BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pallarès I, de Groot NS, Iglesias V, Sant'Anna R, Biosca A, Fernàndez-Busquets X, Ventura S. Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Front Microbiol 2018;9:1737. [PMID: 30131778 DOI: 10.3389/fmicb.2018.01737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Muthelo T, Mulaudzi V, Netshishivhe M, Dongola TH, Kok M, Makumire S, de Villiers M, Burger A, Zininga T, Shonhai A. Inhibition of Plasmodium falciparum Hsp70-Hop partnership by 2-phenylthynesulfonamide. Front Mol Biosci 2022;9:947203. [DOI: 10.3389/fmolb.2022.947203] [Reference Citation Analysis]
2 Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022;10:921739. [PMID: 35652103 DOI: 10.3389/fcell.2022.921739] [Reference Citation Analysis]
3 Zajkowski T, Lee MD, Sharma S, Vallota-eastman A, Kuska M, Malczewska M, Rothschild LJ. Universal functions of prion candidates across all three domains of life suggest a primeval role of protein self-templating.. [DOI: 10.1101/2022.05.30.493841] [Reference Citation Analysis]
4 Dixson JD, Azad RK. A Protocol for Prion Discovery in Plants. Plant Metabolic Engineering 2022. [DOI: 10.1007/978-1-0716-1822-6_16] [Reference Citation Analysis]
5 Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021;10:2849. [PMID: 34831072 DOI: 10.3390/cells10112849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. Adv Exp Med Biol 2021;1340:237-46. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Anokwuru C, Makumire S, Shonhai A. Bioprospecting for Novel Heat Shock Protein Modulators: The New Frontier for Antimalarial Drug Discovery? Adv Exp Med Biol 2021;1340:187-203. [PMID: 34569026 DOI: 10.1007/978-3-030-78397-6_8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. Adv Exp Med Biol 2021;1340:205-36. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gil-Garcia M, Iglesias V, Pallarès I, Ventura S. Prion-like proteins: from computational approaches to proteome-wide analysis. FEBS Open Bio 2021. [PMID: 34057308 DOI: 10.1002/2211-5463.13213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
10 Makumire S, Dongola TH, Chakafana G, Tshikonwane L, Chauke CT, Maharaj T, Zininga T, Shonhai A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int J Mol Sci 2021;22:2226. [PMID: 33672387 DOI: 10.3390/ijms22042226] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
11 Anas M, Shukla A, Tripathi A, Kumari V, Prakash C, Nag P, Kumar LS, Sharma SK, Ramachandran R, Kumar N. Structural-functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem J 2020;477:3625-43. [PMID: 32893851 DOI: 10.1042/BCJ20200434] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
12 Rajapandi T. Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum. J Parasit Dis 2020;44:687-93. [PMID: 33184535 DOI: 10.1007/s12639-020-01251-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Wang Y, Yang HJ, Harrison PM. The relationship between protein domains and homopeptides in the Plasmodium falciparum proteome. PeerJ 2020;8:e9940. [DOI: 10.7717/peerj.9940] [Reference Citation Analysis]
14 Harrison PM. Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution. PeerJ 2020;8:e9669. [PMID: 32844065 DOI: 10.7717/peerj.9669] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lebepe CM, Matambanadzo PR, Makhoba XH, Achilonu I, Zininga T, Shonhai A. Comparative Characterization of Plasmodium falciparum Hsp70-1 Relative to E. coli DnaK Reveals the Functional Specificity of the Parasite Chaperone. Biomolecules 2020;10:E856. [PMID: 32512819 DOI: 10.3390/biom10060856] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
16 Biosca A, Bouzón-Arnáiz I, Spanos L, Siden-Kiamos I, Iglesias V, Ventura S, Fernàndez-Busquets X. Detection of Protein Aggregation in Live Plasmodium Parasites. Antimicrob Agents Chemother 2020;64:e02135-19. [PMID: 32284383 DOI: 10.1128/AAC.02135-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. Adv Genet 2020;105:293-380. [PMID: 32560789 DOI: 10.1016/bs.adgen.2020.01.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Lebepe CM, Matambanadzo PR, Makhoba XH, Achilonu I, Zininga T, Shonhai A. Comparative characterisation of Plasmodium falciparum Hsp70-1 relative to E. coli DnaK reveals functional specificity of the parasite chaperone.. [DOI: 10.1101/2020.03.09.984104] [Reference Citation Analysis]
19 Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019;20:E5930. [PMID: 31775392 DOI: 10.3390/ijms20235930] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
20 Chakafana G, Zininga T, Shonhai A. The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019;9:E543. [PMID: 31569820 DOI: 10.3390/biom9100543] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
21 Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2020;97:138-55. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
22 Su TY, Harrison PM. Conservation of Prion-Like Composition and Sequence in Prion-Formers and Prion-Like Proteins of Saccharomyces cerevisiae. Front Mol Biosci 2019;6:54. [PMID: 31355208 DOI: 10.3389/fmolb.2019.00054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019;9:E295. [PMID: 31340488 DOI: 10.3390/biom9070295] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
24 Chakafana G, Zininga T, Shonhai A. Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 2019;:591-602. [PMID: 31280465 DOI: 10.1007/s12551-019-00563-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
25 Okubara PA, Peetz AB, Sharpe RM. Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. Agronomy 2019;9:188. [DOI: 10.3390/agronomy9040188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
26 Iglesias V, Paladin L, Juan-Blanco T, Pallarès I, Aloy P, Tosatto SCE, Ventura S. In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Front Physiol 2019;10:314. [PMID: 30971948 DOI: 10.3389/fphys.2019.00314] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
27 Harrison PM. Evolutionary behaviour of bacterial prion-like proteins. PLoS One 2019;14:e0213030. [PMID: 30835736 DOI: 10.1371/journal.pone.0213030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]