BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014;5:477-97. [PMID: 24667807 DOI: 10.4161/viru.28595] [Cited by in Crossref: 118] [Cited by in F6Publishing: 113] [Article Influence: 14.8] [Reference Citation Analysis]
Number Citing Articles
1 Yuan F, Tan C, Liu Z, Yang K, Zhou D, Liu W, Duan Z, Guo R, Chen H, Tian Y, Bei W. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis 2017;104:137-45. [DOI: 10.1016/j.micpath.2016.12.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
2 Zhang X, Wu Z, Wang K. Diagnosis of Streptococcus suis Meningoencephalitis with metagenomic next-generation sequencing of the cerebrospinal fluid: a case report with literature review. BMC Infect Dis 2020;20:884. [PMID: 33238913 DOI: 10.1186/s12879-020-05621-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Wang K, Chen J, Yao H, Lu C. Whole-Genome Sequence of Streptococcus suis Serotype 4 Reference Strain 6407. Genome Announc 2014;2:e00770-14. [PMID: 25125641 DOI: 10.1128/genomeA.00770-14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
4 Li Q, Fu Y, He Y, Zhang Y, Qian Y, Yu Y, Yao H, Lu C, Zhang W. Fibronectin-/fibrinogen-binding protein (FBPS) is not a critical virulence factor for the Streptococcus suis serotype 2 strain ZY05719. Veterinary Microbiology 2017;208:38-46. [DOI: 10.1016/j.vetmic.2017.07.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
5 Ye H, Cai M, Zhang H, Li Z, Wen R, Feng Y. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis. Sci Rep 2016;6:26479. [PMID: 27217336 DOI: 10.1038/srep26479] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
6 Li Z, Chang P, Xu J, Tan C, Wang X, Bei W, Li J. A Streptococcus suis Live Vaccine Suppresses Streptococcal Toxic Shock-Like Syndrome and Provides Sequence Type-Independent Protection. J Infect Dis 2019;219:448-58. [PMID: 30165645 DOI: 10.1093/infdis/jiy512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chen P, Liu R, Huang M, Zhu J, Wei D, Castellino FJ, Dang G, Xie F, Li G, Cui Z, Liu S, Zhang Y. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. J Biol Chem 2020;295:10638-52. [PMID: 32518157 DOI: 10.1074/jbc.RA119.011977] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Haas B, Grenier D. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential. Pathogens 2016;5:E37. [PMID: 27104570 DOI: 10.3390/pathogens5020037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
9 Li Q, Lv Y, Li YA, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020;38:6904-13. [PMID: 32907758 DOI: 10.1016/j.vaccine.2020.08.062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Boonyong N, Kaewmongkol S, Khunbutsri D, Satchasataporn K, Meekhanon N. Contamination of Streptococcus suis in pork and edible pig organs in central Thailand. Vet World 2019;12:165-9. [PMID: 30936671 DOI: 10.14202/vetworld.2019.165-169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
11 Fang L, Zhou J, Fan P, Yang Y, Shen H, Fang W. A serine/threonine phosphatase 1 of Streptococcus suis type 2 is an important virulence factor. J Vet Sci 2017;18:439-47. [PMID: 28057904 DOI: 10.4142/jvs.2017.18.4.439] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Tan MF, Hu Q, Hu Z, Zhang CY, Liu WQ, Gao T, Zhang LS, Yao L, Li HQ, Zeng YB, Zhou R. Streptococcus suis MsmK: Novel Cell Division Protein Interacting with FtsZ and Maintaining Cell Shape. mSphere 2021;6:e00119-21. [PMID: 33731468 DOI: 10.1128/mSphere.00119-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zheng C, Wei M, Qiu J, Li J. A Markerless Gene Deletion System in Streptococcus suis by Using the Copper-Inducible Vibrio parahaemolyticus YoeB Toxin as a Counterselectable Marker. Microorganisms 2021;9:1095. [PMID: 34069706 DOI: 10.3390/microorganisms9051095] [Reference Citation Analysis]
14 Gao T, Tan M, Liu W, Zhang C, Zhang T, Zheng L, Zhu J, Li L, Zhou R. GidA, a tRNA Modification Enzyme, Contributes to the Growth, and Virulence of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2016;6:44. [PMID: 27148493 DOI: 10.3389/fcimb.2016.00044] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
15 Tarini NMA, Setiabudy M, Susilawathi NM, Fatmawati N, Mayura I, Darwinata EA, Sudiariani N. Misidentification of S. suis as a Zoonotic Agent. Open Access Maced J Med Sci 2019;7:2309-12. [PMID: 31592279 DOI: 10.3889/oamjms.2019.619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 Zheng F, Shao Z, Hao X, Wu Q, Li C, Hou H, Hu D, Wang C, Pan X. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis 2018;118:322-9. [DOI: 10.1016/j.micpath.2018.03.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
