BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mojsoska B, Larsen S, Olsen DA, Madsen JS, Brandslund I, Alatraktchi FA. Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor. Sensors (Basel) 2021;21:E390. [PMID: 33429915 DOI: 10.3390/s21020390] [Cited by in Crossref: 93] [Cited by in F6Publishing: 101] [Article Influence: 93.0] [Reference Citation Analysis]
Number Citing Articles
1 Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. Physica B Condens Matter 2023;648:414438. [PMID: 36281340 DOI: 10.1016/j.physb.2022.414438] [Reference Citation Analysis]
2 Rong G, Zheng Y, Chen Y, Zhang Y, Zhu P, Sawan M. COVID-19 Diagnostic Methods and Detection Techniques. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00080-7] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Adeel M, Asif K, Alshabouna F, Canzonieri V, Rahman MM, Ansari SA, Güder F, Rizzolio F, Daniele S. Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles. Biosensors and Bioelectronics: X 2022;12:100256. [DOI: 10.1016/j.biosx.2022.100256] [Reference Citation Analysis]
4 Primpray V, Kamsong W, Pakapongpan S, Phochakum K, Kaewchaem A, Sappat A, Wisitsoraat A, Lomas T, Tuantranont A, Karuwan C. An alternative ready-to-use electrochemical immunosensor for point-of-care COVID-19 diagnosis using graphene screen-printed electrodes coupled with a 3D-printed portable potentiostat. Talanta Open 2022;6:100155. [PMID: 36212546 DOI: 10.1016/j.talo.2022.100155] [Reference Citation Analysis]
5 Wang A, Li Y, You X, Zhang S, Zhou J, Liu H, Ding P, Chen Y, Qi Y, Liu Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor nanoarchitectonics with the Ag-rGO nanocomposites for the detection of receptor-binding domain of SARS-CoV-2 spike protein. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05330-8] [Reference Citation Analysis]
6 Kowalczyk A, Kasprzak A, Ruzycka-Ayoush M, Podsiadły E, Demkow U, Grudzinski IP, Nowicka AM. Ultrasensitive voltammetric detection of SARS-CoV-2 in clinical samples. Sens Actuators B Chem 2022;371:132539. [PMID: 36033923 DOI: 10.1016/j.snb.2022.132539] [Reference Citation Analysis]
7 Zhai Q, Wang X, Hu C, Zhu L, Zhang C, Dai L. Label-free electrochemical immunosensor for highly sensitive COVID-19 spike protein detection. Sens Actuators Rep 2022;4:100124. [PMID: 36276922 DOI: 10.1016/j.snr.2022.100124] [Reference Citation Analysis]
8 Braz BA, Hospinal-Santiani M, Martins G, Pinto CS, Zarbin AJG, Beirão BCB, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH, Soccol CR. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. Biosensors (Basel) 2022;12:885. [PMID: 36291021 DOI: 10.3390/bios12100885] [Reference Citation Analysis]
9 Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2023;253:124009. [DOI: 10.1016/j.talanta.2022.124009] [Reference Citation Analysis]
10 Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol 2022;44:4769-89. [PMID: 36286040 DOI: 10.3390/cimb44100325] [Reference Citation Analysis]
11 Olgaç N, Şahin Y, Liv L. Development and characterisation of cysteine-based gold electrodes for the electrochemical biosensing of the SARS-CoV-2 spike antigen. Analyst 2022;147:4462-72. [PMID: 36052711 DOI: 10.1039/d2an01225a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hosseini M, Sobhanie E, Salehnia F, Xu G, Rabbani H, Naghavi Sheikholeslami M, Firoozbakhtian A, Sadeghi N, Hossein Farajollah M, Reza Ganjali M, Vosough H. Development of sandwich electrochemiluminescence immunosensor for COVID-19 diagnosis by SARS-CoV-2 spike protein detection based on Au@BSA-luminol nanocomposites. Bioelectrochemistry 2022;147:108161. [DOI: 10.1016/j.bioelechem.2022.108161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shola David M, Kanayeva D. Enzyme linked oligonucleotide assay for the sensitive detection of SARS-CoV-2 variants. Front Cell Infect Microbiol 2022;12:1017542. [DOI: 10.3389/fcimb.2022.1017542] [Reference Citation Analysis]
