BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021;16:5831-67. [PMID: 34475754 DOI: 10.2147/IJN.S328767] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Roy S, Hasan I, Guo B. Recent advances in nanoparticle-mediated antibacterial applications. Coordination Chemistry Reviews 2023;482:215075. [DOI: 10.1016/j.ccr.2023.215075] [Reference Citation Analysis]
2 Motelica L, Oprea O, Vasile B, Ficai A, Ficai D, Andronescu E, Holban AM. Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photocatalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange. IJMS 2023;24:5677. [DOI: 10.3390/ijms24065677] [Reference Citation Analysis]
3 Liu X, Zhou W, Wang T, Miao S, Lan S, Wei Z, Meng Z, Dai Q, Fan H. Highly localized, efficient, and rapid photothermal therapy using gold nanobipyramids for liver cancer cells triggered by femtosecond laser. Sci Rep 2023;13:3372. [PMID: 36849576 DOI: 10.1038/s41598-023-30526-x] [Reference Citation Analysis]
4 Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. Small 2023;:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Reference Citation Analysis]
5 Büter A, Maschkowitz G, Baum M, Mishra YK, Siebert L, Adelung R, Fickenscher H. Antibacterial Activity of Nanostructured Zinc Oxide Tetrapods. Int J Mol Sci 2023;24. [PMID: 36834854 DOI: 10.3390/ijms24043444] [Reference Citation Analysis]
6 Lin X, Ibarlucea B, Peng T, Shen R, Li P, Zhang P. Two birds with one stone: a multifunctional nanoplatform for photothermal sensitive detection and real-time inactivation of Staphylococcus aureus with NIR responsive Cu2-XSe@Van NPs. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133475] [Reference Citation Analysis]
7 Nwasike C, Purr E, Nagi JS, Mahler GJ, Doiron AL. Incorporation of Targeting Biomolecule Improves Interpolymer Complex-Superparamagnetic Iron Oxide Nanoparticles Attachment to and Activation of T(2) MR Signals in M2 Macrophages. Int J Nanomedicine 2023;18:473-87. [PMID: 36718192 DOI: 10.2147/IJN.S392567] [Reference Citation Analysis]
8 Mandras N, Luganini A, Argenziano M, Roana J, Giribaldi G, Tullio V, Cavallo L, Prato M, Cavalli R, Cuffini AM, Allizond V, Banche G. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus pyogenes. Int J Mol Sci 2023;24. [PMID: 36768189 DOI: 10.3390/ijms24031865] [Reference Citation Analysis]
9 Tan X, Liu S, Hu X, Zhang R, Su X, Qian R, Mai Y, Xu Z, Jing W, Tian W, Xie L. Near-Infrared-Enhanced Dual Enzyme-Mimicking Ag-TiO(2-x)@Alginate Microspheres with Antibactericidal and Oxygeneration Abilities to Treat Periodontitis. ACS Appl Mater Interfaces 2023;15:391-406. [PMID: 36562459 DOI: 10.1021/acsami.2c17065] [Reference Citation Analysis]
10 Demchenko AP. Phototheranostics: Combining Targeting, Imaging, Therapy. Introduction to Fluorescence Sensing 2023. [DOI: 10.1007/978-3-031-19089-6_17] [Reference Citation Analysis]
11 Li H, Webster TJ. Trends in nanomedicine. Nanomedicine 2023. [DOI: 10.1016/b978-0-12-818627-5.00020-8] [Reference Citation Analysis]
12 Mutalik C, Lin IH, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo, Hsiao YC, Kuo TR. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. Int J Nanomedicine 2022;17:6821-42. [PMID: 36605560 DOI: 10.2147/IJN.S392081] [Reference Citation Analysis]
13 Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. Nanomaterials (Basel) 2022;13. [PMID: 36616010 DOI: 10.3390/nano13010100] [Reference Citation Analysis]
