BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018;10:E207. [PMID: 29912148 DOI: 10.3390/cancers10060207] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 19.8] [Reference Citation Analysis]
Number Citing Articles
1 Ghosh S. Sialic acid and biology of life: An introduction. Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease. Elsevier; 2020. pp. 1-61. [DOI: 10.1016/b978-0-12-816126-5.00001-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
2 Shi H, Chen Y, Li Y, Chen L, Wang H, Yang C, Ding L, Ju H. Hierarchical Fluorescence Imaging Strategy for Assessment of the Sialylation Level of Lipid Rafts on the Cell Membrane. Anal Chem 2021;93:14643-50. [PMID: 34698497 DOI: 10.1021/acs.analchem.1c02738] [Reference Citation Analysis]
3 Chiodelli P, Urbinati C, Paiardi G, Monti E, Rusnati M. Sialic acid as a target for the development of novel antiangiogenic strategies. Future Med Chem 2018;10:2835-54. [PMID: 30539670 DOI: 10.4155/fmc-2018-0298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
4 Rodrigues E, Jung J, Park H, Loo C, Soukhtehzari S, Kitova EN, Mozaneh F, Daskhan G, Schmidt EN, Aghanya V, Sarkar S, Streith L, St Laurent CD, Nguyen L, Julien JP, West LJ, Williams KC, Klassen JS, Macauley MS. A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun 2020;11:5091. [PMID: 33037195 DOI: 10.1038/s41467-020-18907-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
5 Wielgat P, Wawrusiewicz-Kurylonek N, Czarnomysy R, Rogowski K, Bielawski K, Car H. The Paired Siglecs in Brain Tumours Therapy: The Immunomodulatory Effect of Dexamethasone and Temozolomide in Human Glioma In Vitro Model. Int J Mol Sci 2021;22:1791. [PMID: 33670244 DOI: 10.3390/ijms22041791] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Wang S, Qin H, Dong J, Hu L, Ye M. Multi-histidine functionalized material for the specific enrichment of sialylated glycopeptides. J Chromatogr A 2020;1627:461422. [PMID: 32823117 DOI: 10.1016/j.chroma.2020.461422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021;167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lakshmanan I, Chaudhary S, Vengoji R, Seshacharyulu P, Rachagani S, Carmicheal J, Jahan R, Atri P, Chirravuri-Venkata R, Gupta R, Marimuthu S, Perumal N, Rauth S, Kaur S, Mallya K, Smith LM, Lele SM, Ponnusamy MP, Nasser MW, Salgia R, Batra SK, Ganti AK. ST6GalNAc-I promotes lung cancer metastasis by altering MUC5AC sialylation. Mol Oncol 2021;15:1866-81. [PMID: 33792183 DOI: 10.1002/1878-0261.12956] [Reference Citation Analysis]
9 Li RE, de Haas A, Rodríguez E, Kalay H, Zaal A, Jimenez CR, Piersma SR, Pham TV, Henneman AA, de Goeij-de Haas RR, van Vliet SJ, van Kooyk Y. Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3-Linked Sialic Acid Ligand Binding. Front Immunol 2021;12:673454. [PMID: 33968084 DOI: 10.3389/fimmu.2021.673454] [Reference Citation Analysis]
10 Xu Z, Zhang Y, Ocansey DKW, Wang B, Mao F. Glycosylation in Cervical Cancer: New Insights and Clinical Implications. Front Oncol 2021;11:706862. [PMID: 34485140 DOI: 10.3389/fonc.2021.706862] [Reference Citation Analysis]
11 Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angew Chem 2020;132:23898-904. [DOI: 10.1002/ange.202008681] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lee WL, Wang PH. Aberrant sialylation in ovarian cancers. J Chin Med Assoc 2020;83:337-44. [PMID: 31904658 DOI: 10.1097/JCMA.0000000000000252] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 20.0] [Reference Citation Analysis]
13 Payazdan M, Khatami S, Galehdari H, Delfan N, Shafiei M, Heydaran S. The anti-inflammatory effects of sialic acid on the human glia cells by the upregulation of IL-4 and IL-10 genes' expressions. Gene Reports 2021;24:101218. [DOI: 10.1016/j.genrep.2021.101218] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020;21:E4361. [PMID: 32575400 DOI: 10.3390/ijms21124361] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Valk-Weeber RL, Nichols K, Dijkhuizen L, Bijl E, van Leeuwen SS. Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects. J Dairy Sci 2021;104:5056-68. [PMID: 33551170 DOI: 10.3168/jds.2020-19297] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ko C, Chu T, Hsu C, Chen H, Huang S, Chang C, Tzou S, Chen T, Lin C, Shih P, Lin C, Chang C, Lee Y. Bioinformatics Analyses Identify the Therapeutic Potential of ST8SIA6 for Colon Cancer. JPM 2022;12:401. [DOI: 10.3390/jpm12030401] [Reference Citation Analysis]