14 Wang C, Song Y, Huang H. Evolution Application of Two-Dimensional MoS2-Based Field-Effect Transistors. Nanomaterials (Basel) 2022;12:3233. [PMID: 36145022 DOI: 10.3390/nano12183233] [Reference Citation Analysis]
15 Tan Q, Wu S, Liu Z, Wu X, Forsberg E, He S. High sensitivity detection of SARS-CoV-2 by an optofluidic hollow eccentric core fiber. Biomed Opt Express 2022;13:4592. [DOI: 10.1364/boe.465136] [Reference Citation Analysis]
16 Torres-gonzález V, Ávila-niño JA, Araujo E. Facile fabrication of tailorable Ag/AgCl reference electrodes for planar devices. Thin Solid Films 2022;757:139413. [DOI: 10.1016/j.tsf.2022.139413] [Reference Citation Analysis]
17 Erdem A, Senturk H, Yildiz E, Maral M. Impedimetric Detection Based on Label-Free Immunoassay Developed for Targeting Spike S1 Protein of SARS-CoV-2. Diagnostics 2022;12:1992. [DOI: 10.3390/diagnostics12081992] [Reference Citation Analysis]
18 Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2022. [PMID: 35970970 DOI: 10.1007/s00216-022-04237-7] [Reference Citation Analysis]
19 Thapa S, Singh KR, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. Biosensors 2022;12:637. [DOI: 10.3390/bios12080637] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Cheng C, Peng Y, Lin S, Yatsuda H, Liu S, Liu S, Kuo C, Wang RYL. Measurements of Anti-SARS-CoV-2 Antibody Levels after Vaccination Using a SH-SAW Biosensor. Biosensors 2022;12:599. [DOI: 10.3390/bios12080599] [Reference Citation Analysis]
21 Cajigas S, Alzate D, Fernández M, Muskus C, Orozco J. Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta 2022;245:123482. [DOI: 10.1016/j.talanta.2022.123482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340297] [Reference Citation Analysis]
23 Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022;218:225-42. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Reference Citation Analysis]
24 Shukla SK, Patra S, Das TR, Kumar D, Mishra A, Tiwari A. Progress in COVID research and developments during pandemic. VIEW 2022. [DOI: 10.1002/viw.20210020] [Reference Citation Analysis]
25 Biswas GC, Choudhury S, Rabbani MM, Das J. A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. Chemosensors 2022;10:269. [DOI: 10.3390/chemosensors10070269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. Chemosphere 2022;307:135645. [PMID: 35817176 DOI: 10.1016/j.chemosphere.2022.135645] [Reference Citation Analysis]
27 Xu J, Kerr L, Jiang Y, Suo W, Zhang L, Lao T, Chen Y, Zhang Y. Rapid Antigen Diagnostics as Frontline Testing in the COVID‐19 Pandemic. Small Science. [DOI: 10.1002/smsc.202200009] [Reference Citation Analysis]
28 Ravina, Kumar A, Manjeet, Twinkle, Subodh, Narang J, Mohan H. Analytical performances of different diagnostic methods for SARS-CoV-2 virus - A review. Sensors International 2022. [DOI: 10.1016/j.sintl.2022.100197] [Reference Citation Analysis]
29 Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors (Basel) 2022;12:473. [PMID: 35884276 DOI: 10.3390/bios12070473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Ceccon DM, Amaral PHR, Lídia MA, da Silva MIN, Andrade LAF, Moraes TF, Bagno FF, Rocha RP, de Almeida Marques DP, Ferreira GM, Lourenço AA, Ribeiro ÁL, Coelho-dos-reis JGA, da Fonseca FG, Gonzalez JC. New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning.. [DOI: 10.1101/2022.06.22.22276755] [Reference Citation Analysis]
