BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016;6:1336-52. [PMID: 27375783 DOI: 10.7150/thno.15464] [Cited by in Crossref: 154] [Cited by in F6Publishing: 165] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Hu Z, Tang Y, Jiang B, Xu Y, Liu S, Huang C. Functional liposome loaded curcumin for the treatment of Streptococcus mutans biofilm. Front Chem 2023;11. [DOI: 10.3389/fchem.2023.1160521] [Reference Citation Analysis]
2 Matoori S. Vesicular Diagnostics: A Spotlight on Lactate- and Ammonia-Sensing Systems. ACS Appl Bio Mater 2023. [PMID: 36917016 DOI: 10.1021/acsabm.3c00042] [Reference Citation Analysis]
3 Caddeo C, Miglionico R, Rinaldi R, Nigro I, Lamorte D, Chiummiento L, Lupattelli P, Funicello M, D'Orsi R, Valenti D, Santoro V, Fadda AM, Bisaccia F, Vassallo A, Armentano MF. PEGylated Liposomes Loaded with Carbamate Inhibitor ANP0903 Trigger Apoptosis by Enhancing ER Stress in HepG2 Cancer Cells. Int J Mol Sci 2023;24. [PMID: 36901980 DOI: 10.3390/ijms24054552] [Reference Citation Analysis]
4 Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023;11:1120148. [PMID: 36845189 DOI: 10.3389/fbioe.2023.1120148] [Reference Citation Analysis]
5 Sharma P, Mehta M, Tandel N, K. Tyagi R. Introductory Chapter: Liposome - A Versatile Tool for Drug Delivery in Nanobiomedicine. Liposomes - Recent Advances, New Perspectives and Applications 2023. [DOI: 10.5772/intechopen.109426] [Reference Citation Analysis]
6 Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, Medina DI, Díez-Pascual AM. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem 2023;246:114995. [PMID: 36493619 DOI: 10.1016/j.ejmech.2022.114995] [Reference Citation Analysis]
7 Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2022;9:1037741. [PMID: 36684578 DOI: 10.3389/fcvm.2022.1037741] [Reference Citation Analysis]
8 Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023;18:1195-218. [PMID: 36926681 DOI: 10.2147/IJN.S401570] [Reference Citation Analysis]
9 Wande DP, Trevaskis N, Farooq MA, Jabeen A, Nayak AK. Theranostic nanostructures as nanomedicines. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00008-8] [Reference Citation Analysis]
10 Dahiya S, Dahiya R. An Overview on Nanocarriers for Nasal Delivery. Nasal Drug Delivery 2023. [DOI: 10.1007/978-3-031-23112-4_9] [Reference Citation Analysis]
11 Sugimoto Y, Suga T, Kato N, Umino M, Yamayoshi A, Mukai H, Kawakami S. Microfluidic Post-Insertion Method for the Efficient Preparation of PEGylated Liposomes Using High Functionality and Quality Lipids. Int J Nanomedicine 2022;17:6675-86. [PMID: 36597433 DOI: 10.2147/IJN.S390866] [Reference Citation Analysis]
12 Priya S, Desai VM, Singhvi G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. ACS Omega 2023;8:74-86. [PMID: 36643539 DOI: 10.1021/acsomega.2c05976] [Reference Citation Analysis]
13 Zhao Y, Wang S, Chen A, Kankala RK. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews 2022;472:214765. [DOI: 10.1016/j.ccr.2022.214765] [Reference Citation Analysis]
14 Vargas-Nadal G, Köber M, Nsamela A, Terenziani F, Sissa C, Pescina S, Sonvico F, Gazzali AM, Wahab HA, Grisanti L, Olivera ME, Palena MC, Guzman ML, Luciani-Giacobbe LC, Jimenez-Kairuz A, Ventosa N, Ratera I, Belfield KD, Maoz BM. Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022;14. [PMID: 36432688 DOI: 10.3390/pharmaceutics14112498] [Reference Citation Analysis]
15 Plant-Hately AJ, Eryilmaz B, David CAW, Brain DE, Heaton BJ, Perrie Y, Liptrott NJ. Exposure of the Basophilic Cell Line KU812 to Liposomes Reveals Activation Profiles Associated with Potential Anaphylactic Responses Linked to Physico-Chemical Characteristics. Pharmaceutics 2022;14. [PMID: 36432660 DOI: 10.3390/pharmaceutics14112470] [Reference Citation Analysis]
16 Rani V, Venkatesan J, Prabhu A. Liposomes- A promising strategy for drug delivery in anticancer applications. Journal of Drug Delivery Science and Technology 2022;76:103739. [DOI: 10.1016/j.jddst.2022.103739] [Reference Citation Analysis]
17 Lai Y, Wei W, Du Y, Gao J, Li Z. Biomaterials for Helicobacter pylori therapy: therapeutic potential and future perspectives. Gut Microbes 2022;14:2120747. [PMID: 36070564 DOI: 10.1080/19490976.2022.2120747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Almeida‐marrero V, Bethlehem F, Longo S, Bertolino MC, Torres T, Huskens J, de la Escosura A. Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206900] [Reference Citation Analysis]
19 Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022;14:1541. [PMID: 35893797 DOI: 10.3390/pharmaceutics14081541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Qayyum S, Jabeen A, Aslam Z, Kanwal T, Shah MR, Faizi S. Synthesis and Characterization of Novel Lecithin Derived Nano-Formulation of Octyl and Dodecyl Gallate for Targeting B Cell Associated Non-Hodgkin’s Lymphoma. J Clust Sci. [DOI: 10.1007/s10876-022-02302-w] [Reference Citation Analysis]
21 Fernandes DA. Review on the applications of nanoemulsions in cancer theranostics. Journal of Materials Research. [DOI: 10.1557/s43578-022-00583-5] [Reference Citation Analysis]
