1 |
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023;313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Reference Citation Analysis]
|
2 |
Patil P, Nene S, Shah S, Singh SB, Srivastava S. Exploration of novel drug delivery systems in topical management of osteoarthritis. Drug Deliv Transl Res 2023;13:531-46. [PMID: 36031671 DOI: 10.1007/s13346-022-01229-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Awad M, Kopecki Z, Barnes TJ, Wignall A, Joyce P, Thomas N, Prestidge CA. Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023;15. [PMID: 36839628 DOI: 10.3390/pharmaceutics15020305] [Reference Citation Analysis]
|
4 |
Pasika SR, Bulusu R, Rao BVK, Kommineni N, Bolla PK, Kala SG, Godugu C. Nanotechnology for Biomedical Applications. Nanomaterials 2023. [DOI: 10.1007/978-981-19-7963-7_11] [Reference Citation Analysis]
|
5 |
Sartori B, Marmiroli B. Tailoring Lipid-Based Drug Delivery Nanosystems by Synchrotron Small Angle X-ray Scattering. Pharmaceutics 2022;14. [PMID: 36559196 DOI: 10.3390/pharmaceutics14122704] [Reference Citation Analysis]
|
6 |
Chountoulesi M, Perinelli DR, Forys A, Chrysostomou V, Kaminari A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Development of stimuli-responsive lyotropic liquid crystalline nanoparticles targeting lysosomes: Physicochemical, morphological and drug release studies. Int J Pharm 2022;630:122440. [PMID: 36436746 DOI: 10.1016/j.ijpharm.2022.122440] [Reference Citation Analysis]
|
7 |
Chandrakala V. CUBOSOMES: A BOON FOR COSMECEUTICALS AND TOPICAL DRUG DELIVERY. Int J Pharm Pharm Sci 2022. [DOI: 10.22159/ijpps.2022v14i11.45550] [Reference Citation Analysis]
|
8 |
Balestri A, Lonetti B, Harrisson S, Farias-mancilla B, Zhang J, Amenitsch H, Schubert U, Guerrero-sanchez C, Montis C, Berti D. Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112884] [Reference Citation Analysis]
|
9 |
Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, Bilewicz R, Walczak R, Majka E, Mames A, Bruchertseifer F, Morgenstern A, Bilewicz A, Majkowska-Pilip A. Cubosomal Lipid Formulation for Combination Cancer Treatment: Delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213Bi. Mol Pharm 2022. [PMID: 35849547 DOI: 10.1021/acs.molpharmaceut.2c00182] [Reference Citation Analysis]
|
10 |
Sapna Kumari, Anju Goyal, Eda Sönmez Gürer, Evren Algın Yapar, Madhukar Garg, Meenakshi Sood, Rakesh K. Sindhu. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022;14:1091. [PMID: 35631677 DOI: 10.3390/pharmaceutics14051091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
|
11 |
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022;302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Almoshari Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics 2022;14:600. [DOI: 10.3390/pharmaceutics14030600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Malheiros B, de Castro RD, Lotierzo MC, Casadei BR, Mariani P, Barbosa LR. Influence of hexadecylphosphocholine (Miltefosine) in phytantriol-based cubosomes: A structural investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;632:127720. [DOI: 10.1016/j.colsurfa.2021.127720] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
15 |
Das P, Das MK. Production and physicochemical characterization of nanocosmeceuticals. Nanocosmeceuticals 2022. [DOI: 10.1016/b978-0-323-91077-4.00006-5] [Reference Citation Analysis]
|
16 |
Walde P, Ichikawa S. Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences 2021;11:10345. [DOI: 10.3390/app112110345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
Forys A, Chountoulesi M, Mendrek B, Konieczny T, Sentoukas T, Godzierz M, Kordyka A, Demetzos C, Pispas S, Trzebicka B. The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers (Basel) 2021;13:2607. [PMID: 34451146 DOI: 10.3390/polym13162607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021;606:464-79. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
19 |
Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al Mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials (Basel) 2021;11:1841. [PMID: 34361227 DOI: 10.3390/nano11071841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
20 |
Chen H, Li MH. Recent Progress in Polymer Cubosomes and Hexosomes. Macromol Rapid Commun 2021;42:e2100194. [PMID: 34145688 DOI: 10.1002/marc.202100194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Ilhan-Ayisigi E, Ghazal A, Sartori B, Dimaki M, Svendsen WE, Yesil-Celiktas O, Yaghmur A. Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. Nanomaterials (Basel) 2021;11:1510. [PMID: 34200457 DOI: 10.3390/nano11061510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
22 |
Wang K, Li Z, Huang Y, YaotianTao, Liang X, Chu X, He N, Gui S, Li Z. Additives-directed lyotropic liquid crystals architecture: Simulations and experiments. Int J Pharm 2021;600:120353. [PMID: 33549811 DOI: 10.1016/j.ijpharm.2021.120353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Angelova A, Angelov B, Deng Y. Lipid Membranes: Fusion, Instabilities, and Cubic Structure Formation. Biological Soft Matter 2021. [DOI: 10.1002/9783527811014.ch5] [Reference Citation Analysis]
|
24 |
Dey S, Saha J. SiMPLISTIC: A novel pairwise potential for implicit solvent lipid simulations with single-site models. JCIS Open 2021;1:100004. [DOI: 10.1016/j.jciso.2021.100004] [Reference Citation Analysis]
|
25 |
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-85. [PMID: 33996404 DOI: 10.1016/j.apsb.2021.02.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
|
26 |
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. Journal of Drug Delivery Science and Technology 2021;62:102328. [DOI: 10.1016/j.jddst.2021.102328] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
27 |
Carvalho PM, Makowski M, Domingues MM, Martins IC, Santos NC. Lipid membrane-based therapeutics and diagnostics. Arch Biochem Biophys 2021;704:108858. [PMID: 33798534 DOI: 10.1016/j.abb.2021.108858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Zoabi A, Touitou E, Margulis K. Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids and Interfaces 2021;5:18. [DOI: 10.3390/colloids5010018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
|
29 |
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021;23:3693-706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
30 |
Ilhan-Ayisigi E, Yaldiz B, Bor G, Yaghmur A, Yesil-Celiktas O. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021;201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
|
31 |
Angelova A, Angelov B, Drechsler M, Bizien T, Gorshkova YE, Deng Y. Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes. Front Cell Dev Biol 2021;9:617984. [PMID: 33644054 DOI: 10.3389/fcell.2021.617984] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
32 |
Malheiros B, Dias de Castro R, Lotierzo MC, Casadei BR, Barbosa LR. Design and manufacturing of monodisperse and malleable phytantriol-based cubosomes for drug delivery applications. Journal of Drug Delivery Science and Technology 2021;61:102149. [DOI: 10.1016/j.jddst.2020.102149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
33 |
Vinceković M, Jurić S, Marijan M, Viskić M, Vlahoviček-kahlina K, Maslov Bandić L. Encapsulation of herb extracts (Aromatic and medicinal herbs). Aromatic Herbs in Food 2021. [DOI: 10.1016/b978-0-12-822716-9.00008-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Georgiev MT, Aleksova LA, Kralchevsky PA, Danov KD. Phase separation of saturated micellar network and its potential applications for nanoemulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;607:125487. [DOI: 10.1016/j.colsurfa.2020.125487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, Mames A, Bilewicz A, Majkowska-Pilip A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials (Basel) 2020;10:E2272. [PMID: 33207760 DOI: 10.3390/nano10112272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