31 Fortunati S, Giliberti C, Giannetto M, Bolchi A, Ferrari D, Donofrio G, Bianchi V, Boni A, De Munari I, Careri M. Rapid Quantification of SARS-Cov-2 Spike Protein Enhanced with a Machine Learning Technique Integrated in a Smart and Portable Immunosensor. Biosensors (Basel) 2022;12:426. [PMID: 35735573 DOI: 10.3390/bios12060426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yu M, Liu M, Li Y, Zheng Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. Journal of Analytical Methods in Chemistry 2022;2022:1-8. [DOI: 10.1155/2022/5711384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Adeel M, Asif K, Canzonieri V, Barai HR, Rahman MM, Daniele S, Rizzolio F. Controlled, partially exfoliated, self-supported functionalized flexible graphitic carbon foil for ultrasensitive detection of SARS-CoV-2 spike protein. Sens Actuators B Chem 2022;359:131591. [PMID: 35221530 DOI: 10.1016/j.snb.2022.131591] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
34 Manring N, Ahmed MMN, Tenhoff N, Smeltz JL, Pathirathna P. Recent Advances in Electrochemical Tools for Virus Detection. Anal Chem 2022. [PMID: 35535749 DOI: 10.1021/acs.analchem.1c05358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Sadique MA, Yadav S, Ranjan P, Khan R, Khan F, Kumar A, Biswas D. Highly Sensitive Electrochemical Immunosensor Platforms for Dual Detection of SARS-CoV-2 Antigen and Antibody based on Gold Nanoparticle Functionalized Graphene Oxide Nanocomposites. ACS Appl Bio Mater 2022. [PMID: 35522141 DOI: 10.1021/acsabm.2c00301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
36 Nasimi H, Madsen JS, Zedan AH, Schmedes AV, Malmendal A, Sloth Osther PJ, AlZahra'a Alatraktchi F. Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Anal Biochem 2022;:114698. [PMID: 35523287 DOI: 10.1016/j.ab.2022.114698] [Reference Citation Analysis]
37 Alatraktchi FA. Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: Towards on-site applications. Measurement 2022;195:111124. [DOI: 10.1016/j.measurement.2022.111124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Vásquez V, Navas M, Jaimes JA, Orozco J. SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex. Analytica Chimica Acta 2022;1205:339718. [DOI: 10.1016/j.aca.2022.339718] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
39 Soto D, Orozco J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Analytica Chimica Acta 2022;1205:339739. [DOI: 10.1016/j.aca.2022.339739] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
40 Erdem A, Senturk H, Yildiz E, Maral M. Amperometric immunosensor developed for sensitive detection of SARS-CoV-2 spike S1 protein in combined with portable device. Talanta 2022;244:123422. [PMID: 35395458 DOI: 10.1016/j.talanta.2022.123422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
41 Liv L, Kayabay H. An Electrochemical Biosensing Platform for the SARS‐CoV‐2 Spike Antibody Detection Based on the Functionalised SARS‐CoV‐2 Spike Antigen Modified Electrode. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200256] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
42 Chaudhary SK, Chaudhary N, Chaudhary R, Chaudhary NK. Review on benefits, toxicity, challenges, and future of graphene-based face masks in the prevention of COVID-19 pandemic. PeerJ Materials Science 2022;4:e20. [DOI: 10.7717/peerj-matsci.20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Ang WL, Lim RRX, Ambrosi A, Bonanni A. Rapid electrochemical detection of COVID-19 genomic sequence with dual-function graphene nanocolloids based biosensor. FlatChem 2022;32:100336. [DOI: 10.1016/j.flatc.2022.100336] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