17 Wellington N, Macklai S, Britz-McKibbin P. Elucidating the Anomalous Binding Enhancement of Isoquinoline Boronic Acid for Sialic Acid Under Acidic Conditions: Expanding Biorecognition Beyond Vicinal Diols. Chemistry 2019;25:15277-80. [PMID: 31596002 DOI: 10.1002/chem.201904442] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Satyavarapu EM, Nath S, Mandal C. Desialylation of Atg5 by sialidase (Neu2) enhances autophagosome formation to induce anchorage-dependent cell death in ovarian cancer cells. Cell Death Discov 2021;7:26. [PMID: 33526785 DOI: 10.1038/s41420-020-00391-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2021;31:530-9. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
20 Friedman DJ, Crotts SB, Shapiro MJ, Rajcula M, McCue S, Liu X, Khazaie K, Dong H, Shapiro VS. ST8Sia6 Promotes Tumor Growth in Mice by Inhibiting Immune Responses. Cancer Immunol Res 2021;9:952-66. [PMID: 34074677 DOI: 10.1158/2326-6066.CIR-20-0834] [Reference Citation Analysis]
21 Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2021;69:1619-36. [PMID: 33340149 DOI: 10.1002/glia.23945] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Wang Z, Geng Z, Shao W, Liu E, Zhang J, Tang J, Wang P, Sun X, Xiao L, Xu W, Zhang Y, Cui H, Zhang L, Yang X, Chang X, Qiu X. Cancer-derived sialylated IgG promotes tumor immune escape by binding to Siglecs on effector T cells. Cell Mol Immunol 2020;17:1148-62. [PMID: 31754235 DOI: 10.1038/s41423-019-0327-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
23 Edgar LJ. Engineering the Sialome. ACS Chem Biol 2021;16:1829-40. [PMID: 34590818 DOI: 10.1021/acschembio.1c00273] [Reference Citation Analysis]
24 Nji E, Gulati A, Qureshi AA, Coincon M, Drew D. Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat Struct Mol Biol 2019;26:415-23. [PMID: 31133698 DOI: 10.1038/s41594-019-0225-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
25 Gebri E, Kovács Z, Mészáros B, Tóth F, Simon Á, Jankovics H, Vonderviszt F, Kiss A, Guttman A, Hortobágyi T. N-Glycosylation Alteration of Serum and Salivary Immunoglobulin a Is a Possible Biomarker in Oral Mucositis. J Clin Med 2020;9:E1747. [PMID: 32516910 DOI: 10.3390/jcm9061747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Harrus D, Harduin-lepers A, Glumoff T. Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution. Journal of Structural Biology 2020;212:107628. [DOI: 10.1016/j.jsb.2020.107628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Marini M, Tani A, Manetti M, Sgambati E. Characterization and distribution of sialic acids in human testicular seminoma. Acta Histochem 2020;122:151532. [PMID: 32143917 DOI: 10.1016/j.acthis.2020.151532] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Grieve J, Dorward N, Mendoza N, Nair R, Muquit S, Grossman AB, Korbonits M. The expression of neural cell adhesion molecule and the microenvironment of pituitary neuroendocrine tumours. J Neuroendocrinol 2021;:e13052. [PMID: 34708902 DOI: 10.1111/jne.13052] [Reference Citation Analysis]
29 Bauer TJ, Gombocz E, Wehland M, Bauer J, Infanger M, Grimm D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion-An Omics Network Approach. Int J Mol Sci 2020;21:E1749. [PMID: 32143440 DOI: 10.3390/ijms21051749] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Lu N, Ye J, Cheng J, Sasmal A, Liu CC, Yao W, Yan J, Khan N, Yi W, Varki A, Cao H. Redox-Controlled Site-Specific α2-6-Sialylation. J Am Chem Soc 2019;141:4547-52. [PMID: 30843692 DOI: 10.1021/jacs.9b00044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
31 Koukourakis MI, Giatromanolaki A. Tumor microenvironment, immune response and post-radiotherapy tumor clearance. Clin Transl Oncol 2020;22:2196-205. [PMID: 32445035 DOI: 10.1007/s12094-020-02378-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