36 |
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? Front Nanotechnol 2020;2:588915. [DOI: 10.3389/fnano.2020.588915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
37 |
Chountoulesi M, Perinelli DR, Forys A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. Eur J Pharm Biopharm 2021;158:21-34. [PMID: 33098976 DOI: 10.1016/j.ejpb.2020.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
38 |
Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020;9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
39 |
Strachan JB, Dyett BP, Nasa Z, Valery C, Conn CE. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. Journal of Colloid and Interface Science 2020;576:241-51. [DOI: 10.1016/j.jcis.2020.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
40 |
Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2021;582:906-17. [PMID: 32919118 DOI: 10.1016/j.jcis.2020.08.085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
41 |
Yaghmur A, Rappolt M, Jonassen ALU, Schmitt M, Larsen SW. In situ monitoring of the formation of lipidic non-lamellar liquid crystalline depot formulations in synovial fluid. J Colloid Interface Sci 2021;582:773-81. [PMID: 32916575 DOI: 10.1016/j.jcis.2020.08.084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
42 |
Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020;21:E5116. [PMID: 32698376 DOI: 10.3390/ijms21145116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
43 |
See GL, Arce F Jr, Dahlizar S, Okada A, Fadli MFBM, Hijikuro I, Itakura S, Katakura M, Todo H, Sugibayashi K. Enhanced nose-to-brain delivery of tranilast using liquid crystal formulations. J Control Release 2020;325:1-9. [PMID: 32598958 DOI: 10.1016/j.jconrel.2020.06.028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
44 |
Alharbi WS, Hosny KM. Development and optimization of ocular in situ gels loaded with ciprofloxacin cubic liquid crystalline nanoparticles. Journal of Drug Delivery Science and Technology 2020;57:101710. [DOI: 10.1016/j.jddst.2020.101710] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
45 |
Helvig SY, Andersen H, Antopolsky M, Airaksinen AJ, Urtti A, Yaghmur A, Moghimi SM. Hexosome engineering for targeting of regional lymph nodes. Materialia 2020;11:100705. [DOI: 10.1016/j.mtla.2020.100705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
|
46 |
Chountoulesi M, Perinelli DR, Pippa N, Chrysostomou V, Forys A, Otulakowski L, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;595:124678. [DOI: 10.1016/j.colsurfa.2020.124678] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
47 |
Than A, Zan P, Chen P. Transdermal theranostics. View 2020;1. [DOI: 10.1002/viw2.21] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
48 |
Jenni S, Picci G, Fornasier M, Mamusa M, Schmidt J, Talmon Y, Sour A, Heitz V, Murgia S, Caltagirone C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem Photobiol Sci 2020;19:674-80. [PMID: 32314755 DOI: 10.1039/c9pp00449a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
49 |
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020;15:2439-83. [PMID: 32346289 DOI: 10.2147/IJN.S227805] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
|
50 |
Bakr MM, Shukr MH, ElMeshad AN. In Situ Hexosomal Gel as a Promising Tool to Ameliorate the Transnasal Brain Delivery of Vinpocetine: Central Composite Optimization and In Vivo Biodistribution. J Pharm Sci 2020;109:2213-23. [PMID: 32259532 DOI: 10.1016/j.xphs.2020.03.030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
|
51 |
Mitsou E, Pletsa V, Sotiroudis GT, Panine P, Zoumpanioti M, Xenakis A. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids Surf B Biointerfaces 2020;190:110974. [PMID: 32208193 DOI: 10.1016/j.colsurfb.2020.110974] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
|
52 |
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. Sci China Mater 2020;:1-17. [PMID: 32219007 DOI: 10.1007/s40843-019-1261-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
