BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oliveira ML, Arêas AP, Ho PL. Intranasal vaccines for protection against respiratory and systemic bacterial infections. Expert Rev Vaccines 2007;6:419-29. [PMID: 17542756 DOI: 10.1586/14760584.6.3.419] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Mu J, Jeyanathan M, Small CL, Zhang X, Roediger E, Feng X, Chong D, Gauldie J, Xing Z. Immunization with a bivalent adenovirus-vectored tuberculosis vaccine provides markedly improved protection over its monovalent counterpart against pulmonary tuberculosis. Mol Ther 2009;17:1093-100. [PMID: 19319120 DOI: 10.1038/mt.2009.60] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
2 Champion CI, Kickhoefer VA, Liu G, Moniz RJ, Freed AS, Bergmann LL, Vaccari D, Raval-Fernandes S, Chan AM, Rome LH, Kelly KA. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 2009;4:e5409. [PMID: 19404403 DOI: 10.1371/journal.pone.0005409] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 6.0] [Reference Citation Analysis]
3 Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008;6:349-362. [PMID: 18345021 DOI: 10.1038/nrmicro1840] [Cited by in Crossref: 355] [Cited by in F6Publishing: 334] [Article Influence: 25.4] [Reference Citation Analysis]
4 Ferreira DM, Darrieux M, Silva DA, Leite LC, Ferreira JM Jr, Ho PL, Miyaji EN, Oliveira ML. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin Vaccine Immunol 2009;16:636-45. [PMID: 19279169 DOI: 10.1128/CVI.00395-08] [Cited by in Crossref: 82] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
5 Rial A, Ferrara F, Suárez N, Scavone P, Marqués JM, Chabalgoity JA. Intranasal administration of a polyvalent bacterial lysate induces self-restricted inflammation in the lungs and a Th1/Th17 memory signature. Microbes and Infection 2016;18:747-57. [DOI: 10.1016/j.micinf.2016.10.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ferreira PC, Campos IB, Abe CM, Trabulsi LR, Elias WP, Ho PL, Oliveira ML. Immunization of mice with Lactobacillus casei expressing intimin fragments produces antibodies able to inhibit the adhesion of enteropathogenic Escherichia coli to cultivated epithelial cells. FEMS Immunol Med Microbiol 2008;54:245-54. [PMID: 18801043 DOI: 10.1111/j.1574-695X.2008.00471.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
7 Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles. Biomaterials 2012;33:4762-72. [PMID: 22465338 DOI: 10.1016/j.biomaterials.2012.03.027] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 5.7] [Reference Citation Analysis]
8 Choi SY, Tran TD, Briles DE, Rhee DK. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice. Clin Exp Vaccine Res 2013;2:58-65. [PMID: 23596592 DOI: 10.7774/cevr.2013.2.1.58] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
9 Jeyanathan M, Mu J, Kugathasan K, Zhang X, Damjanovic D, Small C, Divangahi M, Petrof BJ, Hogaboam CM, Xing Z. Airway Delivery of Soluble Mycobacterial Antigens Restores Protective Mucosal Immunity by Single Intramuscular Plasmid DNA Tuberculosis Vaccination: Role of Proinflammatory Signals in the Lung. J Immunol 2008;181:5618-26. [DOI: 10.4049/jimmunol.181.8.5618] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
10 Wang SH, Thompson AL, Hickey AJ, Staats HF. Dry powder vaccines for mucosal administration: critical factors in manufacture and delivery. Curr Top Microbiol Immunol 2012;354:121-56. [PMID: 21822816 DOI: 10.1007/82_2011_167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
11 Henderson A, Propst K, Kedl R, Dow S. Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 2011;29:5304-12. [PMID: 21600950 DOI: 10.1016/j.vaccine.2011.05.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
12 Ferreira PC, da Silva JB, Piazza RM, Eckmann L, Ho PL, Oliveira ML. Immunization of mice with Lactobacillus casei expressing a beta-intimin fragment reduces intestinal colonization by Citrobacter rodentium. Clin Vaccine Immunol 2011;18:1823-33. [PMID: 21900533 DOI: 10.1128/CVI.05262-11] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
13 Kim G, Choi S, Seon S, Lee S, Park S, Song JY, Briles DE, Rhee D. Pneumococcal pep27 mutant immunization stimulates cytokine secretion and confers long-term immunity with a wide range of protection, including against non-typeable strains. Vaccine 2016;34:6481-92. [DOI: 10.1016/j.vaccine.2016.10.071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
14 Patel GB, Chen W. Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Review of Vaccines 2014;9:431-40. [DOI: 10.1586/erv.10.34] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
15 Xu X, Meng J, Wang Y, Zheng J, Wu K, Zhang X, Yin Y, Zhang Q. Serotype-independent protection against pneumococcal infections elicited by intranasal immunization with ethanol-killed pneumococcal strain, SPY1. J Microbiol 2014;52:315-23. [PMID: 24682994 DOI: 10.1007/s12275-014-3583-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
16 Koyama S, Coban C, Aoshi T, Horii T, Akira S, Ishii KJ. Innate immune control of nucleic acid-based vaccine immunogenicity. Expert Review of Vaccines 2014;8:1099-107. [DOI: 10.1586/erv.09.57] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
17 Plotkin SA. Vaccines: the fourth century. Clin Vaccine Immunol. 2009;16:1709-1719. [PMID: 19793898 DOI: 10.1128/cvi.00290-09] [Cited by in Crossref: 143] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
18 Villena J, Oliveira ML, Ferreira PC, Salva S, Alvarez S. Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges. Int Immunopharmacol 2011;11:1633-45. [PMID: 21708293 DOI: 10.1016/j.intimp.2011.06.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
19 Sakamoto K, Asanuma H, Nakamura T, Kanno T, Sata T, Katano H. Immune response to intranasal and intraperitoneal immunization with Kaposi's sarcoma-associated herpesvirus in mice. Vaccine 2010;28:3325-32. [PMID: 20206669 DOI: 10.1016/j.vaccine.2010.02.091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
20 Goyal AK, Rath G, Garg T. Nanotechnological Approaches for Genetic Immunization. In: Erdmann VA, Barciszewski J, editors. DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. Berlin: Springer Berlin Heidelberg; 2013. pp. 67-120. [DOI: 10.1007/978-3-662-45775-7_4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
21 Kaczynska A, Klosinska M, Janeczek K, Zarobkiewicz M, Emeryk A. Promising Immunomodulatory Effects of Bacterial Lysates in Allergic Diseases. Front Immunol 2022;13:907149. [DOI: 10.3389/fimmu.2022.907149] [Reference Citation Analysis]
22 Kim SJ, Seon SH, Luong TT, Ghosh P, Pyo S, Rhee DK. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection. Vaccine 2019;37:90-8. [PMID: 30467061 DOI: 10.1016/j.vaccine.2018.11.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Baumann U. Mucosal vaccination against bacterial respiratory infections. Expert Review of Vaccines 2014;7:1257-76. [DOI: 10.1586/14760584.7.8.1257] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
24 Hausner M, Schamberger A, Naumann W, Jacobs E, Dumke R. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan. Microb Pathog 2013;64:23-32. [PMID: 23948467 DOI: 10.1016/j.micpath.2013.07.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
25 Kim E, Choi S, Kwon M, Tran TD, Park S, Lee K, Bae S, Briles DE, Rhee D. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 2012;30:2008-19. [DOI: 10.1016/j.vaccine.2011.11.073] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]