 155]  [Cited by in F6Publishing: 276]  [Article Influence: 55.2]  [Reference Citation Analysis (0)]
43.  Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, Zhang W, Hsu CH, He AR, Ryoo BY, Yau T, Kaseb AO, Burgoyne AM, Dayyani F, Spahn J, Verret W, Finn RS, Toh HC, Lujambio A, Wang Y. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28:1599-1611.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 258]  [Article Influence: 86.0]  [Reference Citation Analysis (0)]
44.  Zeng Q, Klein C, Caruso S, Maille P, Allende DS, Mínguez B, Iavarone M, Ningarhari M, Casadei-Gardini A, Pedica F, Rimini M, Perbellini R, Boulagnon-Rombi C, Heurgué A, Maggioni M, Rela M, Vij M, Baulande S, Legoix P, Lameiras S; HCC-AI study group, Bruges L, Gnemmi V, Nault JC, Campani C, Rhee H, Park YN, Iñarrairaegui M, Garcia-Porrero G, Argemi J, Sangro B, D'Alessio A, Scheiner B, Pinato DJ, Pinter M, Paradis V, Beaufrère A, Peter S, Rimassa L, Di Tommaso L, Vogel A, Michalak S, Boursier J, Loménie N, Ziol M, Calderaro J. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol. 2023;24:1411-1422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 22]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
45.  Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, Hollebecque A, Scoazec JY, Marabelle A, Massard C, Soria JC, Robert C, Paragios N, Deutsch E, Ferté C. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180-1191.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 506]  [Cited by in F6Publishing: 773]  [Article Influence: 110.4]  [Reference Citation Analysis (0)]
46.  Zhang W, Tong S, Hu B, Wan T, Tang H, Zhao F, Jiao T, Li J, Zhang Z, Cai J, Ye H, Wang Z, Chen S, Wang Y, Li X, Wang F, Cao J, Tian L, Zhao X, Chen M, Wang H, Cai S, Hu M, Bai Y, Lu S. Lenvatinib plus anti-PD-1 antibodies as conversion therapy for patients with unresectable intermediate-advanced hepatocellular carcinoma: a single-arm, phase II trial. J Immunother Cancer. 2023;11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 16]  [Reference Citation Analysis (0)]
47.  Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2376]  [Cited by in F6Publishing: 2380]  [Article Influence: 396.7]  [Reference Citation Analysis (0)]
48.  Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9:e1312.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 598]  [Cited by in F6Publishing: 336]  [Article Influence: 56.0]  [Reference Citation Analysis (0)]
49.  Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care - Addressing Ethical Challenges. N Engl J Med. 2018;378:981-983.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 793]  [Cited by in F6Publishing: 573]  [Article Influence: 81.9]  [Reference Citation Analysis (0)]
50.  Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J. 2018;16:34-42.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 551]  [Cited by in F6Publishing: 368]  [Article Influence: 52.6]  [Reference Citation Analysis (0)]
51.  Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25:24-29.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1123]  [Cited by in F6Publishing: 1272]  [Article Influence: 212.0]  [Reference Citation Analysis (0)]
52.  Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531-548.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1017]  [Cited by in F6Publishing: 1274]  [Article Influence: 159.3]  [Reference Citation Analysis (0)]
53.  Qin R, Zhao H, He Q, Li F, Li Y. Advances in single-cell sequencing technology in the field of hepatocellular carcinoma. Front Genet. 2022;13:996890.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
54.  Lu J, Chen Y, Zhang X, Guo J, Xu K, Li L. A novel prognostic model based on single-cell RNA sequencing data for hepatocellular carcinoma. Cancer Cell Int. 2022;22:38.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 23]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
55.  Haibe-Kains B, Adam GA, Hosny A, Khodakarami F; Massive Analysis Quality Control (MAQC) Society Board of Directors, Waldron L, Wang B, McIntosh C, Goldenberg A, Kundaje A, Greene CS, Broderick T, Hoffman MM, Leek JT, Korthauer K, Huber W, Brazma A, Pineau J, Tibshirani R, Hastie T, Ioannidis JPA, Quackenbush J, Aerts HJWL. Transparency and reproducibility in artificial intelligence. Nature. 2020;586:E14-E16.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 227]  [Cited by in F6Publishing: 168]  [Article Influence: 33.6]  [Reference Citation Analysis (0)]
56.  Wang T, Dai L, Shen S, Yang Y, Yang M, Yang X, Qiu Y, Wang W. Comprehensive Molecular Analyses of a Macrophage-Related Gene Signature With Regard to Prognosis, Immune Features, and Biomarkers for Immunotherapy in Hepatocellular Carcinoma Based on WGCNA and the LASSO Algorithm. Front Immunol. 2022;13:843408.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 33]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
57.  Xiang S, Li J, Shen J, Zhao Y, Wu X, Li M, Yang X, Kaboli PJ, Du F, Zheng Y, Wen Q, Cho CH, Yi T, Xiao Z. Identification of Prognostic Genes in the Tumor Microenvironment of Hepatocellular Carcinoma. Front Immunol. 2021;12:653836.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 49]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
58.  Murai H, Kodama T, Maesaka K, Tange S, Motooka D, Suzuki Y, Shigematsu Y, Inamura K, Mise Y, Saiura A, Ono Y, Takahashi Y, Kawasaki Y, Iino S, Kobayashi S, Idogawa M, Tokino T, Hashidate-Yoshida T, Shindou H, Miyazaki M, Imai Y, Tanaka S, Mita E, Ohkawa K, Hikita H, Sakamori R, Tatsumi T, Eguchi H, Morii E, Takehara T. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023;77:77-91.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 68]  [Article Influence: 34.0]  [Reference Citation Analysis (0)]
59.  Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB, Liu C. Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol. 2020;26:134-153.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 27]  [Cited by in F6Publishing: 40]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]