17 Zhang C, Liu L, Zhang P, Cui J, Qin X, Ma L, Han K, Wang Z, Wang S, Ding S, Shen Z. Characterization of a Novel Gene, srpA, Conferring Resistance to Streptogramin A, Pleuromutilins, and Lincosamides in Streptococcus suis. Engineering 2022;9:85-94. [DOI: 10.1016/j.eng.2020.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Gurung M, Tamang MD, Moon DC, Kim SR, Jeong JH, Jang GC, Jung SC, Park YH, Lim SK. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis. J Clin Microbiol 2015;53:2332-6. [PMID: 25903569 DOI: 10.1128/JCM.00123-15] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 4.4] [Reference Citation Analysis]
19 Meurer M, de Buhr N, Unger LM, Bonilla MC, Seele J, Nau R, Baums CG, Gutsmann T, Schwarz S, von Köckritz-Blickwede M. Comparing Cathelicidin Susceptibility of the Meningitis Pathogens Streptococcus suis and Escherichia coli in Culture Medium in Contrast to Porcine or Human Cerebrospinal Fluid. Front Microbiol 2019;10:2911. [PMID: 31993024 DOI: 10.3389/fmicb.2019.02911] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jiang X, Yang Y, Zhou J, Zhu L, Gu Y, Zhang X, Li X, Fang W. Roles of the Putative Type IV-like Secretion System Key Component VirD4 and PrsA in Pathogenesis of Streptococcus suis Type 2. Front Cell Infect Microbiol 2016;6:172. [PMID: 27995095 DOI: 10.3389/fcimb.2016.00172] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
21 Smith JL, Fratamico PM. Emerging and Re-Emerging Foodborne Pathogens. Foodborne Pathogens and Disease 2018;15:737-57. [DOI: 10.1089/fpd.2018.2493] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
22 Li Q, Fei X, Zhang Y, Guo G, Shi H, Zhang W. The biological role of MutT in the pathogenesis of the zoonotic pathogen Streptococcus suis serotype 2. Virulence 2021;12:1538-49. [PMID: 34077309 DOI: 10.1080/21505594.2021.1936770] [Reference Citation Analysis]
23 Foster G, Kirchner M, Muchowski J, Duggett N, Randall L, Knight HI, Whatmore AM. Streptococcus caledonicus sp. nov., isolated from sheep. Int J Syst Evol Microbiol 2020;70:2611-5. [PMID: 32160144 DOI: 10.1099/ijsem.0.004081] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Xu Q, Chen H, Sun W, Zhu D, Zhang Y, Chen JL, Chen Y. Genome-wide analysis of the synonymous codon usage pattern of Streptococcus suis. Microb Pathog 2021;150:104732. [PMID: 33429052 DOI: 10.1016/j.micpath.2021.104732] [Reference Citation Analysis]
25 Wu NH, Meng F, Seitz M, Valentin-Weigand P, Herrler G. Sialic acid-dependent interactions between influenza viruses and Streptococcus suis affect the infection of porcine tracheal cells. J Gen Virol 2015;96:2557-68. [PMID: 26297001 DOI: 10.1099/jgv.0.000223] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
26 Martens A, de Buhr N, Ishikawa H, Schroten H, von Köckritz-Blickwede M. Characterization of Oxygen Levels in an Uninfected and Infected Human Blood-Cerebrospinal-Fluid-Barrier Model. Cells 2022;11:151. [PMID: 35011713 DOI: 10.3390/cells11010151] [Reference Citation Analysis]
27 Gao G, Wei D, Li G, Chen P, Wu L, Liu S, Zhang Y. Highly Effective Markerless Genetic Manipulation of Streptococcus suis Using a Mutated PheS-Based Counterselectable Marker. Front Microbiol 2022;13:947821. [DOI: 10.3389/fmicb.2022.947821] [Reference Citation Analysis]
28 Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021;12:671706. [PMID: 34475853 DOI: 10.3389/fmicb.2021.671706] [Reference Citation Analysis]
29 Li Q, Fu Y, Ma C, He Y, Yu Y, Du D, Yao H, Lu C, Zhang W. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2. Virulence 2017;8:1274-89. [PMID: 28362221 DOI: 10.1080/21505594.2017.1313373] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
30 Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiology 2019;14:207-22. [DOI: 10.2217/fmb-2018-0279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
31 Lu H, Li X, Wang G, Wang C, Feng J, Lu W, Wang X, Chen H, Liu M, Tan C. Baicalein Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Int J Mol Sci 2021;22:5829. [PMID: 34072443 DOI: 10.3390/ijms22115829] [Reference Citation Analysis]
32 Tan MF, Liu WQ, Zhang CY, Gao T, Zheng LL, Qiu DX, Li L, Zhou R. The involvement of MsmK in pathogenesis of the Streptococcus suis serotype 2. Microbiologyopen 2017;6. [PMID: 28102028 DOI: 10.1002/mbo3.433] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
33 van Hout J, Heuvelink A, Gonggrijp M. Monitoring of antimicrobial susceptibility of Streptococcus suis in the Netherlands, 2013-2015. Vet Microbiol 2016;194:5-10. [PMID: 27131836 DOI: 10.1016/j.vetmic.2016.03.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