53 |
Assadpour E, Rostamabadi H, Jafari SM. Introduction to characterization of nanoencapsulated food ingredients. Characterization of Nanoencapsulated Food Ingredients 2020. [DOI: 10.1016/b978-0-12-815667-4.00001-8] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
54 |
Chountoulesi M, Naziris N, Pippa N, Pispas S, Demetzos C. Stimuli-responsive nanocarriers for drug delivery. Nanomaterials for Clinical Applications 2020. [DOI: 10.1016/b978-0-12-816705-2.00004-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
55 |
Ward K, Taylor A, Mohammed A, Stuckey DC. Current applications of Colloidal Liquid Aphrons: Predispersed solvent extraction, enzyme immobilization and drug delivery. Adv Colloid Interface Sci 2020;275:102079. [PMID: 31787216 DOI: 10.1016/j.cis.2019.102079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
56 |
Yaghmur A, Tran BV, Moghimi SM. Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation. Molecules 2019;25:E16. [PMID: 31861549 DOI: 10.3390/molecules25010016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
|
57 |
Yaghmur A, Lotfi S, Ariabod SA, Bor G, Gontsarik M, Salentinig S. Internal Lamellar and Inverse Hexagonal Liquid Crystalline Phases During the Digestion of Krill and Astaxanthin Oil-in-Water Emulsions. Front Bioeng Biotechnol 2019;7:384. [PMID: 31867316 DOI: 10.3389/fbioe.2019.00384] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
|
58 |
Barriga HMG, Ces O, Law RV, Seddon JM, Brooks NJ. Engineering Swollen Cubosomes Using Cholesterol and Anionic Lipids. Langmuir 2019;35:16521-7. [PMID: 31702159 DOI: 10.1021/acs.langmuir.9b02336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
59 |
Rathnam C, Chueng SD, Ying YM, Lee KB, Kwan K. Developments in Bio-Inspired Nanomaterials for Therapeutic Delivery to Treat Hearing Loss. Front Cell Neurosci 2019;13:493. [PMID: 31780898 DOI: 10.3389/fncel.2019.00493] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
60 |
Sharma R, Sharma PK, Malviya R. Modulation of Shape and Size-Dependent Characteristics of Nanoparticles. CNANOM 2019;9:210-215. [DOI: 10.2174/2468187309666190301153651] [Reference Citation Analysis]
|
61 |
Carducci F, Casadei BR, Mariani P, Barbosa LRS. X-Ray Characterization of Pharmaceutical and Cosmetic Lipidic Nanoparticles for Cutaneous Application. Curr Pharm Des 2019;25:2364-74. [PMID: 31584368 DOI: 10.2174/1381612825666190709210211] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
62 |
Angelova A, Drechsler M, Garamus VM, Angelov B. Pep‐Lipid Cubosomes and Vesicles Compartmentalized by Micelles from Self‐Assembly of Multiple Neuroprotective Building Blocks Including a Large Peptide Hormone PACAP‐DHA. ChemNanoMat 2019;5:1381-9. [DOI: 10.1002/cnma.201900468] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
|
63 |
Chountoulesi M, Pippa N, Chrysostomou V, Pispas S, Chrysina ED, Forys A, Otulakowski L, Trzebicka B, Demetzos C. Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino Ethyl Methacrylate)-b-Poly(Lauryl Methacrylate) Amphiphilic Block Copolymer.Polymers (Basel). 2019;11. [PMID: 31454966 DOI: 10.3390/polym11091400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
|
64 |
Magana JR, Homs M, Esquena J, Freilich I, Kesselman E, Danino D, Rodríguez-abreu C, Solans C. Formulating stable hexosome dispersions with a technical grade diglycerol-based surfactant. Journal of Colloid and Interface Science 2019;550:73-80. [DOI: 10.1016/j.jcis.2019.04.084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
65 |
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019;270:123-46. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 16.3] [Reference Citation Analysis]
|
66 |
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. Prog Mater Sci 2019;106:100589. [PMID: 32189815 DOI: 10.1016/j.pmatsci.2019.100589] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
|
67 |