14 Muşat V, Crintea Căpăţână L, Anghel EM, Stănică N, Atkinson I, Culiţă DC, Baroiu L, Țigău N, Cantaragiu Ceoromila A, Botezatu Dediu AV, Carp O. Ag-Decorated Iron Oxides-Silica Magnetic Nanocomposites with Antimicrobial and Photocatalytic Activity. Nanomaterials (Basel) 2022;12. [PMID: 36558305 DOI: 10.3390/nano12244452] [Reference Citation Analysis]
15 Sorinolu AJ, Godakhindi V, Siano P, Vivero-Escoto JL, Munir M. Influence of silver ion release on the inactivation of antibiotic resistant bacteria using light-activated silver nanoparticles. Mater Adv 2022;3:9090-102. [PMID: 36545324 DOI: 10.1039/d2ma00711h] [Reference Citation Analysis]
16 Zhang WJ, Li S, Vijayan V, Lee JS, Park SS, Cui X, Chung I, Lee J, Ahn SK, Kim JR, Park IK, Ha CS. ROS- and pH-Responsive Polydopamine Functionalized Ti(3)C(2)T(x) MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials (Basel) 2022;12. [PMID: 36558246 DOI: 10.3390/nano12244392] [Reference Citation Analysis]
17 Okoro G, Husain S, Saukani M, Mutalik C, Yougbaré S, Hsiao Y, Kuo T. Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00752] [Reference Citation Analysis]
18 Fedorenko S, Farvaeva D, Stepanov A, Bochkova O, Kholin K, Nizameev I, Drobyshev S, Gerasimova T, Voloshina A, Fanizza E, Depalo N, Sibgatullina G, Samigullin D, Petrov K, Gubaidullin A, Mustafina A. Tricks for organic-capped Cu2-xS nanoparticles encapsulation into silica nanocomposites co-doped with red emitting luminophore for NIR activated-photothermal/chemodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry 2022;433:114187. [DOI: 10.1016/j.jphotochem.2022.114187] [Reference Citation Analysis]
19 Rahmah MI. A New Methodology to Study the Effect of Drinking Water and Cissus rhombifolia Leaves on the Preparation of Ag2CO3/AgCl/Cu2O Heterostructure. BioNanoSci 2022. [DOI: 10.1007/s12668-022-01051-4] [Reference Citation Analysis]
20 Zarei M, Esmaeili A, Zarrabi A, Zarepour A. Superparamagnetic Iron Oxide Nanoparticles and Curcumin Equally Promote Neuronal Branching Morphogenesis in the Absence of Nerve Growth Factor in PC12 Cells. Pharmaceutics 2022;14. [PMID: 36559186 DOI: 10.3390/pharmaceutics14122692] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Gigi S, Naor T, Waiskopf N, Stone D, Natan M, Jacobi G, Levi A, Remennik S, Levi-kalisman Y, Banin E, Banin U. Photoactive Antimicrobial CuZnO Nanocrystals. J Phys Chem C 2022;126:18683-18691. [DOI: 10.1021/acs.jpcc.2c05109] [Reference Citation Analysis]
22 Zhu B, Song P, Li J, Cao S, Shi J. Ti3C2 MXene/gold nanorods-based hybrid nanoparticles with photodynamic antibacterial activities. J Mater Sci 2022. [DOI: 10.1007/s10853-022-07874-6] [Reference Citation Analysis]
23 Zhang Z, Chen J, Zou L, Tang J, Zheng J, Luo M, Wang G, Liang D, Li Y, Chen B, Yan H, Ding W. Preparation, Characterization, and Staphylococcus aureus Biofilm Elimination Effect of Baicalein-Loaded β-Cyclodextrin-Grafted Chitosan Nanoparticles. IJN 2022;Volume 17:5287-5302. [DOI: 10.2147/ijn.s383182] [Reference Citation Analysis]
24 Wang B, Xu Y, Shao D, Li L, Ma Y, Li Y, Zhu J, Shi X, Li W. Inorganic nanomaterials for intelligent photothermal antibacterial applications. Front Bioeng Biotechnol 2022;10:1047598. [DOI: 10.3389/fbioe.2022.1047598] [Reference Citation Analysis]