44 Bistaffa MJ, Camacho SA, Pazin WM, Constantino CJ, Oliveira ON, Aoki PH. Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123381] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
45 Li T, Soelberg SD, Taylor Z, Sakthivelpathi V, Furlong CE, Kim J, Ahn S, Han PD, Starita LM, Zhu J, Chung J. Highly Sensitive Immunoresistive Sensor for Point-Of-Care Screening for COVID-19. Biosensors 2022;12:149. [DOI: 10.3390/bios12030149] [Reference Citation Analysis]
46 Amouzadeh Tabrizi M, Acedo P. An Electrochemical Impedance Spectroscopy-Based Aptasensor for the Determination of SARS-CoV-2-RBD Using a Carbon Nanofiber-Gold Nanocomposite Modified Screen-Printed Electrode. Biosensors (Basel) 2022;12:142. [PMID: 35323412 DOI: 10.3390/bios12030142] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
47 A. Alvin E, V.b. e Borges A, de P. Martins R, R. Lemes M, M. Barbosa R, J.f. de Oliveira C, Meneses D, G. Lucca B, O. Dantas N, R. Junior V, P.a. Balvedi R, C. de Abreu F, V. da Silva M, C.a. Silva A. Sensor Surface Design with NanoMaterials: A New Platform in the Diagnosis of COVID-19. Biotechnology to Combat COVID-19 2022. [DOI: 10.5772/intechopen.97056] [Reference Citation Analysis]
48 Kim J, Jeong S, Sarawut S, Kim H, Son SU, Lee S, Rabbani G, Kwon H, Lim EK, Ahn SN, Park SK. An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. Lab Chip 2022. [PMID: 35191444 DOI: 10.1039/d1lc01116b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Kumar N, Shetti NP, Jagannath S, Aminabhavi TM. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem Eng J 2022;430:132966. [PMID: 34690533 DOI: 10.1016/j.cej.2021.132966] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 38.0] [Reference Citation Analysis]
50 Brazaca LC, Imamura AH, Gomes NO, Almeida MB, Scheidt DT, Raymundo-Pereira PA, Oliveira ON Jr, Janegitz BC, Machado SAS, Carrilho E. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal Bioanal Chem 2022. [PMID: 35169906 DOI: 10.1007/s00216-022-03956-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
51 Ayankojo AG, Boroznjak R, Reut J, Öpik A, Syritski V. Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sens Actuators B Chem 2022;353:131160. [PMID: 34866797 DOI: 10.1016/j.snb.2021.131160] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 30.0] [Reference Citation Analysis]
52 Mollarasouli F, Zare-shehneh N, Ghaedi M. A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05167-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
53 Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022;12:807253. [DOI: 10.3389/fcimb.2022.807253] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens Bioelectron 2022;197:113735. [PMID: 34736114 DOI: 10.1016/j.bios.2021.113735] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
55 Lorenzen AL, Dos Santos AM, Dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022;404:139757. [PMID: 34955549 DOI: 10.1016/j.electacta.2021.139757] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
56 Amouzadeh Tabrizi M, Fernández-Blázquez JP, Medina DM, Acedo P. An ultrasensitive molecularly imprinted polymer-based electrochemical sensor for the determination of SARS-CoV-2-RBD by using macroporous gold screen-printed electrode. Biosens Bioelectron 2022;196:113729. [PMID: 34736101 DOI: 10.1016/j.bios.2021.113729] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
