BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics 2019;9:6809-23. [PMID: 31660070 DOI: 10.7150/thno.36988] [Cited by in Crossref: 44] [Cited by in F6Publishing: 53] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Chen L, Xue W, Cao J, Zhang S, Zeng Y, Ma L, Qian X, Wen Q, Hong Y, Shi Z, Xu Y. TiSe2-mediated sonodynamic and checkpoint blockade combined immunotherapy in hypoxic pancreatic cancer. J Nanobiotechnology 2022;20:453. [PMID: 36243711 DOI: 10.1186/s12951-022-01659-4] [Reference Citation Analysis]
2 Xu X, Xiang Y, Yang Y, Liu K, Cui Z, Tong X, Chen J, Hou F, Luo Z. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 2022. [PMID: 36207510 DOI: 10.1007/s12094-022-02966-w] [Reference Citation Analysis]
3 Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorganic & Medicinal Chemistry 2022;72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Reference Citation Analysis]
4 Tao Y, Liu Y, Dong Z, Chen X, Wang Y, Li T, Li J, Zang S, He X, Chen D, Zhao Z, Li M. Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic Therapy of Oral Squamous Cell Carcinoma. ACS Appl Mater Interfaces 2022. [PMID: 36153957 DOI: 10.1021/acsami.2c10021] [Reference Citation Analysis]
5 Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022;51:6126-76. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
7 Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022;188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Shen W, Han G, Yu L, Yang S, Li X, Zhang W, Pei P. Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis. IJN 2022;Volume 17:1397-408. [DOI: 10.2147/ijn.s359156] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. Nanomaterials (Basel) 2022;12:743. [PMID: 35269231 DOI: 10.3390/nano12050743] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Irmania N, Dehvari K, Chang J. Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy. J Biomater Appl. [DOI: 10.1177/08853282211068959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Singh H, Sareen D, George JM, Bhardwaj V, Rha S, Lee SJ, Sharma S, Sharma A, Kim JS. Mitochondria targeted fluorogenic theranostic agents for cancer therapy. Coordination Chemistry Reviews 2022;452:214283. [DOI: 10.1016/j.ccr.2021.214283] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
13 Shenwu Z, Wang J, Kong Z, Sun X, He Z, Sun B, Luo C, Sun J. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121433] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
14 Zhou J, Li Y, Wang L, Xie Z. Mimetic sea cucumber-shaped nanoscale metal-organic frameworks composite for enhanced photodynamic therapy. Dyes and Pigments 2022;197:109920. [DOI: 10.1016/j.dyepig.2021.109920] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
16 Tian Y, Younis MR, Tang Y, Liao X, He G, Wang S, Teng Z, Huang P, Zhang L, Lu G. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J Nanobiotechnology 2021;19:365. [PMID: 34789274 DOI: 10.1186/s12951-021-01109-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
17 Zhuang J, Zhang W, Xuan Q, Ma T, Zhang Q, Chen C, Wang P. Oxygen-Abundant and pH/NIR Dual-Responsive Nanocarriers for Tumor Hypoxia Reduction Therapy. ACS Appl Nano Mater 2021;4:11480-92. [DOI: 10.1021/acsanm.1c01588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang T, Sun Y, Cao J, Luo J, Wang J, Jiang Z, Huang P. Intrinsic nucleus-targeted ultra-small metal-organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma. J Nanobiotechnology 2021;19:315. [PMID: 34641905 DOI: 10.1186/s12951-021-01060-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
19 Qin J, Guo L, Yang T, Wu X, Wang Z, Xie F, Peng H. Facile Synthesis of ZnPc‐Polydopamine Co‐loaded Nanoparticles for Synergetic Photodynamic‐Photothermal Therapy. ChemNanoMat 2021;7:1322-9. [DOI: 10.1002/cnma.202100312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Day RA, Sletten EM. Perfluorocarbon nanomaterials for photodynamic therapy. Curr Opin Colloid Interface Sci 2021;54:101454. [PMID: 34504391 DOI: 10.1016/j.cocis.2021.101454] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
21 Hao J, Yin H, Lu W, Zhuang J, Chen M, Gao J, Zhu G, Cao W, Kan Y, Lu Y, Guo H. Modulating Endogenous Oxygen Consumption Enhanced AIEgens‐Mediated Photodynamic Therapy against Advanced Bladder Tumor. Part Part Syst Charact 2021;38:2100048. [DOI: 10.1002/ppsc.202100048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang Y, Xia Q, Wu T, He Z, Li Y, Li Z, Hou X, He Y, Ruan S, Wang Z, Sun J, Feng N. A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy. J Nanobiotechnology 2021;19:245. [PMID: 34391438 DOI: 10.1186/s12951-021-00977-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
23 Lu YJ, S AT, Chuang CC, Chen JP. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers (Basel) 2021;13:3690. [PMID: 34359590 DOI: 10.3390/cancers13153690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 60.0] [Reference Citation Analysis]
25 Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021;141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
26 Hui Y, Yang Y, Li D, Wang J, Di M, Zhang S, Wang S. LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2. Cell Transplant 2020;29:963689720925059. [PMID: 32638620 DOI: 10.1177/0963689720925059] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
27 Yuan P, Deng FA, Liu YB, Zheng RR, Rao XN, Qiu XZ, Zhang DW, Yu XY, Cheng H, Li SY. Mitochondria Targeted O2 Economizer to Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021;10:e2100198. [PMID: 33938637 DOI: 10.1002/adhm.202100198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
28 Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews 2021;437:213828. [DOI: 10.1016/j.ccr.2021.213828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 31.0] [Reference Citation Analysis]
29 Shen Z, Ma Q, Zhou X, Zhang G, Hao G, Sun Y, Cao J. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-021-00303-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 32.0] [Reference Citation Analysis]