25 Ito R, Kawamura M, Sato T, Fujimura S. Cefmetazole Resistance Mechanism for Escherichia Coli Including ESBL-Producing Strains. Infect Drug Resist 2022;15:5867-78. [PMID: 36237294 DOI: 10.2147/IDR.S382142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Xu Y, Zhou W, Xiao L, Lan Q, Li M, Liu Y, Song L, Li L. Bacitracin-Engineered BSA/ICG Nanocomplex with Enhanced Photothermal and Photodynamic Antibacterial Activity. ACS Omega. [DOI: 10.1021/acsomega.2c02470] [Reference Citation Analysis]
27 Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022;219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Melo MAS, Mokeem L, Sun J. Bioactive Restorative Dental Materials—The New Frontier. Dental Clinics of North America 2022. [DOI: 10.1016/j.cden.2022.05.005] [Reference Citation Analysis]
29 Antinate Shilpa S, Subbulakshmi MS, Hikku GS. Nanoparticles of metal/metal oxide embedded fabrics to impart antibacterial activity to counteract hospital acquired infections. Eng Res Express 2022;4:032002. [DOI: 10.1088/2631-8695/ac8f1c] [Reference Citation Analysis]
30 Rethi L, Mutalik C, Anurogo D, Lu L, Chu H, Yougbaré S, Kuo T, Cheng T, Chen F. Lipid-Based Nanomaterials for Drug Delivery Systems in Breast Cancer Therapy. Nanomaterials 2022;12:2948. [DOI: 10.3390/nano12172948] [Reference Citation Analysis]
31 Arkas M, Kythreoti G, Favvas EP, Giannakopoulos K, Mouti N, Arvanitopoulou M, Athanasiou A, Douloudi M, Nikoli E, Vardavoulias M, Dimitriou M, Karakasiliotis I, Ballén V, González SMS. Hydrophilic Antimicrobial Coatings for Medical Leathers from Silica-Dendritic Polymer-Silver Nanoparticle Composite Xerogels. Textiles 2022;2:464-485. [DOI: 10.3390/textiles2030026] [Reference Citation Analysis]
32 Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO2: A Review. Materials 2022;15:5820. [DOI: 10.3390/ma15175820] [Reference Citation Analysis]
33 Wan R, Wang X, Lei L, Hu G, Tang H, Gu H. Enhanced anti-microbial activity and osseointegration of Ta/Cu co-implanted polyetheretherketone. Colloids Surf B Biointerfaces 2022;218:112719. [PMID: 35917690 DOI: 10.1016/j.colsurfb.2022.112719] [Reference Citation Analysis]
34 Li Y, Miao Y, Yang L, Zhao Y, Wu K, Lu Z, Hu Z, Guo J. Recent Advances in the Development and Antimicrobial Applications of Metal-Phenolic Networks. Adv Sci (Weinh) 2022;:e2202684. [PMID: 35876402 DOI: 10.1002/advs.202202684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Mutalik C, Okoro G, Chou H, Lin I, Yougbaré S, Chang C, Kuo T. Phase-Dependent 1T/2H-MoS 2 Nanosheets for Effective Photothermal Killing of Bacteria. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Bucuresteanu R, Ionita M, Chihaia V, Ficai A, Trusca R, Ilie C, Kuncser A, Holban A, Mihaescu G, Petcu G, Nicolaev A, Costescu RM, Husch M, Parvulescu V, Ditu L. Antimicrobial Properties of TiO2 Microparticles Coated with Ca- and Cu-Based Composite Layers. IJMS 2022;23:6888. [DOI: 10.3390/ijms23136888] [Reference Citation Analysis]
37 Dang-bao T, Hoang Bao N, Phung Anh N, Hong Phuong P, Nguyen T, Tri N. Green-synthesized silver nanoparticles decorated on ceria nanorods for room-temperature p-nitrophenol hydrogenation. Green Chemistry Letters and Reviews 2022;15:449-59. [DOI: 10.1080/17518253.2022.2089060] [Reference Citation Analysis]