32 Beyer S, Kimani M, Zhang Y, Verhassel A, Sternbæk L, Wang T, Persson JL, Härkönen P, Johansson E, Caraballo R, Elofsson M, Gawlitza K, Rurack K, Ohlsson L, El-schich Z, Wingren AG, Stollenwerk MM. Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-Coated Polystyrene Cores—Assessment of the Binding Behavior to Cancer Cells. Cancers 2022;14:1875. [DOI: 10.3390/cancers14081875] [Reference Citation Analysis]
33 Campesato LF, Weng CH, Merghoub T. Innate immune checkpoints for cancer immunotherapy: expanding the scope of non T cell targets. Ann Transl Med 2020;8:1031. [PMID: 32953831 DOI: 10.21037/atm-20-1816] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020. [PMID: 33251699 DOI: 10.1111/febs.15647] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Tampa M, Nicolae I, Mitran CI, Mitran MI, Ene C, Matei C, Georgescu SR, Ene CD. Serum Sialylation Changes in Actinic Keratosis and Cutaneous Squamous Cell Carcinoma Patients. J Pers Med 2021;11:1027. [PMID: 34683168 DOI: 10.3390/jpm11101027] [Reference Citation Analysis]
36 Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019;7:93. [PMID: 31263697 DOI: 10.3389/fcell.2019.00093] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
37 Burge K, Eckert J, Wilson A, Trammell M, Lueschow SR, Mcelroy SJ, Dyer D, Chaaban H. Hyaluronic Acid 35 kDa Protects against a Hyperosmotic, Formula Feeding Model of Necrotizing Enterocolitis. Nutrients 2022;14:1779. [DOI: 10.3390/nu14091779] [Reference Citation Analysis]
38 Bornhöfft KF, Galuska SP. Glycans as Modulators for the Formation and Functional Properties of Neutrophil Extracellular Traps: Used by the Forces of Good and Evil. Front Immunol 2019;10:959. [PMID: 31134066 DOI: 10.3389/fimmu.2019.00959] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
39 de Queiroz RM, Oliveira IA, Piva B, Bouchuid Catão F, da Costa Rodrigues B, da Costa Pascoal A, Diaz BL, Todeschini AR, Caarls MB, Dias WB. Hexosamine Biosynthetic Pathway and Glycosylation Regulate Cell Migration in Melanoma Cells. Front Oncol 2019;9:116. [PMID: 30891426 DOI: 10.3389/fonc.2019.00116] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
40 Meril S, Harush O, Reboh Y, Matikhina T, Barliya T, Cohen CJ. Targeting glycosylated antigens on cancer cells using siglec‐7/9‐based CAR T‐cells. Molecular Carcinogenesis 2020;59:713-23. [DOI: 10.1002/mc.23213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
41 Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J, Fuster MM. Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability. Biophys J 2020;118:1552-63. [PMID: 32142642 DOI: 10.1016/j.bpj.2020.02.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
42 Krick S, Helton ES, Easter M, Bollenbecker S, Denson R, Zaharias R, Cochran P, Vang S, Harris E, Wells JM, Barnes JW. ST6GAL1 and α2-6 Sialylation Regulates IL-6 Expression and Secretion in Chronic Obstructive Pulmonary Disease. Front Immunol 2021;12:693149. [PMID: 34290711 DOI: 10.3389/fimmu.2021.693149] [Reference Citation Analysis]
43 Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021;12:629979. [PMID: 34177884 DOI: 10.3389/fimmu.2021.629979] [Reference Citation Analysis]
44 Farooq T. Triazoles as Bioisosteres in Medicinal Chemistry: A Recent Update. Advances in Triazole Chemistry. Elsevier; 2021. pp. 31-47. [DOI: 10.1016/b978-0-12-817113-4.00010-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR Jr, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021;57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Britain CM, Bhalerao N, Silva AD, Chakraborty A, Buchsbaum DJ, Crowley MR, Crossman DK, Edwards YJK, Bellis SL. Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. J Biol Chem 2021;296:100034. [PMID: 33148698 DOI: 10.1074/jbc.RA120.014126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
47 Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. JCM 2020;9:2967. [DOI: 10.3390/jcm9092967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
48 Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020;18:5784-97. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 2020;8:e001222. [PMID: 33020245 DOI: 10.1136/jitc-2020-001222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
50 Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021;2:713-24. [PMID: 34212148 DOI: 10.1039/d1cb00007a] [Reference Citation Analysis]
