BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kerstetter-Fogle A, Shukla S, Wang C, Beiss V, Harris PLR, Sloan AE, Steinmetz NF. Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers (Basel) 2019;11:E515. [PMID: 30974896 DOI: 10.3390/cancers11040515] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Alonso-miguel D, Fiering S, Arias-pulido H. Proactive Immunotherapeutic Approaches against Inflammatory Breast Cancer May Improve Patient Outcomes. Cells 2022;11:2850. [DOI: 10.3390/cells11182850] [Reference Citation Analysis]
2 Koellhoffer EC, Steinmetz NF. Cowpea Mosaic Virus and Natural Killer Cell Agonism for In Situ Cancer Vaccination. Nano Lett 2022. [PMID: 35713326 DOI: 10.1021/acs.nanolett.2c01328] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Shahgolzari M, Fiering S. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies. J Cancer Immunol (Wilmington) 2022;4:22-9. [PMID: 35600219 DOI: 10.33696/cancerimmunol.4.061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wei J, Wu D, Shao Y, Guo B, Jiang J, Chen J, Zhang J, Meng F, Zhong Z. ApoE-mediated systemic nanodelivery of granzyme B and CpG for enhanced glioma immunotherapy. J Control Release 2022:S0168-3659(22)00244-9. [PMID: 35513207 DOI: 10.1016/j.jconrel.2022.04.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Beiss V, Mao C, Fiering SN, Steinmetz NF. Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy. Mol Pharm 2022. [PMID: 35333531 DOI: 10.1021/acs.molpharmaceut.2c00058] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Alonso-miguel D, Valdivia G, Guerrera D, Perez-alenza MD, Pantelyushin S, Alonso-diez A, Beiss V, Fiering S, Steinmetz NF, Suarez-redondo M, vom Berg J, Peña L, Arias-pulido H. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. J Immunother Cancer 2022;10:e004044. [DOI: 10.1136/jitc-2021-004044] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Koellhoffer EC, Mao C, Beiss V, Wang L, Fiering SN, Boone CE, Steinmetz NF. Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Mol Pharm 2022. [PMID: 34978197 DOI: 10.1021/acs.molpharmaceut.1c00681] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. Nat Rev Mater 2021;:1-17. [PMID: 34900343 DOI: 10.1038/s41578-021-00399-5] [Reference Citation Analysis]
9 Chung YH, Park J, Cai H, Steinmetz NF. S100A9-Targeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. Adv Sci (Weinh) 2021;8:e2101796. [PMID: 34519180 DOI: 10.1002/advs.202101796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gautam A, Beiss V, Wang C, Wang L, Steinmetz NF. Plant Viral Nanoparticle Conjugated with Anti-PD-1 Peptide for Ovarian Cancer Immunotherapy. Int J Mol Sci 2021;22:9733. [PMID: 34575893 DOI: 10.3390/ijms22189733] [Reference Citation Analysis]
11 Shahgolzari M, Dianat-Moghadam H, Fiering S. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. Semin Cancer Biol 2021:S1044-579X(21)00212-1. [PMID: 34375725 DOI: 10.1016/j.semcancer.2021.07.018] [Reference Citation Analysis]
12 Shoeb E, Badar U, Venkataraman S, Hefferon K. Frontiers in Bioengineering and Biotechnology: Plant Nanoparticles for Anti-Cancer Therapy. Vaccines (Basel) 2021;9:830. [PMID: 34451955 DOI: 10.3390/vaccines9080830] [Reference Citation Analysis]
13 Boone CE, Wang L, Gautam A, Newton IG, Steinmetz NF. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1739. [PMID: 34296535 DOI: 10.1002/wnan.1739] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020;7:559-87. [PMID: 32991265 DOI: 10.1146/annurev-virology-010720-052252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2020;37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Xu J, Wang C. Cell-derived vesicles for delivery of cancer immunotherapy. Exploration of Medicine. [DOI: 10.37349/emed.2020.00031] [Reference Citation Analysis]
17 Xu J, Wang C. Cell-derived vesicles for delivery of cancer immunotherapy. Exploration of Medicine. [DOI: 10.37349/emed.2021.00031] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Stump CT, Ho G, Mao C, Veliz FA, Beiss V, Fields J, Steinmetz NF, Fiering S. Remission-Stage Ovarian Cancer Cell Vaccine with Cowpea Mosaic Virus Adjuvant Prevents Tumor Growth. Cancers (Basel) 2021;13:627. [PMID: 33562450 DOI: 10.3390/cancers13040627] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. Mater Adv 2021;2:1644-56. [PMID: 34368764 DOI: 10.1039/D0MA00752H] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021;556:39-61. [PMID: 33545555 DOI: 10.1016/j.virol.2021.01.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020;8:597806. [PMID: 33409265 DOI: 10.3389/fchem.2020.597806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
22 Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Reference Citation Analysis]
23 Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020;17:4407-20. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
24 Boone CE, Wang C, Lopez-Ramirez MA, Beiss V, Shukla S, Chariou PL, Kupor D, Rueda R, Wang J, Steinmetz NF. Active Microneedle Administration of Plant Virus Nanoparticles for Cancer in situ Vaccination Improves Immunotherapeutic Efficacy. ACS Appl Nano Mater 2020;3:8037-51. [PMID: 33969278 DOI: 10.1021/acsanm.0c01506] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
25 Taiarol L, Formicola B, Magro RD, Sesana S, Re F. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine (Lond) 2020;15:1861-71. [PMID: 32731839 DOI: 10.2217/nnm-2020-0132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Hoskins C. Cancer Nanomedicine. Cancers (Basel) 2020;12:E2127. [PMID: 32751887 DOI: 10.3390/cancers12082127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020;156:214-35. [PMID: 32603813 DOI: 10.1016/j.addr.2020.06.024] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 47.0] [Reference Citation Analysis]
28 Shukla S, Wang C, Beiss V, Steinmetz NF. Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves In Situ Vaccine Efficacy in Ovarian Cancer. ACS Nano 2020;14:2994-3003. [PMID: 32133838 DOI: 10.1021/acsnano.9b07865] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
29 Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano 2020;14:2678-701. [PMID: 32125825 DOI: 10.1021/acsnano.0c00173] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 32.5] [Reference Citation Analysis]
30 Dent M, Matoba N. Cancer biologics made in plants. Curr Opin Biotechnol 2020;61:82-8. [PMID: 31785553 DOI: 10.1016/j.copbio.2019.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
31 Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF. Endosomal toll-like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology 2020;159:183-92. [PMID: 31630392 DOI: 10.1111/imm.13135] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]