BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hirschfeld C, Gómez-Mejia A, Bartel J, Hentschker C, Rohde M, Maaß S, Hammerschmidt S, Becher D. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 2019;10:3101. [PMID: 32117081 DOI: 10.3389/fmicb.2019.03101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021;9:2442. [PMID: 34946045 DOI: 10.3390/microorganisms9122442] [Reference Citation Analysis]
2 Man L, Klare WP, Dale AL, Cain JA, Cordwell SJ. Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021:BST20191088. [PMID: 34374408 DOI: 10.1042/BST20191088] [Reference Citation Analysis]
3 Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021;433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Reference Citation Analysis]
4 Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021;203:4715-26. [PMID: 34028569 DOI: 10.1007/s00203-021-02369-5] [Reference Citation Analysis]
5 Ducret A, Grangeasse C. Recent progress in our understanding of peptidoglycan assembly in Firmicutes. Curr Opin Microbiol 2021;60:44-50. [PMID: 33588129 DOI: 10.1016/j.mib.2021.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Oberbeckmann S, Bartosik D, Huang S, Werner J, Hirschfeld C, Wibberg D, Heiden SE, Bunk B, Overmann J, Becher D, Kalinowski J, Schweder T, Labrenz M, Markert S. Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environ Microbiol 2021;23:3099-115. [PMID: 33876529 DOI: 10.1111/1462-2920.15531] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2021;36:132-44. [PMID: 32945615 DOI: 10.1111/omi.12313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021:S0966-842X(21)00271-7. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Reference Citation Analysis]
9 Birk MS, Charpentier E, Frese CK. Automated Phosphopeptide Enrichment for Gram-Positive Bacteria. J Proteome Res 2021;20:4886-92. [PMID: 34473931 DOI: 10.1021/acs.jproteome.1c00364] [Reference Citation Analysis]
10 McLean KT, Tikhomirova A, Brazel EB, Legendre S, Haasbroek G, Minhas V, Paton JC, Trappetti C. Site-Specific Mutations of GalR Affect Galactose Metabolism in Streptococcus pneumoniae. J Bacteriol 2020;203:e00180-20. [PMID: 33046563 DOI: 10.1128/JB.00180-20] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Winther AR, Kjos M, Herigstad ML, Håvarstein LS, Straume D. EloR interacts with the lytic transglycosylase MltG at midcell in Streptococcus pneumoniae R6. J Bacteriol 2021:JB. [PMID: 33558392 DOI: 10.1128/JB.00691-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]