51 Lenza MP, Atxabal U, Oyenarte I, Jiménez-Barbero J, Ereño-Orbea J. Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells 2020;9:E2691. [PMID: 33333862 DOI: 10.3390/cells9122691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
52 Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol 2019;24:101182. [PMID: 30959459 DOI: 10.1016/j.redox.2019.101182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
53 Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC, Geijtenbeek TBH. Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol 2020;11:134. [PMID: 32117281 DOI: 10.3389/fimmu.2020.00134] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
54 Jung J, Enterina JR, Bui DT, Mozaneh F, Lin PH, Nitin, Kuo CW, Rodrigues E, Bhattacherjee A, Raeisimakiani P, Daskhan GC, St Laurent CD, Khoo KH, Mahal LK, Zandberg WF, Huang X, Klassen JS, Macauley MS. Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chem Biol 2021;16:2673-89. [PMID: 34661385 DOI: 10.1021/acschembio.1c00501] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Acharya S, Jin C, Bylund J, Shen Q, Kamali-Moghaddam M, Jontell M, Carlén A, Karlsson NG. Reduced sialyl-Lewisx on salivary MUC7 from patients with burning mouth syndrome. Mol Omics 2019;15:331-9. [PMID: 31414088 DOI: 10.1039/c9mo00061e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
56 Makszin L, Kustán P, Szirmay B, Páger C, Mező E, Kalács KI, Pászthy V, Györgyi E, Kilár F, Ludány A, Kőszegi T. Microchip gel electrophoretic analysis of perchloric acid-soluble serum proteins in systemic inflammatory disorders. Electrophoresis 2019;40:447-54. [PMID: 30407655 DOI: 10.1002/elps.201800378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
57 Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, Puchalt AP, Abdel-Mohsen M, Muthumani K. Development of Siglec-9 Blocking Antibody to Enhance Anti-Tumor Immunity. Front Oncol 2021;11:778989. [PMID: 34869028 DOI: 10.3389/fonc.2021.778989] [Reference Citation Analysis]
58 Simplicien M, Barre A, Benkerrou Y, Van Damme EJM, Rougé P, Benoist H. The T/Tn-Specific Helix pomatia Lectin Induces Cell Death in Lymphoma Cells Negative for T/Tn Antigens. Cancers (Basel) 2021;13:4356. [PMID: 34503166 DOI: 10.3390/cancers13174356] [Reference Citation Analysis]
59 Ortiz-Soto ME, Reising S, Schlosser A, Seibel J. Structural and functional role of disulphide bonds and substrate binding residues of the human beta-galactoside alpha-2,3-sialyltransferase 1 (hST3Gal1). Sci Rep 2019;9:17993. [PMID: 31784620 DOI: 10.1038/s41598-019-54384-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
60 Ferreira HJ, de Almeida EM, da Silva WMB, Teixeira EH, do Nascimento Neto LG. Molecular Mechanisms Involved in the Antitumor Activity of Isolated Lectins from Marine Organisms: A Systematic Review. Curr Drug Targets 2020;21:616-25. [PMID: 31763966 DOI: 10.2174/1389450120666191122113850] [Reference Citation Analysis]
61 Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020;11:73. [PMID: 32063906 DOI: 10.3389/fimmu.2020.00073] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
62 Ono K, Sanada Y, Kimura Y, Aoyama S, Ueda N, Katayama T, Nagahama K. A thin hydrogel barrier linked onto cell surface sialic acids through covalent bonds induces cancer cell death in vivo. Biomater Sci 2020;8:577-85. [PMID: 31872195 DOI: 10.1039/c9bm01758e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Rodriguez E, Boelaars K, Brown K, Eveline Li RJ, Kruijssen L, Bruijns SCM, van Ee T, Schetters STT, Crommentuijn MHW, van der Horst JC, van Grieken NCT, van Vliet SJ, Kazemier G, Giovannetti E, Garcia-Vallejo JJ, van Kooyk Y. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun 2021;12:1270. [PMID: 33627655 DOI: 10.1038/s41467-021-21550-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
64 Natoni A, Farrell ML, Harris S, Falank C, Kirkham-McCarthy L, Macauley MS, Reagan MR, O'Dwyer M. Sialyltransferase inhibition leads to inhibition of tumor cell interactions with E-selectin, VCAM1, and MADCAM1, and improves survival in a human multiple myeloma mouse model. Haematologica 2020;105:457-67. [PMID: 31101754 DOI: 10.3324/haematol.2018.212266] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
