BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Yang Y, Li R, Tang X, Guo D, Qing Y, Qin Y. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques. Int J Nanomedicine 2019;14:7217-36. [PMID: 31564875 DOI: 10.2147/IJN.S216175] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Calero JA, Manero JM, Rupérez E. Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant. Biomater Adv 2023;146:213311. [PMID: 36709627 DOI: 10.1016/j.bioadv.2023.213311] [Reference Citation Analysis]
2 Khan E, Khan S, Khan A. Polymer nanocomposites for biomedical applications. Smart Polymer Nanocomposites 2023. [DOI: 10.1016/b978-0-323-91611-0.00025-6] [Reference Citation Analysis]
3 Olmo Martinez RD, Munirathinam B, Michalska-domańska M. Biomedical application of anodic nanomaterials. Synthesis of Bionanomaterials for Biomedical Applications 2023. [DOI: 10.1016/b978-0-323-91195-5.00022-2] [Reference Citation Analysis]
4 Vernon JJ, Raïf EM, Aw J, Attenborough E, Jha A, Do T. Dental implant surfaces and their interaction with the oral microbiome. Dentistry Review 2022;2:100060. [DOI: 10.1016/j.dentre.2022.100060] [Reference Citation Analysis]
5 Jayasree A, Gómez-cerezo MN, Verron E, Ivanovski S, Gulati K. Gallium-doped dual micro-nano titanium dental implants towards soft-tissue integration and bactericidal functions. Materials Today Advances 2022;16:100297. [DOI: 10.1016/j.mtadv.2022.100297] [Reference Citation Analysis]
6 Badaraev AD, Sidelev DV, Kozelskaya AI, Bolbasov EN, Tran TH, Nashchekin AV, Malashicheva AB, Rutkowski S, Tverdokhlebov SI. Surface Modification of Electrospun Bioresorbable and Biostable Scaffolds by Pulsed DC Magnetron Sputtering of Titanium for Gingival Tissue Regeneration. Polymers (Basel) 2022;14. [PMID: 36433049 DOI: 10.3390/polym14224922] [Reference Citation Analysis]
7 Dhabarde N, Khaiboullina S, Uppal T, Adhikari K, Verma SC, Subramanian VR. Inactivation of SARS-CoV-2 and Other Human Coronaviruses Aided by Photocatalytic One-Dimensional Titania Nanotube Films as a Self-Disinfecting Surface. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c03226] [Reference Citation Analysis]
8 Liu P, Zhao Z, Tang J, Wang A, Zhao D, Yang Y. Early Antimicrobial Evaluation of Nanostructured Surfaces Based on Bacterial Biological Properties. ACS Biomater Sci Eng 2022. [PMID: 36223479 DOI: 10.1021/acsbiomaterials.2c00559] [Reference Citation Analysis]
9 Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022;17:100447. [PMID: 36278144 DOI: 10.1016/j.mtbio.2022.100447] [Reference Citation Analysis]
10 Noreen S, Wang E, Feng H, Li Z. Functionalization of TiO2 for Better Performance as Orthopedic Implants. Materials 2022;15:6868. [DOI: 10.3390/ma15196868] [Reference Citation Analysis]
11 He R, Sui J, Wang G, Wang Y, Xu K, Qin S, Xu S, Ji F, Zhang H. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf B Biointerfaces 2022;216:112582. [PMID: 35617877 DOI: 10.1016/j.colsurfb.2022.112582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sun H, Chan Y, Li X, Xu R, Zhang Z, Hu X, Wu F, Deng F, Yu X. Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: In vivo sequencing-based pilot study in beagle dogs. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100275] [Reference Citation Analysis]
13 Vrchovecká K, Weiser A, Přibyl J, Kuta J, Holzer J, Pávková-goldbergová M, Sobola D, Dlouhý A. A release of Ti-ions from nanostructured titanium oxide surfaces. Surfaces and Interfaces 2022;29:101699. [DOI: 10.1016/j.surfin.2021.101699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Perrault DP, Sharma A, Kim JF, Gurtner GC, Wan DC. Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering 2022;9:138. [DOI: 10.3390/bioengineering9040138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. Beilstein J Nanotechnol 2022;13:201-18. [DOI: 10.3762/bjnano.13.15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chen D, Li Y, Zhao X, He H, Sun G, Li W, Wang X. Spray-deposited Ag nanoparticles on micro/nano structured Ti6Al4V surface for enhanced bactericidal property and cytocompatibility. Surface and Coatings Technology 2022;431:128010. [DOI: 10.1016/j.surfcoat.2021.128010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Maher S, Linklater D, Rastin H, Liao ST, Martins de Sousa K, Lima-Marques L, Kingshott P, Thissen H, Ivanova EP, Losic D. Advancing of 3D-Printed Titanium Implants with Combined Antibacterial Protection Using Ultrasharp Nanostructured Surface and Gallium-Releasing Agents. ACS Biomater Sci Eng 2021. [PMID: 34963288 DOI: 10.1021/acsbiomaterials.1c01030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Kravanja KA, Finšgar M. Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants. Biomedicines 2021;9:1936. [PMID: 34944750 DOI: 10.3390/biomedicines9121936] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