34 Nicholson TL, Waack U, Anderson TK, Bayles DO, Zaia SR, Goertz I, Eppinger M, Hau SJ, Brockmeier SL, Shore SM. Comparative Virulence and Genomic Analysis of Streptococcus suis Isolates. Front Microbiol 2020;11:620843. [PMID: 33574803 DOI: 10.3389/fmicb.2020.620843] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ferrando ML, de Greeff A, van Rooijen WJ, Stockhofe-Zurwieden N, Nielsen J, Wichgers Schreur PJ, Pannekoek Y, Heuvelink A, van der Ende A, Smith H, Schultsz C. Host-pathogen Interaction at the Intestinal Mucosa Correlates With Zoonotic Potential of Streptococcus suis. J Infect Dis 2015;212:95-105. [PMID: 25525050 DOI: 10.1093/infdis/jiu813] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
36 Wang Y, Wang Y, Sun L, Grenier D, Yi L. The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol 2018;102:7231-8. [PMID: 29938319 DOI: 10.1007/s00253-018-9170-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
37 Singh RK, Sianturi J, Seeberger PH. Synthesis of Oligosaccharides Resembling the Streptococcus suis Serotype 18 Capsular Polysaccharide as a Basis for Glycoconjugate Vaccine Development. Org Lett . [DOI: 10.1021/acs.orglett.2c00596] [Reference Citation Analysis]
38 Zhao F, Yang N, Wang X, Mao R, Hao Y, Li Z, Wang X, Teng D, Fan H, Wang J. In vitro/vivo Mechanism of Action of MP1102 With Low/Nonresistance Against Streptococcus suis Type 2 Strain CVCC 3928. Front Cell Infect Microbiol 2019;9:48. [PMID: 30863725 DOI: 10.3389/fcimb.2019.00048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
39 Fan J, Zhao L, Hu Q, Li S, Li H, Zhang Q, Zou G, Zhang L, Li L, Huang Q, Zhou R. Screening for Virulence-Related Genes via a Transposon Mutant Library of Streptococcus suis Serotype 2 Using a Galleria mellonella Larvae Infection Model. Microorganisms 2022;10:868. [DOI: 10.3390/microorganisms10050868] [Reference Citation Analysis]
40 Xu Z, Chen B, Zhang Q, Liu L, Zhang A, Yang Y, Huang K, Yan S, Yu J, Sun X, Jin M. Streptococcus suis 2 Transcriptional Regulator TstS Stimulates Cytokine Production and Bacteremia to Promote Streptococcal Toxic Shock-Like Syndrome. Front Microbiol 2018;9:1309. [PMID: 29973920 DOI: 10.3389/fmicb.2018.01309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
41 Matajira CEC, Moreno LZ, Poor AP, Gomes VTM, Dalmutt AC, Parra BM, Oliveira CH, Barbosa MRF, Sato MIZ, Calderaro FF, Moreno AM. Streptococcus suis in Brazil: Genotypic, Virulence, and Resistance Profiling of Strains Isolated from Pigs between 2001 and 2016. Pathogens 2019;9:E31. [PMID: 31905664 DOI: 10.3390/pathogens9010031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
42 Gao T, Ye F, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Wang N, Zhang T, Zhou R, Tian Y. Green tea polyphenols inhibit growth, pathogenicity and metabolomics profiles of Streptococcus suis. Microb Pathog 2022;:105421. [PMID: 35114350 DOI: 10.1016/j.micpath.2022.105421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Velikova N, Kavanagh K, Wells JM. Evaluation of Galleria mellonella larvae for studying the virulence of Streptococcus suis. BMC Microbiol 2016;16:291. [PMID: 27978817 DOI: 10.1186/s12866-016-0905-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
44 Tan MF, Tan J, Zeng YB, Li HQ, Yang Q, Zhou R. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangxi Province, China. J Appl Microbiol 2021;130:797-806. [PMID: 32881196 DOI: 10.1111/jam.14831] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Chu DT, Ngoc TU, Chu-Dinh T, Ngoc VTN, Van Nhon B, Pham VH, Nghia LL, Anh LQ, Van Pham TH, Truong ND. The possible zoonotic diseases transferring from pig to human in Vietnam. Eur J Clin Microbiol Infect Dis 2019;38:1003-14. [PMID: 30680568 DOI: 10.1007/s10096-018-03466-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
46 Gajdács M, Németh A, Knausz M, Barrak I, Stájer A, Mestyán G, Melegh S, Nyul A, Tóth Á, Ágoston Z, Urbán E. Streptococcus suis: An Underestimated Emerging Pathogen in Hungary? Microorganisms 2020;8:E1292. [PMID: 32847011 DOI: 10.3390/microorganisms8091292] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
47 Zhao Y, Li G, Yao XY, Lu SG, Wang J, Shen XD, Li M. The Impact of SsPI-1 Deletion on Streptococcus suis Virulence. Pathogens 2019;8:E287. [PMID: 31817637 DOI: 10.3390/pathogens8040287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Zou G, Zhou J, Xiao R, Zhang L, Cheng Y, Jin H, Li L, Zhang L, Wu B, Qian P, Li S, Ren L, Wang J, Oshota O, Hernandez-Garcia J, Wileman TM, Bentley S, Weinert L, Maskell DJ, Tucker AWD, Zhou R. Effects of Environmental and Management-Associated Factors on Prevalence and Diversity of Streptococcus suis in Clinically Healthy Pig Herds in China and the United Kingdom. Appl Environ Microbiol 2018;84:e02590-17. [PMID: 29427423 DOI: 10.1128/AEM.02590-17] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