57 Jiang C, Mu X, Du B, Tong Z. A review of electrochemical biosensor application in the detection of the SARS‐COV‐2. Micro & Nano Letters. [DOI: 10.1049/mna2.12101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Yilmaz-sercinoglu Z, Kuru Cİ, Ulucan-karnak F. Polymeric-based interface for the development of COVID-19 biosensor. Sensing Tools and Techniques for COVID-19 2022. [DOI: 10.1016/b978-0-323-90280-9.00013-4] [Reference Citation Analysis]
59 Kapoor D, Suryawanshi R, Patil CD, Shukla D. Recent advancements and nanotechnological interventions in diagnosis, treatment, and vaccination for COVID-19. Nanotechnological Applications in Virology 2022. [DOI: 10.1016/b978-0-323-99596-2.00015-7] [Reference Citation Analysis]
60 Sadak O, Sadak F, Yildirim O, Iverson NM, Qureshi R, Talo M, Ooi CP, Acharya UR, Gunasekaran S, Alam T. Electrochemical Biosensing and Deep Learning-Based Approaches in the Diagnosis of COVID-19: A Review. IEEE Access 2022;10:98633-48. [DOI: 10.1109/access.2022.3207207] [Reference Citation Analysis]
61 Mao S, Fu L, Yin C, Liu X, Karimi-maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022;12:22592-607. [DOI: 10.1039/d2ra04162f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
62 Benjamin SR, Rb Singh K, de Souza Nascimento T, Roque CR, de Andrade GM, Oriá RB. Nanobiosensors Potentialities for Monitoring SARS-CoV-2 in the Environment. Nanobiosensors for Environmental Monitoring 2022. [DOI: 10.1007/978-3-031-16106-3_18] [Reference Citation Analysis]
63 Adetunji CO, Olaniyan OT, Adeyomoye O, Dare A, Adeniyi MJ, Alex E, Rebezov M, Isabekova O, Shariati MA. Smart Sensing for COVID-19 Pandemic. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis 2022. [DOI: 10.1007/978-3-030-79753-9_9] [Reference Citation Analysis]
64 Aquino A, Paschoalin VMF, Tessaro LLG, Raymundo-pereira PA, Conte-junior CA. Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.114608] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
65 Liu Y, Johnson BN. Electrochemical biosensors for detection of SARS-CoV-2. Sensing Tools and Techniques for COVID-19 2022. [DOI: 10.1016/b978-0-323-90280-9.00011-0] [Reference Citation Analysis]
66 Ashur I, Alter J, Werbner M, Ogungbile A, Dessau M, Gal-Tanamy M, Vernick S. Rapid electrochemical immunodetection of SARS-CoV-2 using a pseudo-typed vesicular stomatitis virus model. Talanta 2021;239:123147. [PMID: 34920254 DOI: 10.1016/j.talanta.2021.123147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
67 Zhang T, Sun L, Zhang Y. Highly sensitive electrochemical determination of the SARS-COV-2 antigen based on a gold/graphene imprinted poly-arginine sensor. Anal Methods 2021;13:5772-6. [PMID: 34821885 DOI: 10.1039/d1ay01478a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
68 Li N, Zhao B, Stavins R, Peinetti AS, Chauhan N, Bashir R, Cunningham BT, King WP, Lu Y, Wang X, Valera E. Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. Curr Opin Solid State Mater Sci 2022;26:100966. [PMID: 34840515 DOI: 10.1016/j.cossms.2021.100966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 de Fazio R, Giannoccaro NI, Carrasco M, Velazquez R, Visconti P. Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey. Front Inform Technol Electron Eng 2021;22:1413-42. [DOI: 10.1631/fitee.2100085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
70 Coccia M, Roshani S, Mosleh M. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors (Basel) 2021;21:7803. [PMID: 34883807 DOI: 10.3390/s21237803] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