19 Roupie C, Labat B, Morin-Grognet S, Echalard A, Ladam G, Thébault P. Dual-functional antibacterial and osteogenic nisin-based layer-by-layer coatings. Mater Sci Eng C Mater Biol Appl 2021;131:112479. [PMID: 34857265 DOI: 10.1016/j.msec.2021.112479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhang Y, Chen X, Li Y, Bai T, Li C, Jiang L, Liu Y, Sun C, Zhou W. Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS Omega 2021;6:30027-39. [PMID: 34778674 DOI: 10.1021/acsomega.1c04734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Chen D, Li Y, He H, Li W, Zeng R, Wang X. Covalent incorporation of Ag nanoparticles into TiO2 nanotubes on Ti6Al4V by molecular grafting for enhancing antibacterial effect. Surface and Coatings Technology 2021;426:127773. [DOI: 10.1016/j.surfcoat.2021.127773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021;10:1270. [PMID: 34680850 DOI: 10.3390/antibiotics10101270] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
23 Maher S, Linklater D, Rastin H, Le Yap P, Ivanova EP, Losic D. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. ChemMedChem 2021. [PMID: 34606176 DOI: 10.1002/cmdc.202100580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Abou Neel EA, Hossain KMZ, Abuelenain DA, Abuhaimed T, Ahmed I, Valappil SP, Knowles JC. Antibacterial effect of titanium dioxide-doped phosphate glass microspheres filled total-etch dental adhesive on S. mutans biofilm. International Journal of Adhesion and Adhesives 2021;108:102886. [DOI: 10.1016/j.ijadhadh.2021.102886] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Hussain M, Askari Rizvi SH, Abbas N, Sajjad U, Shad MR, Badshah MA, Malik AI. Recent Developments in Coatings for Orthopedic Metallic Implants. Coatings 2021;11:791. [DOI: 10.3390/coatings11070791] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
26 Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI. Evolution of anodised titanium for implant applications. Heliyon 2021;7:e07408. [PMID: 34296002 DOI: 10.1016/j.heliyon.2021.e07408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
27 Fang Y, Attarilar S, Yang Z, Wei G, Fu Y, Wang L. Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants. Coatings 2021;11:668. [DOI: 10.3390/coatings11060668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Taipina MO, de Mello MG, Tamborlin L, Pereira KD, Luchessi AD, Cremasco A, Caram R. A novel Ag doping Ti alloys route: Formation and antibacterial effect of the TiO2 nanotubes. Materials Chemistry and Physics 2021;261:124192. [DOI: 10.1016/j.matchemphys.2020.124192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 2021;9:643722. [PMID: 33644027 DOI: 10.3389/fbioe.2021.643722] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 38.0] [Reference Citation Analysis]
30 De Santis S, Sotgiu G, Porcelli F, Marsotto M, Iucci G, Orsini M. A Simple Cerium Coating Strategy for Titanium Oxide Nano-tubes' Bioactivity Enhancement. Nanomaterials (Basel) 2021;11:445. [PMID: 33578788 DOI: 10.3390/nano11020445] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Ständert V, Borcherding K, Bormann N, Schmidmaier G, Grunwald I, Wildemann B. Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioact Mater 2021;6:2331-45. [PMID: 33553819 DOI: 10.1016/j.bioactmat.2021.01.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
32 Xu J, Luo Y, Yuan S, Li L, Liu N. Antifungal Nanomaterials: Current Progress and Future Directions. Innovations in Digital Health, Diagnostics, and Biomarkers 2021;1:3-7. [DOI: 10.36401/iddb-20-03] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Yin D, Hong Y, Chen L, Komasa S, Yang Y, Zhang H, Yan S, Nishizaki H, Kusumoto T, Sui W, Kawazoe T, Okazaki J. Lactoferrin Coating Improves the Antibacterial and Osteogenic Properties of Alkali-Treated Titanium with Nanonetwork Structures. Journal of Nanomaterials 2020;2020:1-13. [DOI: 10.1155/2020/2516975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Couto M, Vasconcelos DP, Sousa DM, Sousa B, Conceição F, Neto E, Lamghari M, Alves CJ. The Mechanisms Underlying the Biological Response to Wear Debris in Periprosthetic Inflammation. Front Mater 2020;7:274. [DOI: 10.3389/fmats.2020.00274] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]