49 Athey TB, Vaillancourt K, Frenette M, Fittipaldi N, Gottschalk M, Grenier D. Distribution of Suicin Gene Clusters in Streptococcus suis Serotype 2 Belonging to Sequence Types 25 and 28. Biomed Res Int 2016;2016:6815894. [PMID: 28078298 DOI: 10.1155/2016/6815894] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
50 Haas B, Grenier D. Understanding the virulence of Streptococcus suis : A veterinary, medical, and economic challenge. Médecine et Maladies Infectieuses 2018;48:159-66. [DOI: 10.1016/j.medmal.2017.10.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
51 Díez de Los Ríos J, Reynaga E, García-Gonzàlez M, Càmara J, Ardanuy C, Cuquet J, Quesada MD, Navarro M, Vilamala A, Párraga-Niño N, Quero S, Romero A, Benítez RM, Altimiras J, Pedro-Botet ML. Clinical and Epidemiological Characteristics of Streptococcus suis Infections in Catalonia, Spain. Front Med (Lausanne) 2021;8:792233. [PMID: 34957160 DOI: 10.3389/fmed.2021.792233] [Reference Citation Analysis]
52 Zhou Y, Nie R, Liu X, Kong J, Wang X, Li J. GntR is involved in the expression of virulence in strain Streptococcus suis P1/7. FEMS Microbiology Letters 2018;365. [DOI: 10.1093/femsle/fny091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
53 Xu Q, Chen H, Sun W, Zhang Y, Zhu D, Rai KR, Chen JL, Chen Y. sRNA23, a novel small RNA, regulates to the pathogenesis of Streptococcus suis serotype 2. Virulence 2021;12:3045-61. [PMID: 34882070 DOI: 10.1080/21505594.2021.2008177] [Reference Citation Analysis]
54 Pian Y, Li X, Zheng Y, Wu X, Yuan Y, Jiang Y. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner. Sci Rep 2016;6:26966. [PMID: 27231021 DOI: 10.1038/srep26966] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
55 Tan S, Dvorak CMT, Estrada AA, Gebhart C, Marthaler DG, Murtaugh MP. MinION sequencing of Streptococcus suis allows for functional characterization of bacteria by multilocus sequence typing and antimicrobial resistance profiling. J Microbiol Methods 2020;169:105817. [PMID: 31881288 DOI: 10.1016/j.mimet.2019.105817] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
56 Gong X, Zhuge Y, Ding C, Zheng F, Guo X, Zhang Q, Ye F, Wang C, Deng X. A novel small RNA contributes to restrain cellular chain length and anti-phagocytic ability in Streptococcus suis 2. Microb Pathog 2019;137:103730. [PMID: 31499182 DOI: 10.1016/j.micpath.2019.103730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Wang R, Liu P, Chen X, Yao X, Liao X, Liu Y, Sun J, Zhou Y. Pharmacodynamic Target Assessment and PK/PD Cutoff Determination for Gamithromycin Against Streptococcus suis in Piglets. Front Vet Sci 2022;9:945632. [DOI: 10.3389/fvets.2022.945632] [Reference Citation Analysis]
58 Xia X, Wang X, Wei X, Jiang J, Hu J. Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie Van Leeuwenhoek 2018;111:2233-47. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Zhou Y, Dong X, Li Z, Zou G, Lin L, Wang X, Chen H, Gasser RB, Li J. Predominance of Streptococcus suis ST1 and ST7 in human cases in China, and detection of a novel sequence type, ST658. Virulence 2017;8:1031-5. [PMID: 27689249 DOI: 10.1080/21505594.2016.1243193] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
60 Zhu Y, Ma J, Zhang Y, Zhong X, Bai Q, Dong W, Pan Z, Liu G, Zhang C, Yao H. CrfP, a fratricide protein, contributes to natural transformation in Streptococcus suis. Vet Res 2021;52:50. [PMID: 33762005 DOI: 10.1186/s13567-021-00917-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Prüfer TL, Rohde J, Verspohl J, Rohde M, de Greeff A, Willenborg J, Valentin-Weigand P. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996-2016. PLoS One 2019;14:e0210801. [PMID: 30653570 DOI: 10.1371/journal.pone.0210801] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
62 Li J, Fan Q, Jin M, Mao C, Zhang H, Zhang X, Sun L, Grenier D, Yi L, Hou X, Wang Y. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis. Virulence 2021;12:3062-73. [PMID: 34923916 DOI: 10.1080/21505594.2021.2010398] [Reference Citation Analysis]
63 Zaccaria E, Cao R, Wells JM, van Baarlen P. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains. PLoS One 2016;11:e0151623. [PMID: 26999052 DOI: 10.1371/journal.pone.0151623] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
64 Li Q, Ma C, Fu Y, He Y, Yu Y, Du D, Yao H, Lu C, Zhang W. Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiol Res 2017;196:17-25. [PMID: 28164787 DOI: 10.1016/j.micres.2016.11.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