71 Soares JC, Soares AC, Angelim MKSC, Proença-Modena JL, Moraes-Vieira PM, Mattoso LHC, Oliveira ON Jr. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta 2021;:123076. [PMID: 34876273 DOI: 10.1016/j.talanta.2021.123076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
72 Liv L, Yener M, Çoban G, Can ŞA. Electrochemical biosensing platform based on hydrogen bonding for detection of the SARS-CoV-2 spike antibody. Anal Bioanal Chem 2021. [PMID: 34741650 DOI: 10.1007/s00216-021-03752-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
73 Zhang Z, Pandey R, Li J, Gu J, White D, Stacey HD, Ang JC, Steinberg C, Capretta A, Filipe CDM, Mossman K, Balion C, Miller MS, Salena BJ, Yamamura D, Soleymani L, Brennan JD, Li Y. High‐Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wild‐Type and B.1.1.7 SARS‐CoV‐2 in Unprocessed Saliva. Angewandte Chemie 2021;133:24468-76. [DOI: 10.1002/ange.202110819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
74 Zhang Z, Pandey R, Li J, Gu J, White D, Stacey HD, Ang JC, Steinberg CJ, Capretta A, Filipe CDM, Mossman K, Balion C, Miller MS, Salena BJ, Yamamura D, Soleymani L, Brennan JD, Li Y. High-Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wild-Type and B.1.1.7 SARS-CoV-2 in Unprocessed Saliva. Angew Chem Int Ed Engl 2021;60:24266-74. [PMID: 34464491 DOI: 10.1002/anie.202110819] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 36.0] [Reference Citation Analysis]
75 Lim WY, Lan BL, Ramakrishnan N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors (Basel) 2021;11:434. [PMID: 34821650 DOI: 10.3390/bios11110434] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
76 Liu X, Zou H, Zhu B, Lin H, Wang H. An Ultra-Sensitivity Cancellation Type Sensor Based on Microstrip Meander-Line. 2021 IEEE 3rd International Conference on Circuits and Systems (ICCS) 2021. [DOI: 10.1109/iccs52645.2021.9697208] [Reference Citation Analysis]
77 Elsheakh DM, Ahmed MI, Elashry GM, Moghannem SM, Elsadek HA, Elmazny WN, Alieldin NH, Abdallah EA. Rapid Detection of Coronavirus (COVID-19) Using Microwave Immunosensor Cavity Resonator. Sensors (Basel) 2021;21:7021. [PMID: 34770328 DOI: 10.3390/s21217021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
78 Olsen DA, Brasen CL, Kahns S, Madsen JB, Kierkegaard H, Christensen H, Jensen A, Sydenham TV, Møller JK, Madsen JS, Brandslund I. Quantifying SARS-CoV-2 nucleocapsid antigen in oropharyngeal swabs using single molecule array technology. Sci Rep 2021;11:20323. [PMID: 34645907 DOI: 10.1038/s41598-021-99807-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Chen KL, Yang ZY, Lin CW. A magneto-optical biochip for rapid assay based on the Cotton-Mouton effect of γ-Fe2O3@Au core/shell nanoparticles. J Nanobiotechnology 2021;19:301. [PMID: 34598682 DOI: 10.1186/s12951-021-01030-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
80 Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021;16:e0258002. [PMID: 34591907 DOI: 10.1371/journal.pone.0258002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
81 Pang SN, Lin YL, Yu KJ, Chiou YE, Leung WH, Weng WH. An Effective SARS-CoV-2 Electrochemical Biosensor with Modifiable Dual Probes Using a Modified Screen-Printed Carbon Electrode. Micromachines (Basel) 2021;12:1171. [PMID: 34683225 DOI: 10.3390/mi12101171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
82 Campos-Ferreira D, Visani V, Córdula C, Nascimento GA, Montenegro LML, Schindler HC, Cavalcanti IMF. COVID-19 challenges: From SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms. Biochem Eng J 2021;176:108200. [PMID: 34522158 DOI: 10.1016/j.bej.2021.108200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
