BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021;22:2724. [PMID: 33800390 DOI: 10.3390/ijms22052724] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Hu C, Garey KW. Nonmammalian models to study Clostridioides difficile infection; a systematic review. Anaerobe 2023;79:102694. [PMID: 36626950 DOI: 10.1016/j.anaerobe.2023.102694] [Reference Citation Analysis]
2 Langlands A, Beati H, Müller HAJ. SILAC-Based Quantitative Proteomic Analysis of Drosophila Embryos. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2863-8_15] [Reference Citation Analysis]
3 Pratomo AR, Salim E, Hori A, Kuraishi T. Drosophila as an Animal Model for Testing Plant-Based Immunomodulators. Int J Mol Sci 2022;23. [PMID: 36499123 DOI: 10.3390/ijms232314801] [Reference Citation Analysis]
4 Wang X, Rimal S, Tantray I, Geng J, Bhurtel S, Khaket TP, Li W, Han Z, Lu B. Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1. Proc Natl Acad Sci U S A 2022;119:e2202322119. [PMID: 36170200 DOI: 10.1073/pnas.2202322119] [Reference Citation Analysis]
5 Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022;23. [PMID: 36293135 DOI: 10.3390/ijms232012285] [Reference Citation Analysis]
6 Zhu JY, Wang G, Huang X, Lee H, Lee JG, Yang P, van de Leemput J, Huang W, Kane MA, Yang P, Han Z. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Commun Biol 2022;5:1039. [PMID: 36180527 DOI: 10.1038/s42003-022-03986-6] [Reference Citation Analysis]
7 Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022;289:20221165. [PMID: 36126684 DOI: 10.1098/rspb.2022.1165] [Reference Citation Analysis]
8 Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. IJMS 2022;23:11244. [DOI: 10.3390/ijms231911244] [Reference Citation Analysis]
9 Ehemann K, Mantilla MJ, Mora-restrepo F, Rios-navarro A, Torres M, Celis Ramírez AM. Many ways, one microorganism: Several approaches to study Malassezia in interactions with model hosts. PLoS Pathog 2022;18:e1010784. [DOI: 10.1371/journal.ppat.1010784] [Reference Citation Analysis]
10 Benoit I, Di Curzio D, Civetta A, Douville RN. Drosophila as a Model for Human Viral Neuroinfections. Cells 2022;11:2685. [DOI: 10.3390/cells11172685] [Reference Citation Analysis]
11 Jones K, Tafesh-edwards G, Kenney E, Toubarro D, Simões N, Eleftherianos I. Excreted secreted products from the parasitic nematode Steinernema carpocapsae manipulate the Drosophila melanogaster immune response. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-18722-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022;13:905370. [DOI: 10.3389/fimmu.2022.905370] [Reference Citation Analysis]
13 Chifiriuc MC, Bologa AM, Ratiu AC, Ionascu A, Ecovoiu AA. Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022;23:6499. [PMID: 35742941 DOI: 10.3390/ijms23126499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Nainu F, Salim E, Emran TB, Sharma R. Drosophila melanogaster as a Versatile Model for Studying Medically Important Insect Vector-Borne Parasites. Front Cell Infect Microbiol 2022;12:939813. [DOI: 10.3389/fcimb.2022.939813] [Reference Citation Analysis]
15 Yamaguchi M, Yamamoto S. Role of Drosophila in Human Disease Research 2.0. Int J Mol Sci 2022;23:4203. [PMID: 35457020 DOI: 10.3390/ijms23084203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang C, Xing W, Lu F. A summary of previous investigations of the microgravity effects on bacterial virulence, infection and antibiotic resistance. Acta Astronautica 2022;196:215-9. [DOI: 10.1016/j.actaastro.2022.04.029] [Reference Citation Analysis]
17 Ali Mohammadie Kojour M, Edosa TT, Jang HA, Keshavarz M, Jo YH, Han YS. Critical Roles of Spätzle5 in Antimicrobial Peptide Production Against Escherichia coli in Tenebrio molitor Malpighian Tubules. Front Immunol 2021;12:760475. [PMID: 34975850 DOI: 10.3389/fimmu.2021.760475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Liegeois S, Ferrandon D. Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics. [DOI: 10.1007/s00251-021-01239-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
19 Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis.. [DOI: 10.1101/2021.12.10.472097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]