65 Brücher D, Franc V, Smith SN, Heck AJR, Plückthun A. Malignant tissues produce divergent antibody glycosylation of relevance for cancer gene therapy effectiveness. MAbs 2020;12:1792084. [PMID: 32643525 DOI: 10.1080/19420862.2020.1792084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
66 Skropeta D, Dobie C, Montgomery AP, Steele H, Szabo R, Yu H. Sialyltransferase Inhibitors as Potential Anti-Cancer Agents. Aust J Chem 2021;74:758. [DOI: 10.1071/ch21195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors: Glycosylation on Unprotected or Partially Protected Acceptors. Eur J Org Chem 2020;2020:1784-801. [DOI: 10.1002/ejoc.201901675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Patel A, Tiwari S, Jha PK. Molecular interaction between bi-antennary phenylboronic acid and sialic acid using density functional theory and multi-time scale trajectories. J Biomol Struct Dyn 2020;38:1242-7. [PMID: 30885094 DOI: 10.1080/07391102.2019.1596839] [Reference Citation Analysis]
69 Dobie C, Montgomery AP, Szabo R, Yu H, Skropeta D. Synthesis and biological evaluation of selective phosphonate-bearing 1,2,3-triazole-linked sialyltransferase inhibitors. RSC Med Chem 2021;12:1680-9. [PMID: 34778769 DOI: 10.1039/d1md00079a] [Reference Citation Analysis]
70 Li D, Mukhopadhyay S. A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2. J Biol Chem 2021;:101069. [PMID: 34384782 DOI: 10.1016/j.jbc.2021.101069] [Reference Citation Analysis]
71 Läubli H, Borsig L. Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Front Immunol 2019;10:2120. [PMID: 31552050 DOI: 10.3389/fimmu.2019.02120] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 14.7] [Reference Citation Analysis]
72 Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol Cell Biochem 2019;455:147-57. [PMID: 30443853 DOI: 10.1007/s11010-018-3478-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
73 Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 2021;124:76-90. [PMID: 33144696 DOI: 10.1038/s41416-020-01126-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
74 Guo X, Elkashef SM, Patel A, Ribeiro Morais G, Shnyder SD, Loadman PM, Patterson LH, Falconer RA. An assay for quantitative analysis of polysialic acid expression in cancer cells. Carbohydr Polym 2021;259:117741. [PMID: 33674001 DOI: 10.1016/j.carbpol.2021.117741] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Gabriele C, Prestagiacomo LE, Cuda G, Gaspari M. Mass Spectrometry-Based Glycoproteomics and Prostate Cancer. Int J Mol Sci 2021;22:5222. [PMID: 34069262 DOI: 10.3390/ijms22105222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021;13:5203. [PMID: 34680351 DOI: 10.3390/cancers13205203] [Reference Citation Analysis]
77 Natoni A, Bohara R, Pandit A, O'Dwyer M. Targeted Approaches to Inhibit Sialylation of Multiple Myeloma in the Bone Marrow Microenvironment. Front Bioeng Biotechnol 2019;7:252. [PMID: 31637237 DOI: 10.3389/fbioe.2019.00252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
78 Hensen LCM, Hoeben RC, Bots STF. Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020;21:E6828. [PMID: 32957644 DOI: 10.3390/ijms21186828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. Genomics Proteomics Bioinformatics 2021:S1672-0229(21)00097-8. [PMID: 34118464 DOI: 10.1016/j.gpb.2021.03.005] [Reference Citation Analysis]
80 Goni M, Javaregowda PK, Chachadi V, Virupakshaiah D. Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. Forum of Clinical Oncology 2022;0. [DOI: 10.2478/fco-2021-0006] [Reference Citation Analysis]
81 Ene CD, Penescu MN, Georgescu SR, Tampa M, Nicolae I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020;11:10. [PMID: 33375435 DOI: 10.3390/metabo11010010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021;15:648617. [PMID: 33867926 DOI: 10.3389/fnins.2021.648617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
83 Yu X, Shi H, Li Y, Guo Y, Zhang P, Wang G, Li L, Chen X, Ding L, Ju H. Thermally Triggered, Cell-Specific Enzymatic Glyco-Editing: In Situ Regulation of Lectin Recognition and Immune Response on Target Cells. ACS Appl Mater Interfaces 2020;12:54387-98. [PMID: 33236873 DOI: 10.1021/acsami.0c15212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]