BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019;10:154. [PMID: 30863320 DOI: 10.3389/fphys.2019.00154] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao J, Li X, Xu Y, Li Y, Zheng L, Luan T. Toxic effects of long-term dual or single exposure to oxytetracycline and arsenic on Xenopus tropicalis living in duck wastewater. Journal of Environmental Sciences 2023;127:431-40. [DOI: 10.1016/j.jes.2022.05.049] [Reference Citation Analysis]
2 Corkins ME, Achieng M, De Lay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int 2022:S0085-2538(22)00636-6. [PMID: 36055600 DOI: 10.1016/j.kint.2022.07.027] [Reference Citation Analysis]
3 Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM. Normal Table of Xenopus development: a new graphical resource. Development 2022;149:dev200356. [PMID: 35833709 DOI: 10.1242/dev.200356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Spruiell Eldridge SL, Teetsel JFK, Torres RA, Ulrich CH, Shah VV, Singh D, Zamora MJ, Zamora S, Sater AK. A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. IJMS 2022;23:7578. [DOI: 10.3390/ijms23147578] [Reference Citation Analysis]
5 Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during Xenopus lung development.. [DOI: 10.1101/2022.06.13.495914] [Reference Citation Analysis]
6 Sperry MM, Novak R, Keshari V, Dinis ALM, Cartwright MJ, Camacho DM, Paré JF, Super M, Levin M, Ingber DE. Enhancers of Host Immune Tolerance to Bacterial Infection Discovered Using Linked Computational and Experimental Approaches. Adv Sci (Weinh) 2022;:e2200222. [PMID: 35706367 DOI: 10.1002/advs.202200222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Fisher ME, Segerdell E, Matentzoglu N, Nenni MJ, Fortriede JD, Chu S, Pells TJ, Osumi-Sutherland D, Chaturvedi P, James-Zorn C, Sundararaj N, Lotay VS, Ponferrada V, Wang DZ, Kim E, Agalakov S, Arshinoff BI, Karimi K, Vize PD, Zorn AM. The Xenopus phenotype ontology: bridging model organism phenotype data to human health and development. BMC Bioinformatics 2022;23:99. [PMID: 35317743 DOI: 10.1186/s12859-022-04636-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Novak R, Lin T, Kaushal S, Sperry M, Vigneault F, Gardner E, Loomba S, Shcherbina K, Keshari V, Dinis A, Vasan A, Chandrasekhar V, Takeda T, Turner J, Levin M, Ingber D. Target-agnostic discovery of Rett Syndrome therapeutics by coupling computational network analysis and CRISPR-enabled in vivo disease modeling.. [DOI: 10.1101/2022.03.20.485056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gur M, Bendelac-kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022;10:844619. [DOI: 10.3389/fcell.2022.844619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Corkins ME, Achieng M, Delay BD, Krneta-stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron.. [DOI: 10.1101/2022.01.11.475739] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Abbou T, Bendelac-kapon L, Sebag A, Fainsod A. Enhanced loss of retinoic acid network genes in Xenopus laevis achieves a tighter signal regulation.. [DOI: 10.1101/2022.01.04.474867] [Reference Citation Analysis]
12 Knight VB, Luna AR, Serrano EE. A Xenopus neuromast bioassay for chemical ototoxicity.. [DOI: 10.1101/2021.12.30.474606] [Reference Citation Analysis]
13 Baldwin AT, Popov IK, Wallingford JB, Chang C. Assays for Apical Constriction Using the Xenopus Model. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2035-9_24] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Schriml LM, Baron JA. Etiology context of rare diseases in the Human Disease Ontology. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021. [DOI: 10.1109/bibm52615.2021.9669517] [Reference Citation Analysis]
15 Arshinoff BI, Cary GA, Karimi K, Foley S, Agalakov S, Delgado F, Lotay VS, Ku CJ, Pells TJ, Beatman TR, Kim E, Cameron RA, Vize PD, Telmer CA, Croce JC, Ettensohn CA, Hinman VF. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res 2021:gkab1005. [PMID: 34791383 DOI: 10.1093/nar/gkab1005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
16 Fisher ME, Segerdell E, Matentzoglu N, Nenni MJ, Fortriede JD, Chu S, Pells TJ, Chaturvedi P, James-zorn C, Sundararaj N, Lotay VS, Ponferrada V, Wang DZ, Kim E, Agalakov S, Arshinoff BI, Karimi K, Vize PD, Zorn AM. The Xenopus Phenotype Ontology: bridging model organism phenotype data to human health and development.. [DOI: 10.1101/2021.11.12.467727] [Reference Citation Analysis]
17 Schriml LM, Munro JB, Schor M, Olley D, McCracken C, Felix V, Baron JA, Jackson R, Bello SM, Bearer C, Lichenstein R, Bisordi K, Dialo NC, Giglio M, Greene C. The Human Disease Ontology 2022 update. Nucleic Acids Res 2021:gkab1063. [PMID: 34755882 DOI: 10.1093/nar/gkab1063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 17.0] [Reference Citation Analysis]