Zabara M, Senturk B, Gontsarik M, Ren Q, Rottmar M, Maniura‐weber K, Mezzenga R, Bolisetty S, Salentinig S. Multifunctional Nano‐Biointerfaces: Cytocompatible Antimicrobial Nanocarriers from Stabilizer‐Free Cubosomes. Adv Funct Mater 2019;29:1904007. [DOI: 10.1002/adfm.201904007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
|
68 |
Rodrigues L, Schneider F, Zhang X, Larsson E, Moodie LWK, Dietz H, Papadakis CM, Winter G, Lundmark R, Hubert M. Cellular uptake of self-assembled phytantriol-based hexosomes is independent of major endocytic machineries. J Colloid Interface Sci 2019;553:820-33. [PMID: 31284226 DOI: 10.1016/j.jcis.2019.06.045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
69 |
Yaghmur A, Ghazal A, Ghazal R, Dimaki M, Svendsen WE. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys Chem Chem Phys 2019;21:13005-13. [PMID: 31165825 DOI: 10.1039/c9cp02393c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
|
70 |
Prajapati R, Gontsarik M, Yaghmur A, Salentinig S. pH-Responsive Nano-Self-Assemblies of the Anticancer Drug 2-Hydroxyoleic Acid. Langmuir 2019;35:7954-61. [PMID: 31150248 DOI: 10.1021/acs.langmuir.9b00838] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
|
71 |
Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-silva M, Veiga F, Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery 2019;16:313-30. [DOI: 10.1080/17425247.2019.1585426] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 17.3] [Reference Citation Analysis]
|
72 |
Rostamabadi H, Falsafi SR, Jafari SM. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release 2019;298:38-67. [DOI: 10.1016/j.jconrel.2019.02.005] [Cited by in Crossref: 158] [Cited by in F6Publishing: 101] [Article Influence: 39.5] [Reference Citation Analysis]
|
73 |
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery 2019;10:113-32. [DOI: 10.4155/tde-2018-0062] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 18.8] [Reference Citation Analysis]
|
74 |
Murakami T, Hijikuro I, Yamashita K, Tsunoda S, Hirai K, Suzuki T, Sakai Y, Tabata Y. Antiadhesion effect of the C17 glycerin ester of isoprenoid-type lipid forming a nonlamellar liquid crystal. Acta Biomater 2019;84:257-67. [PMID: 30529080 DOI: 10.1016/j.actbio.2018.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
75 |
Assadpour E, Jafari SM. An overview of lipid-based nanostructures for encapsulation of food ingredients. Lipid-Based Nanostructures for Food Encapsulation Purposes 2019. [DOI: 10.1016/b978-0-12-815673-5.00001-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
76 |
Lachowicz JI, Picci G, Coni P, Lippolis V, Mamusa M, Murgia S, Pichiri G, Caltagirone C. Fluorescent squaramide ligands for cellular imaging and their encapsulation in cubosomes. New J Chem 2019;43:10336-42. [DOI: 10.1039/c9nj01548e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
|
77 |
Koshani R, Jafari SM. Production of food bioactive-loaded nanostructures by ultrasonication. Nanoencapsulation of Food Ingredients by Specialized Equipment 2019. [DOI: 10.1016/b978-0-12-815671-1.00008-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
78 |
Cui C, Han L, Che S. Silica cubosomes templated by a star polymer. RSC Adv 2019;9:6118-24. [DOI: 10.1039/c8ra09130g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
79 |
Yaghmur A. Nanoencapsulation of food ingredients by cubosomes and hexosomes. Lipid-Based Nanostructures for Food Encapsulation Purposes 2019. [DOI: 10.1016/b978-0-12-815673-5.00012-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
80 |
Prajapati R, Larsen SW, Yaghmur A. Citrem–phosphatidylcholine nano-self-assemblies: solubilization of bupivacaine and its role in triggering a colloidal transition from vesicles to cubosomes and hexosomes. Phys Chem Chem Phys 2019;21:15142-50. [DOI: 10.1039/c9cp01878f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
|
81 |
