1 |
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023;:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Reference Citation Analysis]
|
2 |
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023;355:624-54. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Reference Citation Analysis]
|
3 |
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023;11:705. [DOI: 10.3390/biomedicines11030705] [Reference Citation Analysis]
|
4 |
Yang Y, Wu S, Zhang Q, Chen Z, Wang C, Jiang S, Zhang Y. A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. J Biomater Sci Polym Ed 2023;34:166-83. [PMID: 35943449 DOI: 10.1080/09205063.2022.2112310] [Reference Citation Analysis]
|
5 |
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023;24. [PMID: 36768966 DOI: 10.3390/ijms24032643] [Reference Citation Analysis]
|
6 |
Ray S, Seth S. Site-specific theranostic uses of stimuli responsive nanohydrogels. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00014-3] [Reference Citation Analysis]
|
7 |
Ahmad MZ, Pathak K, Bhatnagar D, Ladhe S, Kumar D, Saikia R, Das A. Nanotheranostic Approach for Cancer Treatment. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_296-1] [Reference Citation Analysis]
|
8 |
Kolay S, Mondal A, Ali SM, Santra S, Molla MR. Photoswitchable polyurethane based nanoaggregates for on-command release of noncovalent guest molecules. Journal of Macromolecular Science, Part A 2022;59:838-848. [DOI: 10.1080/10601325.2022.2132168] [Reference Citation Analysis]
|
9 |
Lettieri M, Palladino P, Scarano S, Minunni M. Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview. Sensors and Actuators Reports 2022;4:100108. [DOI: 10.1016/j.snr.2022.100108] [Reference Citation Analysis]
|
10 |
Nikolova MP, Kumar EM, Chavali MS. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022;14:2195. [PMID: 36297630 DOI: 10.3390/pharmaceutics14102195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Rani V, Venkatesan J, Prabhu A. Liposomes- A promising strategy for drug delivery in anticancer applications. Journal of Drug Delivery Science and Technology 2022;76:103739. [DOI: 10.1016/j.jddst.2022.103739] [Reference Citation Analysis]
|
12 |
Ocampo‐garcía B, Lara LA, Ferro‐flores G, Morales‐avila E, Isaac‐olivé K. Role of Nanotechnology in Biological Therapies. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch5] [Reference Citation Analysis]
|
13 |
Hodaei M, Varshosaz J. Cationic Okra gum coated nanoliposomes as a pH-sensitive carrier for co-delivery of hesperetin and oxaliplatin in colorectal cancers. Pharm Dev Technol 2022;:1-16. [PMID: 36040153 DOI: 10.1080/10837450.2022.2119249] [Reference Citation Analysis]
|
14 |
Al Ragib A, Chakma R, Dewan K, Islam T, Kormoker T, Idris AM. Current advanced drug delivery systems: Challenges and potentialities. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103727] [Reference Citation Analysis]
|
15 |
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EES, Rahman MH, Cavalu S. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes 2022;13:1370. [DOI: 10.3390/genes13081370] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
17 |
Pourradi NMA, Babaei H, Hamishehkar H, Baradaran B, Shokouhi-Gogani B, Shanehbandi D, Ghorbani M, Azarmi Y. Targeted delivery of doxorubicin by Thermo/pH-responsive magnetic nanoparticles in a rat model of breast cancer. Toxicol Appl Pharmacol 2022;:116036. [PMID: 35487267 DOI: 10.1016/j.taap.2022.116036] [Reference Citation Analysis]
|
18 |
Wang Y, Khan HM, Zhou C, Liao X, Tang P, Song P, Gui X, Li H, Chen Z, Liu S, Cen Y, Zhang Z, Li Z. Apoptotic cells derived micro/nano-sized extracellular vesicles in tissue regeneration. Nanotechnology Reviews 2021;11:1193-208. [DOI: 10.1515/ntrev-2022-0049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Chavda VP, Vihol D, Mehta B, Shah D, Patel M, Vora LK, Pereira-Silva M, Paiva-Santos AC. Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine (Lond) 2022. [PMID: 35259920 DOI: 10.2217/nnm-2021-0463] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Wang Y, Khan HM, Zhou C, Liao X, Tang P, Song P, Gui X, Li H, Chen Z, Liu S, Cen Y, Zhang Z, Li Z. Apoptotic cell-derived micro/nanosized extracellular vesicles in tissue regeneration. Nanotechnology Reviews 2022;11:957-72. [DOI: 10.1515/ntrev-2022-0052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Duan H, Wang T, Su Z, Pang H, Chen C. Recent progress and challenges in plasmonic nanomaterials. Nanotechnology Reviews 2022;11:846-73. [DOI: 10.1515/ntrev-2022-0039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Mater Horiz 2022;9:164-93. [PMID: 34549764 DOI: 10.1039/d1mh01091c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