22 Garcia CR, Rad AT, Saeedinejad F, Manojkumar A, Roy D, Rodrigo H, Chew SA, Rahman Z, Nieh MP, Roy U. Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection. Nanomedicine (Lond) 2022. [PMID: 35642549 DOI: 10.2217/nnm-2022-0043] [Reference Citation Analysis]
23 Zhao Y, Li L, Zhou E, Wang J, Wang Y, Guo L, Zhang X. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts 2022;04:e43-e60. [DOI: 10.1055/s-0042-1751036] [Reference Citation Analysis]
24 Ding Y, Wang L, Li H, Miao F, Zhang Z, Hu C, Yu W, Tang Q, Shao G. Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J Nanobiotechnology 2022;20:214. [PMID: 35524277 DOI: 10.1186/s12951-022-01429-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Naziris N, Demetzos C. Lipid Nanoparticles as Platforms for Theranostic Purposes: Recent Advances in the Field. JNT 2022;3:86-101. [DOI: 10.3390/jnt3020006] [Reference Citation Analysis]
26 Zhu M, Zhu S, Liu Q, Ren Y, Ma Z, Zhang X. Selenized liposomes with ameliorative stability that achieve sustained release of emodin but fail in bioavailability. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.04.080] [Reference Citation Analysis]
27 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li P, Wang L, Sun M, Yao J, Li W, Lu W, Zhou Y, Zhang G, Hu C, Zheng W, Wei F. Binding affinity and conformation of a conjugated AS1411 aptamer at a cationic lipid bilayer interface. Phys Chem Chem Phys 2022;24:9018-28. [PMID: 35381056 DOI: 10.1039/d1cp05753g] [Reference Citation Analysis]
29 Mohammadi S, Valizadeh H, Khaleseh F, Bastani S, Delazar A, Asgharian P. Biological activities of extract-loaded nanocarriers: A comparison of aerial part, seed, and rhizome of Phlomoides labiosa. European Journal of Integrative Medicine 2022. [DOI: 10.1016/j.eujim.2022.102135] [Reference Citation Analysis]
30 Veeren A, Ogunyankin MO, Shin JE, Zasadzinski JA. Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics 2022;14:701. [DOI: 10.3390/pharmaceutics14040701] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Roberts SA, Lee C, Singh S, Agrawal N. Versatile Encapsulation and Synthesis of Potent Liposomes by Thermal Equilibration. Membranes 2022;12:319. [DOI: 10.3390/membranes12030319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Chadha U, Selvaraj SK, Ashokan H, Hariharan SP, Mathew Paul V, Venkatarangan V, Paramasivam V, Sharma A. Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering 2022;2022:1-72. [DOI: 10.1155/2022/1552334] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Thapa Magar K, Boafo GF, Li X, Chen Z, He W. Liposome-based delivery of biological drugs. Chinese Chemical Letters 2022;33:587-96. [DOI: 10.1016/j.cclet.2021.08.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
35 Dirzu N, Lucaciu O, Dirzu DS, Soritau O, Cenariu D, Crisan B, Tefas L, Campian RS. BMP-2 Delivery through Liposomes in Bone Regeneration. Applied Sciences 2022;12:1373. [DOI: 10.3390/app12031373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Lin J, Song X, Yin H, Song N, Wang Y, Li Z, Luo F, Tan H, He X, Li J. Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration. J Mater Sci 2022;57:2073-88. [DOI: 10.1007/s10853-021-06628-0] [Reference Citation Analysis]
37 Fatmi S, Taouzinet L, Benslimane A, Chibani N, Hammiche D. Drug release and sperm motility protection studies of vitamin E encapsulated in liposome, cyclodextrin or polyethylene glycol. Materials Today: Proceedings 2022;53:71-75. [DOI: 10.1016/j.matpr.2021.12.332] [Reference Citation Analysis]
38 Paliwal R, Chaurasiya A, Panchal K, Nayak P, Parveen N, Paliwal SR. Engineering and functionalization of nanomaterials for theranostic applications in infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00003-7] [Reference Citation Analysis]
39 Kapoor-narula U, Lenka N. Phytochemicals and their nanoformulation in sustained drug delivery and therapy. Innovations in Fermentation and Phytopharmaceutical Technologies 2022. [DOI: 10.1016/b978-0-12-821877-8.00019-1] [Reference Citation Analysis]
40 Misra SK, Pathak K. Functionalized liposomes: a nanovesicular system. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00012-7] [Reference Citation Analysis]
41 Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2021;2:100067. [PMID: 34909685 DOI: 10.1016/j.crphar.2021.100067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
42 Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Noreen S, Murtaza G. Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature. Int J Nanomedicine 2021;16:7517-33. [PMID: 34795481 DOI: 10.2147/IJN.S333657] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Roberts SA, Lee C, Singh S, Agrawal N. Versatile Encapsulation and Synthesis of Potent Therapeutic Liposomes by Thermal Equilibration.. [DOI: 10.1101/2021.10.22.465473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Han Z, Qian Y, Wu Y, Cai Y, Jin J, Yang Z. Metal‐Organic Frameworks Deliver a Conjugate of Functional Oligonucleotides and Photosensitizer to Induce Apoptosis for Enhancing Chemotherapy. ChemNanoMat 2021;7:1361-8. [DOI: 10.1002/cnma.202100321] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Odette WL, Hennecker CD, Mittermaier AK, Mauzeroll J. EDTA-Gradient Loading of Doxorubicin into Ferrocene-Containing Liposomes: Effect of Lipid Composition and Visualization of Triggered Release by Cryo-TEM. Langmuir 2021;37:11222-32. [PMID: 34524822 DOI: 10.1021/acs.langmuir.1c01466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Adv Funct Mater 2021;31:2104199. [DOI: 10.1002/adfm.202104199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
