BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Deng J, Xiong C, Chen H, Zhou Q, Xia Y, Shao X, Zou H. Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model. Drug Des Devel Ther 2020;14:2221-33. [PMID: 32606592 DOI: 10.2147/DDDT.S247091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Du P, Chen M, Deng C, Zhu C. microRNA-199a downregulation alleviates hyperuricemic nephropathy via the PPARγ/β-catenin axis. J Recept Signal Transduct Res 2021;:1-9. [PMID: 34431454 DOI: 10.1080/10799893.2021.1967392] [Reference Citation Analysis]
2 Shi B, Zhang Y, Huang B, Lin H, Zhou Q, Wang Y, Cai Z, Liu M. The System Profile of Renal Drug Transporters in Tubulointerstitial Fibrosis Model and Consequent Effect on Pharmacokinetics. Molecules 2022;27:704. [PMID: 35163972 DOI: 10.3390/molecules27030704] [Reference Citation Analysis]
3 Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022;13:832732. [DOI: 10.3389/fphar.2022.832732] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Le Y, Zhou X, Zheng J, Yu F, Tang Y, Yang Z, Ding G, Chen Y. Anti-Hyperuricemic Effects of Astaxanthin by Regulating Xanthine Oxidase, Adenosine Deaminase and Urate Transporters in Rats. Mar Drugs 2020;18:E610. [PMID: 33271765 DOI: 10.3390/md18120610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Kökény G, Calvier L, Hansmann G. PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021;22:10431. [PMID: 34638771 DOI: 10.3390/ijms221910431] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021;12:746208. [PMID: 34912216 DOI: 10.3389/fphar.2021.746208] [Reference Citation Analysis]
7 Feng J, Lu M, Li W, Li J, Meng P, Li Z, Gao X, Zhang Y. PPARγ alleviates peritoneal fibrosis progression along with promoting GLUT1 expression and suppressing peritoneal mesothelial cell proliferation. Mol Cell Biochem 2022. [PMID: 35380292 DOI: 10.1007/s11010-022-04419-y] [Reference Citation Analysis]
8 Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021;41:318-30. [PMID: 34715962 DOI: 10.1016/j.semnephrol.2021.06.004] [Reference Citation Analysis]
9 Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine 2022;76:103855. [PMID: 35123268 DOI: 10.1016/j.ebiom.2022.103855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu P, Wang C, Wang Y, Zhang H, Liu B, Qiu X. Zishen Qingre Tongluo Formula Improves Renal Fatty Acid Oxidation and Alleviated Fibrosis via the Regulation of the TGF-β1/Smad3 Signaling Pathway in Hyperuricemic Nephrology Rats. Biomed Res Int 2021;2021:2793823. [PMID: 34938805 DOI: 10.1155/2021/2793823] [Reference Citation Analysis]