|
23 |
Garcia-carrasco M, Parra-aguilar IF, Gutiérrez-grijalva EP, Licea-claverie A, Basilio Heredia J. Nano-formulations in drug delivery. Food, Medical, and Environmental Applications of Nanomaterials 2022. [DOI: 10.1016/b978-0-12-822858-6.00017-0] [Reference Citation Analysis]
|
24 |
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021;338:446-61. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
|
25 |
Damera DP, Nag A. Tuning the phase transition temperature of hybrid Span60-L64 thermoresponsive niosomes: Insights from fluorescence and Raman spectroscopy. Journal of Molecular Liquids 2021;340:117110. [DOI: 10.1016/j.molliq.2021.117110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Ruan Y, Guha P, Chen S, Yuan Q, Gan W. Observing the structural variations on binary complex vesicle surfaces and the influence on molecular transportation. Chemical Physics 2021;548:111250. [DOI: 10.1016/j.chemphys.2021.111250] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. Adv Sci (Weinh) 2021;8:e2100876. [PMID: 34085415 DOI: 10.1002/advs.202100876] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
28 |
Zhang X, Zhang M, Wu M, Yang L, Liu R, Zhang R, Zhao T, Song C, Liu G, Zhu Q. Precise Controlled Target Molecule Release through Light-Triggered Charge Reversal Bridged Polysilsesquioxane Nanoparticles. Polymers (Basel) 2021;13:2392. [PMID: 34371994 DOI: 10.3390/polym13152392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
29 |
Zheng Y, Wang Y, Xia M, Gao Y, Zhang L, Song Y, Zhang C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 2021. [PMID: 34260049 DOI: 10.1007/s13346-021-01029-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021;268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
31 |
Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021;78:5225-43. [PMID: 33974093 DOI: 10.1007/s00018-021-03850-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
32 |
Singh A, Shafi S, Upadhyay T, Najmi AK, Kohli K, Pottoo FH. Insights into Nanotherapeutic Strategies as an Impending Approach to Liver Cancer Treatment. Curr Top Med Chem 2020;20:1839-54. [PMID: 32579503 DOI: 10.2174/1568026620666200624161801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
33 |
Zarrabi A, Zarepour A, Khosravi A, Alimohammadi Z, Thakur VK. Synthesis of Curcumin Loaded Smart pH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. Fibers 2021;9:19. [DOI: 10.3390/fib9030019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
34 |
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021;599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
|
35 |
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. Materials (Basel) 2021;14:930. [PMID: 33669245 DOI: 10.3390/ma14040930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
36 |
Bochicchio S, Lamberti G, Barba AA. Polymer-Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021;13:198. [PMID: 33540659 DOI: 10.3390/pharmaceutics13020198] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
|
37 |
Moradi Kashkooli F, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 2021;36:101057. [DOI: 10.1016/j.nantod.2020.101057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
|
38 |
Cao R, Kumar D, Dinsmore AD. Vesicle-Based Gel via Polyelectrolyte-Induced Adhesion: Structure, Rheology, and Response. Langmuir 2021;37:1714-24. [DOI: 10.1021/acs.langmuir.0c02921] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
39 |
Jamshaid H, Fakhar-ud-din. Emerging Lipid-Based Nanomaterials for Cancer Theranostics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-74330-7_5] [Reference Citation Analysis]
|
40 |
Nagao M, Bradbury R, Ansar SM, Kitchens CL. Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes. Struct Dyn 2020;7:065102. [PMID: 33344674 DOI: 10.1063/4.0000041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
41 |
Juszkiewicz K, Sikorski AF, Czogalla A. Building Blocks to Design Liposomal Delivery Systems. Int J Mol Sci 2020;21:E9559. [PMID: 33334048 DOI: 10.3390/ijms21249559] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
42 |
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020;25:E5672. [PMID: 33271886 DOI: 10.3390/molecules25235672] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
|
43 |
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020;15:9469-96. [PMID: 33281443 DOI: 10.2147/IJN.S265876] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 17.3] [Reference Citation Analysis]
|
44 |
Redolfi Riva E, Sinibaldi E, Grillone AF, Del Turco S, Mondini A, Li T, Takeoka S, Mattoli V. Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy. Nanomaterials (Basel) 2020;10:E2104. [PMID: 33114052 DOI: 10.3390/nano10112104] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