65 Zeng F, Zhao C, Wu X, Dong R, Li G, Zhu Q, Zheng E, Liu D, Yang J, Moisyadi S, Urschitz J, Li Z, Wu Z. Bacteria-induced expression of the pig-derived protegrin-1 transgene specifically in the respiratory tract of mice enhances resistance to airway bacterial infection. Sci Rep 2020;10:16020. [PMID: 32994542 DOI: 10.1038/s41598-020-73084-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Lei Z, Liu Q, Yang S, Yang B, Khaliq H, Li K, Ahmed S, Sajid A, Zhang B, Chen P, Qiu Y, Cao J, He Q. PK-PD Integration Modeling and Cutoff Value of Florfenicol against Streptococcus suis in Pigs. Front Pharmacol 2018;9:2. [PMID: 29387013 DOI: 10.3389/fphar.2018.00002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
67 Yongkiettrakul S, Maneerat K, Arechanajan B, Malila Y, Srimanote P, Gottschalk M, Visessanguan W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet Res 2019;15:5. [PMID: 30606175 DOI: 10.1186/s12917-018-1732-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
68 Xie Y, Ruan B, Lang G, Zhu B. Case Report: Streptococcus Suis Meningitis Diagnosed in a HIV-Infected Patient With Cryptococcal Meningitis Using Next-Generation Sequencing. Front Med (Lausanne) 2021;8:736064. [PMID: 34778300 DOI: 10.3389/fmed.2021.736064] [Reference Citation Analysis]
69 Wu B, Qin L, Wang M, Zhou T, Dong Y, Chai T. The composition of microbial aerosols, PM2.5, and PM10 in a duck house in Shandong province, China. Poult Sci 2019;98:5913-24. [PMID: 31237328 DOI: 10.3382/ps/pez365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
70 Devi M, Dutta JB, Rajkhowa S, Kalita D, Saikia GK, Das BC, Hazarika RA, Mahato G. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India. Vet World 2017;10:556-61. [PMID: 28620262 DOI: 10.14202/vetworld.2017.556-561] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
71 Yang X, Peng W, Wang N, Dou B, Yang F, Chen H, Yuan F, Bei W. Role of the Two-Component System CiaRH in the Regulation of Efflux Pump SatAB and Its Correlation with Fluoroquinolone Susceptibility. Microbiol Spectr 2022;10:e0041722. [PMID: 35638854 DOI: 10.1128/spectrum.00417-22] [Reference Citation Analysis]
72 Mu C, Bian G, Su Y, Zhu W. Differential Effects of Breed and Nursing on Early-Life Colonic Microbiota and Immune Status as Revealed in a Cross-Fostering Piglet Model. Appl Environ Microbiol 2019;85:e02510-18. [PMID: 30824438 DOI: 10.1128/AEM.02510-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
73 Zhang Y, Liu X, Liu H, Zhang C. Acute Myocardial Infarction as an Initial Symptom of Streptococcus suis Infection: A Case Report. Int Med Case Rep J 2021;14:783-8. [PMID: 34819755 DOI: 10.2147/IMCRJ.S335355] [Reference Citation Analysis]
74 Burniston S, Okello AL, Khamlome B, Inthavong P, Gilbert J, Blacksell SD, Allen J, Welburn SC. Cultural drivers and health-seeking behaviours that impact on the transmission of pig-associated zoonoses in Lao People's Democratic Republic. Infect Dis Poverty 2015;4:11. [PMID: 25973203 DOI: 10.1186/2049-9957-4-11] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
75 Wang S, Gao M, An T, Liu Y, Jin J, Wang G, Jiang C, Tu Y, Hu S, Li J, Wang J, Zhou D, Cai X. Genetic diversity and virulence of novel sequence types of Streptococcus suis from diseased and healthy pigs in China. Front Microbiol 2015;6:173. [PMID: 25784908 DOI: 10.3389/fmicb.2015.00173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
76 Heidarian F, Noormohammadi Z, Asadzadeh Aghdaei H, Alebouyeh M. Relative Abundance of Streptococcus spp. and its Association with Disease Activity in Inflammatory Bowel Disease Patients Compared with Controls. Arch Clin Infect Dis 2017;In Press. [DOI: 10.5812/archcid.57291] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
77 Jiang X, Zhu L, Zhan D. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples. Diagn Microbiol Infect Dis 2021;102:115594. [PMID: 34871933 DOI: 10.1016/j.diagmicrobio.2021.115594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020;9:E387. [PMID: 32443590 DOI: 10.3390/pathogens9050387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 Zheng C, Ren S, Xu J, Zhao X, Shi G, Wu J, Li J, Chen H, Bei W. Contribution of NADH oxidase to oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Virulence 2017;8:53-65. [PMID: 27315343 DOI: 10.1080/21505594.2016.1201256] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
80 Zeng F, Dong R, Zhao C, Liu D, Zheng E, Song C, Wu Z, Li Z. Constitutive expression of antimicrobial peptide PR-39 in transgenic mice significantly enhances resistance to bacterial infection and promotes growth. Transgenic Res 2018;27:409-22. [PMID: 30003470 DOI: 10.1007/s11248-018-0084-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