47 Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. Nanoscale 2021;13:11712-33. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
49 Wu H, Fu X, Zhai Y, Gao S, Yang X, Zhai G. Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Adv Healthc Mater 2021;10:e2100299. [PMID: 34021717 DOI: 10.1002/adhm.202100299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021;9:707319. [PMID: 34249894 DOI: 10.3389/fbioe.2021.707319] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
51 Wang J, Song Y, Zhang N, Li N, Liu C, Wang B. Using Liposomes to Alleviate the Toxicity of Chelerythrine, a Natural PKC Inhibitor, in Treating Non-Small Cell Lung Cancer. Front Oncol 2021;11:658543. [PMID: 34123813 DOI: 10.3389/fonc.2021.658543] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Xu J, Yan X, Ge X, Zhang M, Dang X, Yang Y, Xu F, Luo Y, Li G. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B 2021;9:1297-314. [PMID: 33443252 DOI: 10.1039/d0tb02192j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
53 Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021;169:105604. [PMID: 33845125 DOI: 10.1016/j.phrs.2021.105604] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
54 Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021:j. [PMID: 33861527 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Aboumanei MH, Mahmoud AF, Motaleb MA. Formulation of chitosan coated nanoliposomes for the oral delivery of colistin sulfate: in vitro characterization, 99mTc-radiolabeling and in vivo biodistribution studies. Drug Dev Ind Pharm 2021;47:626-35. [PMID: 33834934 DOI: 10.1080/03639045.2021.1908334] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. Adv Mater 2021;33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
57 Suárez-garcía S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-molina D. Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews 2021;432:213716. [DOI: 10.1016/j.ccr.2020.213716] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
58 Park H, You J, Kim P, Kim K. Functionalizing Liposomes with Dual Aptamers for Targeting of Breast Cancer Cells and Cancer Stem Cells. BSL 2021;27:1-11. [DOI: 10.15616/bsl.2021.27.1.1] [Reference Citation Analysis]
59 Chen X, Zhang Y, Zhang H, Zhang L, Liu L, Cao Y, Ran H, Tian J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J Nanobiotechnology 2021;19:82. [PMID: 33752679 DOI: 10.1186/s12951-021-00822-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
60 Iqbal Z, Arafa EA, Kanwal Z, Murtaza G. Smart solution of severe problems: Radiolabeled nanocarriers for cancer imaging and therapy. Journal of Drug Delivery Science and Technology 2021;61:102205. [DOI: 10.1016/j.jddst.2020.102205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 118] [Cited by in F6Publishing: 132] [Article Influence: 59.0] [Reference Citation Analysis]
62 Kim EM, Jeong HJ. Liposomes: Biomedical Applications. Chonnam Med J 2021;57:27-35. [PMID: 33537216 DOI: 10.4068/cmj.2021.57.1.27] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
63 Naima N, Zeshan H. Therapeutic applications of nanozymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomed 2021. [DOI: 10.17352/2455-3492.000039] [Reference Citation Analysis]
64 Jain V, Kumar H, Chand P, Jain S, S P. Lipid‐Based Nanocarriers as Drug Delivery System and Its Applications. Nanopharmaceutical Advanced Delivery Systems 2021. [DOI: 10.1002/9781119711698.ch1] [Reference Citation Analysis]
65 Kolašinac R, Bier D, Schmitt L, Yabluchanskiy A, Neumaier B, Merkel R, Csiszár A. Delivery of the Radionuclide (131)I Using Cationic Fusogenic Liposomes as Nanocarriers. Int J Mol Sci 2021;22. [PMID: 33466417 DOI: 10.3390/ijms22010457] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
66 Das S, Samanta A, Mondal S, Roy D, Nayak AK. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. Sensors International 2021;2:100077. [DOI: 10.1016/j.sintl.2020.100077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
67 Figueiredo P, Santos HA. Requirements and properties of biomaterials for biomedical applications. Lignin-Based Materials for Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-820303-3.00009-6] [Reference Citation Analysis]
68 Madamsetty VS, Mukherjee A, Paul M. Bioinspired nanoparticles-based drug delivery systems for cancer theranostics. Biogenic Nanoparticles for Cancer Theranostics 2021. [DOI: 10.1016/b978-0-12-821467-1.00008-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Shaw TK, Khamkat P, Ghosh A, Ghosh MK. Nanotargeted radiopharmaceuticals for cancer theranostics. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00002-5] [Reference Citation Analysis]
70 Shi N, Qi X, Xiang B. Preparation and Characterization of Drug Liposomes by pH-Gradient Method. Biomaterial Engineering 2021. [DOI: 10.1007/978-3-662-49320-5_18] [Reference Citation Analysis]