83 Abbaszadeh S, Nikaeen G, Yousefinejad S. Carbon nanomaterials as promising substrates in the design of sensors for SARS-CoV-2 and new emerging viral infections. Nanomedicine (Lond) 2021;16:2033-7. [PMID: 34431323 DOI: 10.2217/nnm-2021-0154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Zaccariotto GC, Silva MKL, Rocha GS, Cesarino I. A Novel Method for the Detection of SARS-CoV-2 Based on Graphene-Impedimetric Immunosensor. Materials (Basel) 2021;14:4230. [PMID: 34361424 DOI: 10.3390/ma14154230] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
85 Witt S, Rogien A, Werner D, Siegenthaler J, Lesiyon R, Kurien N, Rechenberg R, Baule N, Hardy A, Becker M. Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein. Diam Relat Mater 2021;118:108542. [PMID: 34334952 DOI: 10.1016/j.diamond.2021.108542] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
86 Aydın EB, Aydın M, Sezgintürk MK. New Impedimetric Sandwich Immunosensor for Ultrasensitive and Highly Specific Detection of Spike Receptor Binding Domain Protein of SARS-CoV-2. ACS Biomater Sci Eng 2021;7:3874-85. [PMID: 34292712 DOI: 10.1021/acsbiomaterials.1c00580] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
87 Valera E, Jankelow A, Lim J, Kindratenko V, Ganguli A, White K, Kumar J, Bashir R. COVID-19 Point-of-Care Diagnostics: Present and Future. ACS Nano 2021;15:7899-906. [PMID: 33984237 DOI: 10.1021/acsnano.1c02981] [Cited by in Crossref: 36] [Cited by in F6Publishing: 46] [Article Influence: 36.0] [Reference Citation Analysis]
88 Liv L. Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19. Microchem J 2021;168:106445. [PMID: 34054147 DOI: 10.1016/j.microc.2021.106445] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
89 Giovannini G, Haick H, Garoli D. Detecting COVID-19 from Breath: A Game Changer for a Big Challenge. ACS Sens 2021;6:1408-17. [PMID: 33825440 DOI: 10.1021/acssensors.1c00312] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 59.0] [Reference Citation Analysis]
90 Panahi A, Sadighbayan D, Forouhi S, Ghafar-Zadeh E. Recent Advances of Field-Effect Transistor Technology for Infectious Diseases. Biosensors (Basel) 2021;11:103. [PMID: 33918325 DOI: 10.3390/bios11040103] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
91 Barlev-gross M, Weiss S, Ben-shmuel A, Sittner A, Eden K, Mazuz N, Glinert I, Bar-david E, Puni R, Amit S, Kriger O, Schuster O, Alcalay R, Makdasi E, Epstein E, Noy-porat T, Rosenfeld R, Achdout H, Mazor O, Israely T, Levy H, Mechaly A. Spike vs nucleocapsid SARS-CoV-2 antigen detection: application in nasopharyngeal swab specimens.. [DOI: 10.1101/2021.03.08.21253148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
92 Sanchez JE, Jaramillo SA, Settles E, Velazquez Salazar JJ, Lehr A, Gonzalez J, Rodríguez Aranda C, Navarro-contreras HR, Raniere MO, Harvey M, Wagner DM, Koppisch A, Kellar R, Keim P, Jose Yacaman M. Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy. RSC Adv 2021;11:25788-94. [DOI: 10.1039/d1ra03481b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
93 Pershina LV, Grabeklis AR, Isankina LN, Skorb EV, Nikolaev KG. Determination of sodium and potassium ions in patients with SARS-Cov-2 disease by ion-selective electrodes based on polyelectrolyte complexes as a pseudo-liquid contact phase. RSC Adv 2021;11:36215-36221. [DOI: 10.1039/d1ra04582b] [Reference Citation Analysis]
94 Fatemi F, Hassani Nejad Z, Siadat SER, Arjmand S, Ghiasi B, Haghighi Poodeh S. COVID-19 Diagnosis: A Comprehensive Review of Current Testing Platforms; Part B. COVID-19 2021. [DOI: 10.1007/978-981-16-3108-5_7] [Reference Citation Analysis]