81 Gauthier-Levesque L, Bonifait L, Turgeon N, Veillette M, Perrott P, Grenier D, Duchaine C. Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Res Notes 2016;9:273. [PMID: 27180230 DOI: 10.1186/s13104-016-2073-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
82 Liu H, Lei S, Jia L, Xia X, Sun Y, Jiang H, Zhu R, Li S, Qu G, Gu J, Sun C, Feng X, Han W, Langford PR, Lei L. Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Vet Res 2021;52:30. [PMID: 33618766 DOI: 10.1186/s13567-020-00887-6] [Reference Citation Analysis]
83 Susilawathi NM, Tarini NMA, Fatmawati NND, Mayura PIB, Suryapraba AAA, Subrata M, Sudewi AAR, Mahardika GN. Streptococcus suis-Associated Meningitis, Bali, Indonesia, 2014-2017. Emerg Infect Dis 2019;25:2235-42. [PMID: 31742523 DOI: 10.3201/eid2512.181709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
84 Zhang H, Wang Q, Fisher DJ, Cai M, Chakravartty V, Ye H, Li P, Solbiati JO, Feng Y. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis. Sci Rep 2016;6:25680. [PMID: 27161258 DOI: 10.1038/srep25680] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
85 Chen F, Wei MC, Luo YD, Jin Z, Tang YZ. Synergistic Effect of a Pleuromutilin Derivative with Tetracycline against Streptococcus suis In Vitro and in the Neutropenic Thigh Infection Model. Molecules 2020;25:E3522. [PMID: 32752180 DOI: 10.3390/molecules25153522] [Reference Citation Analysis]
86 Fan H. Advances in pathogenesis of Streptococcus suis serotype 2. Journal of Integrative Agriculture 2017;16:2834-47. [DOI: 10.1016/s2095-3119(17)61768-4] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
87 Pei X, Liu M, Zhou H, Fan H. Screening for phagocytosis resistance-related genes via a transposon mutant library of Streptococcus suis serotype 2. Virulence 2020;11:825-38. [PMID: 32614642 DOI: 10.1080/21505594.2020.1782088] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
88 Wang S, Peng L, Gai Z, Zhang L, Jong A, Cao H, Huang SH. Pathogenic Triad in Bacterial Meningitis: Pathogen Invasion, NF-κB Activation, and Leukocyte Transmigration that Occur at the Blood-Brain Barrier. Front Microbiol 2016;7:148. [PMID: 26925035 DOI: 10.3389/fmicb.2016.00148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
89 Shen X, Liu H, Li G, Deng X, Wang J. Silibinin attenuates Streptococcus suis serotype 2 virulence by targeting suilysin. J Appl Microbiol 2019;126:435-42. [PMID: 30408277 DOI: 10.1111/jam.14149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, Wu J, Yang H, Gao J, Huang L. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun 2021;12:1106. [PMID: 33597514 DOI: 10.1038/s41467-021-21295-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
91 Dai Y, Chen L, Chang W, Lu H, Cui P, Ma X. Culture-Negative Streptococcus suis Infection Diagnosed by Metagenomic Next-Generation Sequencing. Front Public Health 2019;7:379. [PMID: 31921744 DOI: 10.3389/fpubh.2019.00379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
92 Fang L, Shen H, Tang Y, Fang W. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages. Vet Microbiol 2015;176:328-36. [PMID: 25726301 DOI: 10.1016/j.vetmic.2015.02.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
93 Faulds-Pain A, Shaw HA, Terra VS, Kellner S, Brockmeier SL, Wren BW. The Streptococcos suis sortases SrtB and SrtF are essential for disease in pigs. Microbiology (Reading) 2019;165:163-73. [PMID: 30543506 DOI: 10.1099/mic.0.000752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
94 Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016;34:6529-38. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
95 Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Duan Z, Guo R, Liang W, Hu Q, Tian Y, Zhou R. MnmE, a Central tRNA-Modifying GTPase, Is Essential for the Growth, Pathogenicity, and Arginine Metabolism of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2019;9:173. [PMID: 31179247 DOI: 10.3389/fcimb.2019.00173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
96 Lei Z, Liu Q, Yang B, Khaliq H, Cao J, He Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front Pharmacol 2017;8:856. [PMID: 29209222 DOI: 10.3389/fphar.2017.00856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
97 Zhu J, Zhang T, Su Z, Li L, Wang D, Xiao R, Teng M, Tan M, Zhou R. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis. Microbiological Research 2016;191:1-11. [DOI: 10.1016/j.micres.2016.05.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