71 Jamshaid H, Fakhar-ud-din. Emerging Lipid-Based Nanomaterials for Cancer Theranostics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-74330-7_5] [Reference Citation Analysis]
72 Maritim S, Boulas P, Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. International Journal of Pharmaceutics 2021;592:120051. [DOI: 10.1016/j.ijpharm.2020.120051] [Cited by in Crossref: 36] [Cited by in F6Publishing: 43] [Article Influence: 18.0] [Reference Citation Analysis]
73 Das P, Das MK. Nanoparticle-based theranostics in cancer. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00011-6] [Reference Citation Analysis]
74 Lahkar S, Das MK. Blood–brain-barrier crossing nanotheranostics in brain cancer. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00007-4] [Reference Citation Analysis]
75 Lv Y, Jun Y, Tang Z, Li X, Tao M, Zhang Z, Liu L, Sun S, Wang Q, Luo C, Zhang L. Enhanced Antitumor Efficacy of Macrophage-Mediated Egg Yolk Lipid-Derived Delivery System Against Breast Cancer. Int J Nanomedicine 2020;15:10075-84. [PMID: 33335395 DOI: 10.2147/IJN.S271310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Tanziela T, Shaikh S, Jiang H, Lu Z, Wang X. Efficient encapsulation of biocompatible nanoparticles in exosomes for cancer theranostics. Nano Today 2020;35:100964. [DOI: 10.1016/j.nantod.2020.100964] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
77 Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020;25:E5649. [PMID: 33266162 DOI: 10.3390/molecules25235649] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
78 Tang Q, Rossner C, Vana P, Müller M. Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules 2020;21:5008-20. [PMID: 33076657 DOI: 10.1021/acs.biomac.0c01184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Colone M, Calcabrini A, Stringaro A. Drug Delivery Systems of Natural Products in Oncology. Molecules 2020;25:E4560. [PMID: 33036240 DOI: 10.3390/molecules25194560] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
80 Kumar S, Dutta J, Dutta P, Koh J. A systematic study on chitosan-liposome based systems for biomedical applications. International Journal of Biological Macromolecules 2020;160:470-81. [DOI: 10.1016/j.ijbiomac.2020.05.192] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
81 Cai A, Zhu Y, Qi C. Biodegradable Inorganic Nanostructured Biomaterials for Drug Delivery. Adv Mater Interfaces 2020;7:2000819. [DOI: 10.1002/admi.202000819] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
82 Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020;9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
83 Shi Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Removal of Protein-Bound Uremic Toxins by Liposome-Supported Peritoneal Dialysis. Perit Dial Int 2019;39:509-18. [PMID: 31690700 DOI: 10.3747/pdi.2018.00229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
84 Fotoran WL, Kleiber N, Müntefering T, Liebau E, Wunderlich G. Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types. J Venom Anim Toxins Incl Trop Dis 2020;26:e20200032. [PMID: 32788917 DOI: 10.1590/1678-9199-JVATITD-2020-0032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
85 Bhagat S, Singh S. Co-delivery of AKT3 siRNA and PTEN Plasmid by Antioxidant Nanoliposomes for Enhanced Antiproliferation of Prostate Cancer Cells. ACS Appl Bio Mater 2020;3:3999-4011. [PMID: 35025475 DOI: 10.1021/acsabm.9b01016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
86 Alawak M, Mahmoud G, Dayyih AA, Duse L, Pinnapireddy SR, Engelhardt K, Awak I, Wölk C, König AM, Brüßler J, Bakowsky U. Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. Mater Sci Eng C Mater Biol Appl 2020;115:111116. [PMID: 32600717 DOI: 10.1016/j.msec.2020.111116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
87 Hermal F, Frisch B, Specht A, Bourel-Bonnet L, Heurtault B. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media. Int J Pharm 2020;586:119568. [PMID: 32592900 DOI: 10.1016/j.ijpharm.2020.119568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
88 Ferreira M, Aguiar S, Bettencourt A, Gaspar MM. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv Transl Res 2021;11:72-85. [PMID: 32514703 DOI: 10.1007/s13346-020-00791-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
89 Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. Small 2020;16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
90 Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coordination Chemistry Reviews 2020;412:213258. [DOI: 10.1016/j.ccr.2020.213258] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
91 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
92 Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020;25:1174-88. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 52] [Article Influence: 15.3] [Reference Citation Analysis]
93 Asghar K, Qasim M, Dharmapuri G, Das D. Thermoresponsive polymer gated and superparamagnetic nanoparticle embedded hollow mesoporous silica nanoparticles as smart multifunctional nanocarrier for targeted and controlled delivery of doxorubicin. Nanotechnology 2020;31:455604. [PMID: 32311684 DOI: 10.1088/1361-6528/ab8b0e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