38 Tang Z, Ma D, Chen Q, Wang Y, Sun M, Lian Q, Shang J, Wong PK, He C, Xia D, Wang T. Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. J Hazard Mater 2022;437:129373. [PMID: 35728326 DOI: 10.1016/j.jhazmat.2022.129373] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Wang CH, Mutalik C, Yougbaré S, Teng NC, Kuo TR. Calcium Phosphate Nanoclusters for the Repair of Tooth Enamel Erosion. Nanomaterials (Basel) 2022;12:1997. [PMID: 35745336 DOI: 10.3390/nano12121997] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhao Y, Linghu X, Shu Y, Zhang J, Chen Z, Wu Y, Shan D, Wang B. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. Journal of Environmental Chemical Engineering 2022;10:108077. [DOI: 10.1016/j.jece.2022.108077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Bousiakou LG, Qindeel R, Al-dossary OM, Kalkani H. Synthesis and characterization of graphene oxide (GO) sheets for pathogen inhibition: Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Journal of King Saud University - Science 2022;34:102002. [DOI: 10.1016/j.jksus.2022.102002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Debasmita D, Ghosh SS, Chattopadhyay A. Hierarchical Passage of Gold Nanoclusters in Living Bacteria. ACS Appl Bio Mater 2022. [PMID: 35609302 DOI: 10.1021/acsabm.2c00315] [Reference Citation Analysis]
43 Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science. [DOI: 10.1002/smsc.202200012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
44 Sriubas M, Bockute K, Palevicius P, Kaminskas M, Rinkevicius Z, Ragulskis M, Simonyte S, Ruzauskas M, Laukaitis G. Antibacterial Activity of Silver and Gold Particles Formed on Titania Thin Films. Nanomaterials 2022;12:1190. [DOI: 10.3390/nano12071190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
45 Sriubas M, Bockute K, Palevicius P, Kaminskas M, Rinkevicius Z, Ragulskis M, Simonyte S, Ruzauskas M, Laukaitis G. Antibacterial Activity of Silver and Gold Particles Formed on Titania Thin Films. Nanomaterials (Basel) 2022;12. [PMID: 35407308 DOI: 10.3390/nano12071190] [Reference Citation Analysis]
46 Sriubas M, Bockute K, Palevicius P, Kaminskas M, Rinkevicius Z, Ragulskis M, Simonyte S, Ruzauskas M, Laukaitis G. Antibacterial Activity of Silver and Gold Particles Formed on Titania Thin Films. Nanomaterials 2022;12:1190. [DOI: 10.3390/nano12071190] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. Adv Sci (Weinh) 2022;9:e2105252. [PMID: 35088586 DOI: 10.1002/advs.202105252] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
48 Fan S, Lin W, Huang Y, Xia J, Xu J, Zhang J, Pi J. Advances and Potentials of Polydopamine Nanosystem in Photothermal-Based Antibacterial Infection Therapies. Front Pharmacol 2022;13:829712. [DOI: 10.3389/fphar.2022.829712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Kuo J, Tan S, Hsiao Y, Mutalik C, Chen H, Yougbaré S, Kuo T. Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy. ACS Sustainable Chem Eng 2022;10:464-71. [DOI: 10.1021/acssuschemeng.1c06714] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
50 Han Y, Yu Q, Dong X, Hou J, Han J. Plasma SiOx:H Nanocoatings to Enhance the Antibacterial and Anti-Inflammatory Properties of Biomaterials. IJN 2022;Volume 17:381-94. [DOI: 10.2147/ijn.s339000] [Reference Citation Analysis]
51 Zhang C, Huang L, Sun DW, Pu H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. J Hazard Mater 2021;:127824. [PMID: 34838354 DOI: 10.1016/j.jhazmat.2021.127824] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]