98 Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018;9:480. [PMID: 29599763 DOI: 10.3389/fmicb.2018.00480] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
99 Chen YY, Xue XH. Coinfection of Streptococcus suis and Nocardia asiatica in the human central nervous system: A case report. World J Clin Cases 2022; 10(18): 6283-6288 [DOI: 10.12998/wjcc.v10.i18.6283] [Reference Citation Analysis]
100 Zhang H, Ravcheev DA, Hu D, Zhang F, Gong X, Hao L, Cao M, Rodionov DA, Wang C, Feng Y. Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections. Microbiologyopen 2015;4:983-1000. [PMID: 26540018 DOI: 10.1002/mbo3.307] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
101 Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis 2017;110:23-30. [DOI: 10.1016/j.micpath.2017.06.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
102 Wang Q, Hassan BH, Lou N, Merritt J, Feng Y. Functional definition of NrtR, a remnant regulator of NAD+ homeostasis in the zoonotic pathogen Streptococcus suis. FASEB J 2019;33:6055-68. [PMID: 30759348 DOI: 10.1096/fj.201802179RR] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Shen X, Niu X, Li G, Deng X, Wang J. Amentoflavone Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Appl Environ Microbiol 2018;84:e01804-18. [PMID: 30315078 DOI: 10.1128/AEM.01804-18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
104 Li W, Yin Y, Meng Y, Zhou H, Ma Z, Lin H, Fan H. Proteomic analysis of bEnd.3 cells infected with wild-type and stk-deficient strains of Streptococcus suis serotype 2 reveals protein and pathway regulation. J Proteomics 2021;230:103983. [PMID: 32961345 DOI: 10.1016/j.jprot.2020.103983] [Reference Citation Analysis]
105 Lu H, Wang C, Lu W, Li X, Wu Z, Wang G, Dong W, Tan C, Liu M. Apigenin and Ampicillin as Combined Strategy to Treat Severe Streptococcus suis Infection. Molecules 2021;26:1980. [PMID: 33915741 DOI: 10.3390/molecules26071980] [Reference Citation Analysis]
106 Zheng C, Jia M, Lu T, Gao M, Li L. CopA Protects Streptococcus suis against Copper Toxicity. Int J Mol Sci 2019;20:E2969. [PMID: 31216645 DOI: 10.3390/ijms20122969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
107 Hlebowicz M, Jakubowski P, Smiatacz T. Streptococcus suis Meningitis: Epidemiology, Clinical Presentation and Treatment. Vector Borne Zoonotic Dis 2019;19:557-62. [PMID: 30855223 DOI: 10.1089/vbz.2018.2399] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
108 Zhu H, Ni Y, Zhou J, Yu Z, Mao A, Wang D, He K. Complete Genome Sequence of Streptococcus suis Serotype 2 Virulent Strain SS2-1. Genome Announc 2018;6:e00067-18. [PMID: 29519820 DOI: 10.1128/genomeA.00067-18] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Guo G, Kong X, Du D, Wei D, Yu Y, Zhang W. Genome-wide association study identifies the virulence-associated marker in Streptococcus suis serotype 2. Infect Genet Evol 2021;92:104894. [PMID: 33964473 DOI: 10.1016/j.meegid.2021.104894] [Reference Citation Analysis]
110 Jiang X, Yang Y, Zhou J, Liu H, Liao X, Luo J, Li X, Fang W. Peptidyl isomerase PrsA is surface-associated on Streptococcus suis and offers cross-protection against serotype 9 strain. FEMS Microbiology Letters 2019;366. [DOI: 10.1093/femsle/fnz002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
111 Tarini N, Susilawathi N, Sudewi A, Soejitno A, Fatmawati N, Mayura I, Lestari A, Suputra G, Subrata I, Astiti C, Besung I, Mahardika G. A large cluster of human infections of Streptococcus suis in Bali, Indonesia. One Health 2022. [DOI: 10.1016/j.onehlt.2022.100394] [Reference Citation Analysis]
112 Teng L, Dong X, Zhou Y, Li Z, Deng L, Chen H, Wang X, Li J. Draft Genome Sequence of Hypervirulent and Vaccine Candidate Streptococcus suis Strain SC19. Genome Announc 2017;5:e01484-16. [PMID: 28104658 DOI: 10.1128/genomeA.01484-16] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
113 Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016;11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
114 Ye MH, Bao H, Meng Y, Guan LL, Stothard P, Plastow G. Comparative transcriptomic analysis of porcine peripheral blood reveals differentially expressed genes from the cytokine-cytokine receptor interaction pathway related to health status. Genome 2017;60:1021-8. [PMID: 28763624 DOI: 10.1139/gen-2017-0074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
115 Libante V, Nombre Y, Coluzzi C, Staub J, Guédon G, Gottschalk M, Teatero S, Fittipaldi N, Leblond-Bourget N, Payot S. Chromosomal Conjugative and Mobilizable Elements in Streptococcus suis: Major Actors in the Spreading of Antimicrobial Resistance and Bacteriocin Synthesis Genes. Pathogens 2019;9:E22. [PMID: 31881744 DOI: 10.3390/pathogens9010022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