94 Toro-córdova A, Sanz B, Goya GF. A Concise Review of Nanomaterials for Drug Delivery and Release. CNANO 2020;16:399-412. [DOI: 10.2174/1573413715666190724150816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
95 Zhang J, Zhu S, Tan Q, Cheng D, Dai Q, Yang Z, Zhang L, Li F, Zuo Y, Dai W, Chen L, Gu E, Xu G, Wei Z, Cao Y, Liu X. Combination therapy with ropivacaine-loaded liposomes and nutrient deprivation for simultaneous cancer therapy and cancer pain relief. Theranostics 2020;10:4885-99. [PMID: 32308756 DOI: 10.7150/thno.43932] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
96 Yang F, Shi K, Jia Y, Hao Y, Peng J, Qian Z. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020;41:911-27. [DOI: 10.1038/s41401-020-0372-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
97 Cai W, Geng C, Jiang L, Sun J, Chen B, Zhou Y, Yang B, Lu H. Encapsulation of gemcitabine in RGD-modified nanoliposomes improves breast cancer inhibitory activity. Pharm Dev Technol 2020;25:640-8. [PMID: 32028816 DOI: 10.1080/10837450.2020.1727920] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
98 Xia Y, Xu C, Zhang X, Gao J, Wu Y, Li C, Wang Z. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging. Colloids Surf B Biointerfaces 2020;188:110789. [PMID: 31955018 DOI: 10.1016/j.colsurfb.2020.110789] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
99 Verma A, Tiwari A, Panda PK, Saraf S, Jain A, Raikwar S, Bidla P, Jain SK. Liposomes for Advanced Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
100 Lombardo D, Calandra P, Teresa Caccamo M, Magazù S, Pasqua L, A. Kiselev M; 1 Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy, 2 Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy, 3 Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy, 4 Department of Environmental and Chemical Engineering, University of Calabria, Rende (CS), Italy, 5 Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow, Russia. . AIMS Biophysics 2020;7:267-90. [DOI: 10.3934/biophy.2020020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 Sharifi F, Jash A, Abbaspourrad A, Rizvi SSH. Generation of ironized and multivitamin-loaded liposomes using venturi-based rapid expansion of a supercritical solution (Vent-RESS). Green Chem 2020;22:1618-29. [DOI: 10.1039/c9gc04018h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
102 Ghosh A, Gouda S, Kerry RG, Das G, Patra JK. Viral and Nonviral Drug Delivery Systems for Medical Health Care: An Overview. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-39246-8_2] [Reference Citation Analysis]
103 Caruana JC, Walper SA. Bacterial Membrane Vesicles and Their Applications as Vaccines and in Biotechnology. Bacterial Membrane Vesicles 2020. [DOI: 10.1007/978-3-030-36331-4_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
104 Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. Materials Science and Engineering: C 2020;106:110275. [DOI: 10.1016/j.msec.2019.110275] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
105 Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020;10:462-83. [PMID: 31903132 DOI: 10.7150/thno.37593] [Cited by in Crossref: 88] [Cited by in F6Publishing: 94] [Article Influence: 29.3] [Reference Citation Analysis]
106 S R, M P. Multi-functional FITC-silica@gold nanoparticles conjugated with guar gum succinate, folic acid and doxorubicin for CT/fluorescence dual imaging and combined chemo/PTT of cancer. Colloids Surf B Biointerfaces 2020;186:110701. [PMID: 31812803 DOI: 10.1016/j.colsurfb.2019.110701] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
107 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 28.5] [Reference Citation Analysis]
108 Roovers S, Deprez J, Priwitaningrum D, Lajoinie G, Rivron N, Declercq H, De Wever O, Stride E, Le Gac S, Versluis M, Prakash J, De Smedt SC, Lentacker I. Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. J Control Release 2019;316:79-92. [PMID: 31676384 DOI: 10.1016/j.jconrel.2019.10.051] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
109 El-hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opinion on Therapeutic Patents 2019;29:891-907. [DOI: 10.1080/13543776.2019.1679767] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 11.5] [Reference Citation Analysis]
110 Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. Nanomaterials (Basel) 2019;9:E1485. [PMID: 31635330 DOI: 10.3390/nano9101485] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
111 Yang L, Han D, Zhan Q, Li X, Shan P, Hu Y, Ding H, Wang Y, Zhang L, Zhang Y, Xue S, Zhao J, Hou X, Wang Y, Li P, Yuan X, Qi H. Blood TfR+ exosomes separated by a pH-responsive method deliver chemotherapeutics for tumor therapy. Theranostics 2019;9:7680-96. [DOI: 10.7150/thno.37220] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
112 Yu Y, Wang B, Guo C, Zhao F, Chen D. Protoporphyrin IX-loaded laminarin nanoparticles for anticancer treatment, their cellular behavior, ROS detection, and animal studies. Nanoscale Res Lett 2019;14:316. [PMID: 31535237 DOI: 10.1186/s11671-019-3138-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