Radulova GM, Slavova TG, Kralchevsky PA, Basheva ES, Marinova KG, Danov KD. Encapsulation of oils and fragrances by core-in-shell structures from silica particles, polymers and surfactants: The brick-and-mortar concept. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;559:351-64. [DOI: 10.1016/j.colsurfa.2018.09.079] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
|
82 |
Allen SD, Bobbala S, Karabin NB, Scott EA. On the advancement of polymeric bicontinuous nanospheres toward biomedical applications. Nanoscale Horiz 2019;4:258-72. [PMID: 32254084 DOI: 10.1039/c8nh00300a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
|
83 |
Faria AR, Silvestre OF, Maibohm C, Adão RMR, Silva BFB, Nieder JB. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res 2019;12:991-8. [DOI: 10.1007/s12274-018-2231-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
|
84 |
Prajapati R, Salentinig S, Yaghmur A. Temperature triggering of kinetically trapped self-assemblies in citrem-phospholipid nanoparticles. Chemistry and Physics of Lipids 2018;216:30-8. [DOI: 10.1016/j.chemphyslip.2018.09.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
|
85 |
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
|
86 |
Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|
87 |
Shao X, Bor G, Al-Hosayni S, Salentinig S, Yaghmur A. Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys Chem Chem Phys 2018;20:23928-41. [PMID: 30209464 DOI: 10.1039/c8cp04256j] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
|
88 |
Zheng T, Huang X, Chen J, Feng D, Mei L, Huang Y, Quan G, Zhu C, Singh V, Ran H, Pan X, Wu CY, Wu C. A liquid crystalline precursor incorporating chlorhexidine acetate and silver nanoparticles for root canal disinfection. Biomater Sci 2018;6:596-603. [PMID: 29406548 DOI: 10.1039/c7bm00764g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
|
89 |
Chountoulesi M, Pippa N, Pispas S, Chrysina ED, Forys A, Trzebicka B, Demetzos C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int J Pharm 2018;550:57-70. [PMID: 30121331 DOI: 10.1016/j.ijpharm.2018.08.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
|
90 |
Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. Journal of Colloid and Interface Science 2018;522:163-73. [DOI: 10.1016/j.jcis.2018.03.063] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
|
91 |
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A, Sethi A. Lipid particulate drug delivery systems: a review. Bioinspired, Biomimetic and Nanobiomaterials 2018;7:109-21. [DOI: 10.1680/jbibn.16.00039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
|
92 |
Azmi IDM, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Cisplatin Encapsulation Generates Morphologically Different Multicompartments in the Internal Nanostructures of Nonlamellar Liquid-Crystalline Self-Assemblies. Langmuir 2018;34:6570-81. [DOI: 10.1021/acs.langmuir.8b01149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
|
93 |
Mionić Ebersold M, Petrović M, Fong WK, Bonvin D, Hofmann H, Milošević I. Hexosomes with Undecylenic Acid Efficient against Candida albicans. Nanomaterials (Basel) 2018;8:E91. [PMID: 29414873 DOI: 10.3390/nano8020091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
|
94 |
Alcaraz N, Liu Q, Hanssen E, Johnston A, Boyd BJ. Clickable Cubosomes for Antibody-Free Drug Targeting and Imaging Applications. Bioconjug Chem 2018;29:149-57. [PMID: 29182866 DOI: 10.1021/acs.bioconjchem.7b00659] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
|
95 |
Yaghmur A, Al-hosayni S, Amenitsch H, Salentinig S. Structural Investigation of Bulk and Dispersed Inverse Lyotropic Hexagonal Liquid Crystalline Phases of Eicosapentaenoic Acid Monoglyceride. Langmuir 2017;33:14045-57. [DOI: 10.1021/acs.langmuir.7b03078] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
|
96 |
de Campo L, Castle T, Hyde ST. Optimal packings of three-arm star polyphiles: from tricontinuous to quasi-uniformly striped bicontinuous forms. Interface Focus 2017;7:20160130. [PMID: 28630673 DOI: 10.1098/rsfs.2016.0130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