30 Yang Y, Yun K, Li Y, Zhang L, Zhao W, Zhu Z, Tian B, Chen F, Pan W. Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer. Int J Pharm 2021;602:120651. [PMID: 33915181 DOI: 10.1016/j.ijpharm.2021.120651] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
31 Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:19543-71. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 58] [Article Influence: 49.0] [Reference Citation Analysis]
32 Chen M, Liu D, Liu F, Wu Y, Peng X, Song F. Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release 2021;332:269-84. [DOI: 10.1016/j.jconrel.2021.02.030] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 30.0] [Reference Citation Analysis]
33 Chang X, Zhang T, Meng Q, ShiyuanWang, Yan P, Wang X, Luo D, Zhou X, Ji R. Quercetin Improves Cardiomyocyte Vulnerability to Hypoxia by Regulating SIRT1/TMBIM6-Related Mitophagy and Endoplasmic Reticulum Stress. Oxid Med Cell Longev 2021;2021:5529913. [PMID: 33859776 DOI: 10.1155/2021/5529913] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
34 Zhang M, Qin X, Xu W, Wang Y, Song Y, Garg S, Luan Y. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J Colloid Interface Sci 2021;594:493-501. [PMID: 33774405 DOI: 10.1016/j.jcis.2021.03.050] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 49.0] [Reference Citation Analysis]
35 Cheng Y, Zheng R, Wu X, Xu K, Song P, Wang Y, Yan J, Chen R, Li X, Zhang H. Thylakoid Membranes with Unique Photosystems Used to Simultaneously Produce Self-Supplying Oxygen and Singlet Oxygen for Hypoxic Tumor Therapy. Adv Healthc Mater 2021;10:e2001666. [PMID: 33448152 DOI: 10.1002/adhm.202001666] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
36 Hu T, Wang Z, Shen W, Liang R, Yan D, Wei M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021;11:3278-300. [PMID: 33537087 DOI: 10.7150/thno.54227] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 43.0] [Reference Citation Analysis]
37 Xia B, Zhang K, Liu C. PYGB Promoted Tumor Progression by Regulating Wnt/β-Catenin Pathway in Gastric Cancer. Technol Cancer Res Treat 2020;19:1533033820926592. [PMID: 32462986 DOI: 10.1177/1533033820926592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
38 Liu J, Zhao X, Nie W, Yang Y, Wu C, Liu W, Zhang K, Zhang Z, Shi J. Tumor cell-activated "Sustainable ROS Generator" with homogeneous intratumoral distribution property for improved anti-tumor therapy. Theranostics 2021;11:379-96. [PMID: 33391481 DOI: 10.7150/thno.50028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
39 Yang Y, Wang H. Recent progress in nanophotosensitizers for advanced photodynamic therapy of cancer. J Phys Mater 2021;4:014003. [DOI: 10.1088/2515-7639/abc9ce] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
40 Xiang Q, Qiao B, Luo Y, Cao J, Fan K, Hu X, Hao L, Cao Y, Zhang Q, Wang Z. Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics 2021;11:1953-69. [PMID: 33408791 DOI: 10.7150/thno.52997] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
41 Zhang H, Zhang P, Long C, Ma X, Huang H, Kuang X, Du H, Tang H, Ling X, Ning J, Liu H, Deng X, Zou Y, Wang R, Cheng H, Lin S, Zhang Q, Yan J, Shen H. m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway. J Cell Mol Med 2020. [PMID: 33090698 DOI: 10.1111/jcmm.15736] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
42 Yan Y, Xu J, Mao G. Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism. Med Sci Monit 2020;26:e923962. [PMID: 32862190 DOI: 10.12659/MSM.923962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Xu X, Huang B, Zeng Z, Chen J, Huang Z, Guan Z, Chen M, Huang Y, Zhao C. Broaden sources and reduce expenditure: Tumor-specific transformable oxidative stress nanoamplifier enabling economized photodynamic therapy for reinforced oxidation therapy. Theranostics 2020;10:10513-30. [PMID: 32929363 DOI: 10.7150/thno.49731] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
44 Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics’ Entry into Tumors to Alleviate Tumoral Hypoxia. Small 2020;16:2003000. [DOI: 10.1002/smll.202003000] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
45 Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020;492:116-35. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
46 Lin T, Zhang Q, Yuan A, Wang B, Zhang F, Ding Y, Cao W, Chen W, Guo H. Synergy of Tumor Microenvironment Remodeling and Autophagy Inhibition to Sensitize Radiation for Bladder Cancer Treatment. Theranostics 2020;10:7683-96. [PMID: 32685013 DOI: 10.7150/thno.45358] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
47 Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020;10:7287-318. [PMID: 32641993 DOI: 10.7150/thno.46288] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 19.5] [Reference Citation Analysis]
48 Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Adv Mater 2020;32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 39.5] [Reference Citation Analysis]
49 Feng LW, Li J, Liang LF, Guo QQ, Li J, Wu J, Zhang PH, Qin YR. A Predictive Scoring System Based on Inflammatory and Tumor Markers for Gastric Cancer Patients Undergoing Curative Resection. Cancer Manag Res 2020;12:3937-48. [PMID: 32547229 DOI: 10.2147/CMAR.S250408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020;324:413-29. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 22.0] [Reference Citation Analysis]
51 Qu J, Teng D, Sui G, Guan S, Wang Y, Wang Q, Lin Y, Ran H, Wang Z, Wang H. A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomater Sci 2020;8:3116-29. [PMID: 32352102 DOI: 10.1039/d0bm00003e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Chen L, Liu M, Zhou Q, Li X. Recent developments of mesoporous silica nanoparticles in biomedicine. emergent mater 2020;3:381-405. [DOI: 10.1007/s42247-020-00078-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]