113 Li L, Xing H, Zhang J, Lu Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc Chem Res 2019;52:2415-26. [PMID: 31411853 DOI: 10.1021/acs.accounts.9b00167] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 22.0] [Reference Citation Analysis]
114 Yuan H, Olvera de la Cruz M. Crystalline membrane morphology beyond polyhedra. Phys Rev E 2019;100:012610. [PMID: 31499886 DOI: 10.1103/PhysRevE.100.012610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
115 Isalomboto Nkanga C, Murhimalika Bapolisi A, Ikemefuna Okafor N, Werner Maçedo Krause R. General Perception of Liposomes: Formation, Manufacturing and Applications. Liposomes - Advances and Perspectives 2019. [DOI: 10.5772/intechopen.84255] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
116 T.s A, Shalumon K, Chen J. Applications of Magnetic Liposomes in Cancer Therapies. CPD 2019;25:1490-504. [DOI: 10.2174/1389203720666190521114936] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
117 Wang Q, Luo M, Wei N, Chang A, Luo KQ. Development of a Liposomal Formulation of Acetyltanshinone IIA for Breast Cancer Therapy. Mol Pharm 2019;16:3873-86. [PMID: 31389706 DOI: 10.1021/acs.molpharmaceut.9b00493] [Reference Citation Analysis]
118 Fernandes DA, Kolios MC. Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics. Journal of Molecular Liquids 2019;287:110848. [DOI: 10.1016/j.molliq.2019.04.125] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
119 Lee W, Im HJ. Theranostics Based on Liposome: Looking Back and Forward. Nucl Med Mol Imaging 2019;53:242-6. [PMID: 31456856 DOI: 10.1007/s13139-019-00603-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
120 Wang S, Liu X, Li B, Fan J, Ye J, Cheng H, Zhang X. Bacteria‐Assisted Selective Photothermal Therapy for Precise Tumor Inhibition. Adv Funct Mater 2019;29:1904093. [DOI: 10.1002/adfm.201904093] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
121 Trucillo P, Campardelli R, Scognamiglio M, Reverchon E. Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization 2019;32:119-27. [DOI: 10.1016/j.jcou.2019.04.014] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
122 Cao M, Long M, Chen Q, Lu Y, Luo Q, Zhao Y, Lu A, Ge C, Zhu L, Chen Z. Development of β-elemene and Cisplatin Co-Loaded Liposomes for Effective Lung Cancer Therapy and Evaluation in Patient-Derived Tumor Xenografts. Pharm Res 2019;36:121. [PMID: 31214786 DOI: 10.1007/s11095-019-2656-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
123 Song Y, Sheng Z, Xu Y, Dong L, Xu W, Li F, Wang J, Wu Z, Yang Y, Su Y, Sun X, Ling D, Lu Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci 2019;7:867-75. [PMID: 30648710 DOI: 10.1039/c8bm01530a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
124 Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Appl Mater Interfaces 2019;11:26529-58. [DOI: 10.1021/acsami.9b01370] [Cited by in Crossref: 120] [Cited by in F6Publishing: 127] [Article Influence: 30.0] [Reference Citation Analysis]
125 Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Kyakulaga A, Wilcher SA, Gupta RC. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Letters 2019;449:186-95. [DOI: 10.1016/j.canlet.2019.02.011] [Cited by in Crossref: 132] [Cited by in F6Publishing: 109] [Article Influence: 33.0] [Reference Citation Analysis]
126 Patil R, Torris A, Bhat S, Patil S. Mapping Fusogenicity of Ciprofloxacin-Loaded Liposomes with Bacterial Cells. AAPS PharmSciTech 2019;20:180. [PMID: 31044335 DOI: 10.1208/s12249-019-1381-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
127 Choi G, Piao H, Eom S, Choy J. Vectorized Clay Nanoparticles in Therapy and Diagnosis. Clays Clay Miner 2019;67:25-43. [DOI: 10.1007/s42860-019-0009-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
128 Wang Y, Song S, Zhang S, Zhang H. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today 2019;25:38-67. [DOI: 10.1016/j.nantod.2019.02.007] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 17.8] [Reference Citation Analysis]
129 Dhanasekaran S. Augmented cytotoxic effects of paclitaxel by curcumin induced overexpression of folate receptor-α for enhanced targeted drug delivery in HeLa cells. Phytomedicine 2019;56:279-85. [DOI: 10.1016/j.phymed.2018.06.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
130 Nardecchia S, Sánchez-Moreno P, Vicente J, Marchal JA, Boulaiz H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials (Basel) 2019;9:E191. [PMID: 30717386 DOI: 10.3390/nano9020191] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
131 Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl 2019;98:1252-76. [PMID: 30813007 DOI: 10.1016/j.msec.2019.01.066] [Cited by in Crossref: 326] [Cited by in F6Publishing: 275] [Article Influence: 81.5] [Reference Citation Analysis]
132 Anwar A, Siddiqui R, Khan NA. Importance of Theranostics in Rare Brain-Eating Amoebae Infections. ACS Chem Neurosci 2019;10:6-12. [PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
133 Liu CH, Tandon P, Russell LM. Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
134 He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019;9:36-48. [PMID: 30766776 DOI: 10.1016/j.apsb.2018.06.005] [Cited by in Crossref: 234] [Cited by in F6Publishing: 251] [Article Influence: 58.5] [Reference Citation Analysis]