|
97 |
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS Nano 2017;11:6549-65. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Cited by in Crossref: 134] [Cited by in F6Publishing: 138] [Article Influence: 22.3] [Reference Citation Analysis]
|
98 |
Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci 2017;101:31-42. [PMID: 28137471 DOI: 10.1016/j.ejps.2017.01.035] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
|
99 |
Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic Cubic-Phase Nanoparticles-Cubosomes for Efficient Drug Delivery to Cancer Cells. Chempluschem 2017;82:570-5. [PMID: 31961592 DOI: 10.1002/cplu.201600534] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
|
100 |
Khaliqi K, Ghazal A, Azmi IDM, Amenitsch H, Mortensen K, Salentinig S, Yaghmur A. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst 2017;142:3118-26. [DOI: 10.1039/c7an00860k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
|
101 |
Fong W, Sánchez-ferrer A, Ortelli FG, Sun W, Boyd BJ, Mezzenga R. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv 2017;7:4368-77. [DOI: 10.1039/c6ra26688f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
|
102 |
Meli V, Caltagirone C, Sinico C, Lai F, Falchi AM, Monduzzi M, Obiols-rabasa M, Picci G, Rosa A, Schmidt J, Talmon Y, Murgia S. Theranostic hexosomes for cancer treatments: an in vitro study. New J Chem 2017;41:1558-65. [DOI: 10.1039/c6nj03232j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
|
103 |
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, Lorenzon A, Macor P, Meli V, Monduzzi M, Obiols-Rabasa M, Petrizza L, Prodi L, Rosa A, Schmidt J, Talmon Y, Murgia S. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology 2017;28:055102. [PMID: 28032617 DOI: 10.1088/1361-6528/28/5/055102] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
|
104 |
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Ahmadvand D, Labrador A, Salentinig S, Yaghmur A. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. J Phys Chem Lett 2017;8:73-9. [PMID: 27936765 DOI: 10.1021/acs.jpclett.6b02468] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
|
105 |
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Labrador A, Mortensen K, Yaghmur A. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. J Appl Crystallogr 2016;49:2005-14. [DOI: 10.1107/s1600576716014199] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
|
106 |
Park K. Hemocompatible and immune-safe library of citrem-phospholipid liquid crystalline nanoplatforms. Journal of Controlled Release 2016;239:249. [DOI: 10.1016/j.jconrel.2016.09.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|
107 |
Azmi ID, Wibroe PP, Wu L, Kazem AI, Amenitsch H, Moghimi SM, Yaghmur A. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. Journal of Controlled Release 2016;239:1-9. [DOI: 10.1016/j.jconrel.2016.08.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 7.7] [Reference Citation Analysis]
|
108 |
Jabłonowska E, Nazaruk E, Matyszewska D, Speziale C, Mezzenga R, Landau EM, Bilewicz R. Interactions of Lipidic Cubic Phase Nanoparticles with Lipid Membranes. Langmuir 2016;32:9640-8. [DOI: 10.1021/acs.langmuir.6b01746] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
|
109 |
Gontsarik M, Buhmann MT, Yaghmur A, Ren Q, Maniura-Weber K, Salentinig S. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers. J Phys Chem Lett 2016;7:3482-6. [PMID: 27541048 DOI: 10.1021/acs.jpclett.6b01622] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
|
110 |
Miceli V, Meli V, Blanchard-desce M, Bsaibess T, Pampalone M, Conaldi PG, Caltagirone C, Obiols-rabasa M, Schmidt J, Talmon Y, Casu A, Murgia S. In vitro imaging of β-cells using fluorescent cubic bicontinuous liquid crystalline nanoparticles. RSC Adv 2016;6:62119-27. [DOI: 10.1039/c6ra09616f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
|