116 Zheng C, Xu J, Shi G, Zhao X, Ren S, Li J, Chen H, Bei W. Formate-tetrahydrofolate ligase is involved in the virulence of Streptococcus suis serotype 2. Microb Pathog 2016;98:149-54. [PMID: 27427088 DOI: 10.1016/j.micpath.2016.07.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
117 Bercier P, Gottschalk M, Grenier D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model. Microb Pathog 2020;139:103913. [PMID: 31816403 DOI: 10.1016/j.micpath.2019.103913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
118 Zhang Y, Lu P, Pan Z, Zhu Y, Ma J, Zhong X, Dong W, Lu C, Yao H. SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. Appl Environ Microbiol 2018;84:e01385-18. [PMID: 30030221 DOI: 10.1128/AEM.01385-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
119 Liu J, Tian ZY, Xiao YC, Wang XL, Jin ML, Shi DS. The Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection. PLoS One 2016;11:e0151256. [PMID: 26974437 DOI: 10.1371/journal.pone.0151256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
120 Zhang H, Zhang C, Wang H, Yan YX, Sun J. A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection. FEMS Microbiol Lett 2016;363:fnw186. [PMID: 27481700 DOI: 10.1093/femsle/fnw186] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
121 Yanase T, Morii D, Kamio S, Nishimura A, Fukao E, Inose Y, Honma Y, Kitahara N, Yokozawa T, Chang B, Oda T. The first report of human meningitis and pyogenic ventriculitis caused by Streptococcus suis: A case report. J Infect Chemother 2018;24:669-73. [PMID: 29429850 DOI: 10.1016/j.jiac.2018.01.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
122 Yang W, Ansari AR, Niu X, Zou W, Lu M, Dong L, Li F, Chen Y, Yang K, Song H. Interaction between gut microbiota dysbiosis and lung infection as gut-lung axis caused by Streptococcus suis in mouse model. Microbiological Research 2022. [DOI: 10.1016/j.micres.2022.127047] [Reference Citation Analysis]
123 Roy S, Zhu Y, Ma J, Roy AC, Zhang Y, Zhong X, Pan Z, Yao H. Role of ClpX and ClpP in Streptococcus suis serotype 2 stress tolerance and virulence. Microbiol Res 2019;223-225:99-109. [PMID: 31178057 DOI: 10.1016/j.micres.2019.04.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
124 Zhou YF, Peng HM, Bu MX, Liu YH, Sun J, Liao XP. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection. Front Pharmacol 2017;8:684. [PMID: 29033841 DOI: 10.3389/fphar.2017.00684] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
125 Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Liang W, Zou G, Zhou R, Tian Y. Proteomic and Metabolomic Analyses Provide Insights into the Mechanism on Arginine Metabolism Regulated by tRNA Modification Enzymes GidA and MnmE of Streptococcus suis. Front Cell Infect Microbiol 2020;10:597408. [PMID: 33425782 DOI: 10.3389/fcimb.2020.597408] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Fillo S, Mancini F, Anselmo A, Fortunato A, Rezza G, Lista F, Ciervo A. Draft Genome Sequence of Streptococcus suis Strain SsRC-1, a Human Isolate from a Fatal Case of Toxic Shock Syndrome. Genome Announc 2018;6:e00447-18. [PMID: 29773639 DOI: 10.1128/genomeA.00447-18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
127 Gao J, Scheenstra MR, van Dijk A, Veldhuizen EJA, Haagsman HP. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages. Vet Immunol Immunopathol 2018;200:7-15. [PMID: 29776615 DOI: 10.1016/j.vetimm.2018.04.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
128 Li Q, Fu Y, Guo G, Wang Z, Zhang W. Identification of novel pig and human immunoglobulin G-binding proteins and characterization of the binding regions of enolase from Streptococcus suis serotype 2. AMB Express 2020;10:103. [PMID: 32488558 DOI: 10.1186/s13568-020-01042-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
129 Guo C, Liao X, Wang M, Wang F, Yan C, Xiao X, Sun J, Liu Y. In Vivo Pharmacodynamics of Cefquinome in a Neutropenic Mouse Thigh Model of Streptococcus suis Serotype 2 at Varied Initial Inoculum Sizes. Antimicrob Agents Chemother 2016;60:1114-20. [PMID: 26666923 DOI: 10.1128/AAC.02065-15] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
130 Yue C, Hu C, Xiang P, Zhang S, Xiao H, Zhou W, Jin H, Shi D, Li J, Xu L, Chen Y, Zeng Y. Autophagy is a defense mechanism controlling Streptococcus suis serotype 2 infection in murine microglia cells. Vet Microbiol 2021;258:109103. [PMID: 33991788 DOI: 10.1016/j.vetmic.2021.109103] [Reference Citation Analysis]