135 Ghosh D, Upmanyu N, Shukla T, Shrivastava TP. Cell and organ drug targeting. Nanomaterials for Drug Delivery and Therapy 2019. [DOI: 10.1016/b978-0-12-816505-8.00015-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
136 Jampílek J, Kráľová K. Recent advances in lipid nanocarriers applicable in the fight against cancer. Nanoarchitectonics in Biomedicine 2019. [DOI: 10.1016/b978-0-12-816200-2.00009-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
137 Siddhardha B, Parasuraman P. Theranostics application of nanomedicine in cancer detection and treatment. Nanomaterials for Drug Delivery and Therapy 2019. [DOI: 10.1016/b978-0-12-816505-8.00014-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
138 Parchur AK, Jagtap JM, Sharma G, Gogineni V, White SB, Joshi A. Remotely Triggered Nanotheranostics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_17] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
139 Lombardo D, Calandra P, Teresa Caccamo M, Magazù S, Alekseyevich Kiselev M; 1 Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy, 2 Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy, 3 Dipartimento di Fisica e Scienze della Terra, Università di Messina, 98166 Messina, Italy, 4 Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow 141980, Russia. . AIMS Materials Science 2019;6:200-13. [DOI: 10.3934/matersci.2019.2.200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
140 Sharifi F, Zhou R, Lim C, Jash A, Abbaspourrad A, Rizvi SS. Generation of liposomes using a supercritical carbon dioxide eductor vacuum system: Optimization of process variables. Journal of CO2 Utilization 2019;29:163-71. [DOI: 10.1016/j.jcou.2018.12.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
141 Jain U, Chauhan N. Drug Encapsulation and Nanocarriers for Targeted Delivery in Animals. Nanoscience for Sustainable Agriculture 2019. [DOI: 10.1007/978-3-319-97852-9_18] [Reference Citation Analysis]
142 Shi Y, Wang Y, Ma S, Liu T, Tian H, Zhu Q, Wang W, Li Y, Ding F. Increasing the removal of protein-bound uremic toxins by liposome-supported hemodialysis. Artif Organs 2019;43:490-503. [PMID: 30375673 DOI: 10.1111/aor.13383] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
143 Luo X, Li B, Zhang X, Zhao W, Bratasz A, Deng B, McComb DW, Dong Y. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale 2017;9:1575-9. [PMID: 28067926 DOI: 10.1039/c6nr08496f] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
144 Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 2018;25:241-55. [PMID: 29334272 DOI: 10.1080/10717544.2018.1425774] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 15.8] [Reference Citation Analysis]
145 Ma J, Deng H, Zhao F, Deng L, Wang W, Dong A, Zhang J. Liposomes-Camouflaged Redox-Responsive Nanogels to Resolve the Dilemma between Extracellular Stability and Intracellular Drug Release. Macromol Biosci 2018;18:1800049. [DOI: 10.1002/mabi.201800049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
146 Tang W, Tang W, Li S. Cancer theranostic applications of lipid-based nanoparticles. Drug Discovery Today 2018;23:1159-66. [DOI: 10.1016/j.drudis.2018.04.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 7.6] [Reference Citation Analysis]
147 Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038-58. [PMID: 29896301 DOI: 10.7150/thno.23459] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 23.4] [Reference Citation Analysis]
148 Borghese C, Casagrande N, Pivetta E, Colombatti A, Boccellino M, Amler E, Normanno N, Caraglia M, De Rosa G, Aldinucci D. Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget 2017;8:42926-38. [PMID: 28477013 DOI: 10.18632/oncotarget.17216] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
149 Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018;12:2106-21. [PMID: 29462554 DOI: 10.1021/acsnano.7b07252] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 18.8] [Reference Citation Analysis]
150 Zheng XC, Ren W, Zhang S, Zhong T, Duan XC, Yin YF, Xu MQ, Hao YL, Li ZT, Li H, Liu M, Li ZY, Zhang X. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018;13:1495-504. [PMID: 29559778 DOI: 10.2147/IJN.S157082] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 10.0] [Reference Citation Analysis]
151 Yang J, Su H, Sun W, Cai J, Liu S, Chai Y, Zhang C. Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases. Theranostics 2018;8:1966-84. [PMID: 29556368 DOI: 10.7150/thno.23848] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 11.6] [Reference Citation Analysis]
152 Lai C, Duan S, Ye F, Hou X, Li X, Zhao J, Yu X, Hu Z, Tang Z, Mo F, Yang X, Lu X. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Theranostics 2018;8:1723-39. [PMID: 29556352 DOI: 10.7150/thno.22056] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
153 Mendes LP, Lima EM, Torchilin VP. Targeted Nanotheranostics for Selective Drug Delivery in Cancer. Handbook of Nanomaterials for Cancer Theranostics. Elsevier; 2018. pp. 245-77. [DOI: 10.1016/b978-0-12-813339-2.00009-8] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
154 Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 2018;10:5393-423. [DOI: 10.1039/c7nr09612g] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 8.8] [Reference Citation Analysis]