18 Duek P, Mary C, Zahn-Zabal M, Bairoch A, Lane L. Functionathon: a manual data mining workflow to generate functional hypotheses for uncharacterized human proteins and its application by undergraduate students. Database (Oxford) 2021;2021:baab046. [PMID: 34318869 DOI: 10.1093/database/baab046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
19 Richter C, Hinkel R. Research('s) Sweet Hearts: Experimental Biomedical Models of Diabetic Cardiomyopathy. Front Cardiovasc Med 2021;8:703355. [PMID: 34368257 DOI: 10.3389/fcvm.2021.703355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2020;19:243-58. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
21 Langlois VS. Amphibian Toxicology: A Rich But Underappreciated Model for Ecotoxicology Research. Arch Environ Contam Toxicol 2021;80:661-2. [PMID: 33839894 DOI: 10.1007/s00244-021-00844-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, Danis D, Balagura G, Baynam G, Brower AM, Callahan TJ, Chute CG, Est JL, Galer PD, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris NL, Hartnett MJ, Hastreiter M, Hauck F, He Y, Jeske T, Kearney H, Kindle G, Klein C, Knoflach K, Krause R, Lagorce D, McMurry JA, Miller JA, Munoz-Torres MC, Peters RL, Rapp CK, Rath AM, Rind SA, Rosenberg AZ, Segal MM, Seidel MG, Smedley D, Talmy T, Thomas Y, Wiafe SA, Xian J, Yüksel Z, Helbig I, Mungall CJ, Haendel MA, Robinson PN. The Human Phenotype Ontology in 2021. Nucleic Acids Res 2021;49:D1207-17. [PMID: 33264411 DOI: 10.1093/nar/gkaa1043] [Cited by in Crossref: 260] [Cited by in F6Publishing: 276] [Article Influence: 260.0] [Reference Citation Analysis]
23 Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021;59:e23410. [PMID: 33496382 DOI: 10.1002/dvg.23410] [Reference Citation Analysis]
24 Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021;59:e23405. [PMID: 33369095 DOI: 10.1002/dvg.23405] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
25 Xia J, Meng Z, Ruan H, Yin W, Xu Y, Zhang T. Heart Development and Regeneration in Non-mammalian Model Organisms. Front Cell Dev Biol 2020;8:595488. [PMID: 33251221 DOI: 10.3389/fcell.2020.595488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Kakebeen AD, Chitsazan AD, Wills AE. Tissue disaggregation and isolation of specific cell types from transgenic Xenopus appendages for transcriptional analysis by FACS. Dev Dyn 2021;250:1381-92. [PMID: 33137227 DOI: 10.1002/dvdy.268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. Environ Pollut 2021;268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
28 Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020;467:108-17. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
29 Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep 2020;10:14662. [PMID: 32887910 DOI: 10.1038/s41598-020-71412-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
30 Sonam S, Bangru S, Perry KJ, Kalsotra A, Henry JJ. Single-cell analyses of the corneal epithelium: Unique cell types and gene expression profiles.. [DOI: 10.1101/2020.08.06.240036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Brunner N, Stein L, Cornelius V, Knittel R, Fallier-Becker P, Amasheh S. Blood-Brain Barrier Protein Claudin-5 Expressed in Paired Xenopus laevis Oocytes Mediates Cell-Cell Interaction. Front Physiol 2020;11:857. [PMID: 32848831 DOI: 10.3389/fphys.2020.00857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Ott T, Blum M. Xenopus as a Model Organism for the Analysis of Human Genetic Disease. eLS 2020. [DOI: 10.1002/9780470015902.a0028659] [Reference Citation Analysis]
33 Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, Lotay VS, Ponferrada VG, Karimi K, Zorn AM, Vize PD. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database. Nucleic Acids Res 2020;48:D776-82. [PMID: 31733057 DOI: 10.1093/nar/gkz933] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
34 Drew K, Lee C, Cox RM, Dang V, Devitt CC, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating.. [DOI: 10.1101/2020.02.26.966754] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS. Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. Dev Biol 2020;460:99-107. [PMID: 31899211 DOI: 10.1016/j.ydbio.2019.12.016] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Kakebeen A, Wills A. Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis. Dev Dyn 2019;248:620-5. [PMID: 31254427 DOI: 10.1002/dvdy.80] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]