155 Xie Q, Deng W, Yuan X, Wang H, Ma Z, Wu B, Zhang X. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. European Journal of Pharmaceutics and Biopharmaceutics 2018;122:87-95. [DOI: 10.1016/j.ejpb.2017.10.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 7.6] [Reference Citation Analysis]
156 Zhang ZC, Tang C, Dong Y, Zhang J, Yuan T, Li XL. Targeting LncRNA-MALAT1 suppresses the progression of osteosarcoma by altering the expression and localization of β-catenin. J Cancer 2018;9:71-80. [PMID: 29290771 DOI: 10.7150/jca.22113] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
157 Nandwana V, Singh A, You MM, Zhang G, Higham J, Zheng TS, Li Y, Prasad PV, Dravid VP. Magnetic lipid nanocapsules (MLNCs): self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. J Mater Chem B 2018;6:1026-34. [DOI: 10.1039/c7tb03160b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
158 Cheung C, Al-jamal WT. Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanooncology 2018. [DOI: 10.1007/978-3-319-89878-0_2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
159 Shi N, Qi X, Xiang B. Preparation and Characterization of Drug Liposomes by pH-Gradient Method. Springer Reference Technik 2018. [DOI: 10.1007/978-3-662-49231-4_18-1] [Reference Citation Analysis]
160 Figueiredo P, Bauleth-ramos T, Hirvonen J, Sarmento B, Santos HA. The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00001-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
161 Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on Mesenchymal Stem Cell-Derived Exosomes: Opportunities and Challenges in Cell-Free Therapy. Stem Cells Int 2017;2017:6305295. [PMID: 29410682 DOI: 10.1155/2017/6305295] [Cited by in Crossref: 73] [Cited by in F6Publishing: 88] [Article Influence: 12.2] [Reference Citation Analysis]
162 Yusuf A, Brophy A, Gorey B, Casey A. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis: Silver nanoparticle encapsulation for enhanced anticancer properties. J Appl Toxicol 2018;38:616-27. [DOI: 10.1002/jat.3566] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
163 Comparetti EJ, Pedrosa VA, Kaneno R. Carbon Nanotube as a Tool for Fighting Cancer. Bioconjug Chem 2018;29:709-18. [PMID: 29072905 DOI: 10.1021/acs.bioconjchem.7b00563] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
164 Li J, Wang S, Shi X, Shen M. Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017;249:374-85. [PMID: 28335985 DOI: 10.1016/j.cis.2017.02.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
165 Roberts SA, Neelaveni N, Agrawal N. A novel filtration approach to create small unilamellar liposomes for drug delivery. 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) 2017. [DOI: 10.1109/hic.2017.8227585] [Reference Citation Analysis]
166 Kumar L, Verma S, Vaidya B. Liposomes for the delivery of streptokinase. Therapeutic Delivery 2017;8:855-66. [DOI: 10.4155/tde-2017-0026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
167 Solomon D, Gupta N, Mulla NS, Shukla S, Guerrero YA, Gupta V. Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective. AAPS J 2017;19:1669-81. [PMID: 28924630 DOI: 10.1208/s12248-017-0142-0] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
168 Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS Appl Mater Interfaces 2018;10:7541-61. [DOI: 10.1021/acsami.7b08392] [Cited by in Crossref: 153] [Cited by in F6Publishing: 158] [Article Influence: 25.5] [Reference Citation Analysis]
169 Xin Y, Qi Q, Mao Z, Zhan X. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations. International Journal of Pharmaceutics 2017;528:47-54. [DOI: 10.1016/j.ijpharm.2017.05.059] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
170 Abraham MK, Peter K, Michel T, Wendel HP, Krajewski S, Wang X. Nanoliposomes for Safe and Efficient Therapeutic mRNA Delivery: A Step Toward Nanotheranostics in Inflammatory and Cardiovascular Diseases as well as Cancer. Nanotheranostics 2017;1:154-65. [PMID: 29071184 DOI: 10.7150/ntno.19449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
171 Liu Y, Yang F, Yuan C, Li M, Wang T, Chen B, Jin J, Zhao P, Tong J, Luo S, Gu N. Magnetic Nanoliposomes as in Situ Microbubble Bombers for Multimodality Image-Guided Cancer Theranostics. ACS Nano 2017;11:1509-19. [PMID: 28045496 DOI: 10.1021/acsnano.6b06815] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 14.5] [Reference Citation Analysis]
172 Le VM, Nho TDT, Ly HT, Vo TS, Nguyen HD, Phung TTH, Zou A, Liu J. Enhanced anticancer efficacy and tumor targeting through folate-PEG modified nanoliposome loaded with 5-fluorouracil. Adv Nat Sci: Nanosci Nanotechnol 2017;8:015008. [DOI: 10.1088/2043-6254/aa5982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
173 Sejwal K, Chami M, Baumgartner P, Kowal J, Müller SA, Stahlberg H. Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM. Nanotechnology Reviews 2017;6:57-74. [DOI: 10.1515/ntrev-2016-0081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
174 Jun Wang, Honggang Cui. Nanostructure-Based Theranostic Systems. Theranostics 2016;6. [PMID: 27375778 DOI: 10.7150/thno.16479] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]