45 |
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020;63:14184-96. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
46 |
Batool A, Menaa F, Uzair B, Khan BA, Menaa B. Progress and Prospects in Translating Nanobiotechnology in Medical Theranostics. CNANO 2020;16:685-707. [DOI: 10.2174/1573413715666191126093258] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
47 |
Sivanathan A, Dou Q, Wang Y, Li Y, Corker J, Zhou Y, Fan M. Phase change materials for building construction: An overview of nano-/micro-encapsulation. Nanotechnology Reviews 2020;9:896-921. [DOI: 10.1515/ntrev-2020-0067] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
|
48 |
Zhang L, Liu T, Xie Y, Zeng Z, Chen J. A new classification method of nanotechnology for design integration in biomaterials. Nanotechnology Reviews 2020;9:820-32. [DOI: 10.1515/ntrev-2020-0063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
49 |
Farjadian F, Abbaspour S, Sadatlu MAA, Mirkiani S, Ghasemi A, Hoseini‐ghahfarokhi M, Mozaffari N, Karimi M, Hamblin MR. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020;5:10200-19. [DOI: 10.1002/slct.202002501] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
|
50 |
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
|
51 |
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020;18:108. [PMID: 32746846 DOI: 10.1186/s12951-020-00668-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
|
52 |
Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science 2020;48:28-39. [DOI: 10.1016/j.cocis.2020.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
|
53 |
Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact Mater 2020;5:1071-86. [PMID: 32695937 DOI: 10.1016/j.bioactmat.2020.06.012] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 23.3] [Reference Citation Analysis]
|
54 |
Wu Q, Miao W, Zhang Y, Gao H, Hui D. Mechanical properties of nanomaterials: A review. Nanotechnology Reviews 2020;9:259-73. [DOI: 10.1515/ntrev-2020-0021] [Cited by in Crossref: 111] [Cited by in F6Publishing: 116] [Article Influence: 37.0] [Reference Citation Analysis]
|
55 |
Wei P, Sun M, Yang B, Xiao J, Du J. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J Control Release 2020;322:81-94. [PMID: 32173328 DOI: 10.1016/j.jconrel.2020.03.013] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
|
56 |
Verma A, Tiwari A, Panda PK, Saraf S, Jain A, Raikwar S, Bidla P, Jain SK. Liposomes for Advanced Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
57 |
Pucci C, Martinelli C, Ciofani G. What does the future hold for chemotherapy with the use of lipid-based nanocarriers? Future Oncol 2020;16:81-4. [PMID: 31872773 DOI: 10.2217/fon-2019-0767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
58 |
Liu C, Ewert KK, Yao W, Wang N, Li Y, Safinya CR, Qiao W. A Multifunctional Lipid Incorporating Active Targeting and Dual-Control Release Capabilities for Precision Drug Delivery. ACS Appl Mater Interfaces 2020;12:70-85. [PMID: 31774266 DOI: 10.1021/acsami.9b14470] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
|
59 |
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. International Journal of Pharmaceutics 2019;572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
60 |
Eroğlu İ, İbrahim M. Liposome-ligand conjugates: a review on the current state of art. J Drug Target 2020;28:225-44. [PMID: 31339374 DOI: 10.1080/1061186X.2019.1648479] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
61 |
Trucillo P, Campardelli R, Scognamiglio M, Reverchon E. Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization 2019;32:119-27. [DOI: 10.1016/j.jcou.2019.04.014] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
|
62 |
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019;92:1-18. [PMID: 31096042 DOI: 10.1016/j.actbio.2019.05.018] [Cited by in Crossref: 162] [Cited by in F6Publishing: 141] [Article Influence: 40.5] [Reference Citation Analysis]
|
63 |
Wang Z, Ling L, Du Y, Yao C, Li X. Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. International Journal of Pharmaceutics 2019;564:244-55. [DOI: 10.1016/j.ijpharm.2019.04.060] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
|
64 |
Hasanzadeh A, Radmanesh F, Kiani J, Bayandori M, Fatahi Y, Aref AR, Karimi M. Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. Nanotechnology 2019;30:135101. [DOI: 10.1088/1361-6528/aafbf9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
|
65 |
Mehtani D, Seth A, Sharma P, Maheshwari N, Kapoor D, Shrivastava SK, Tekade RK. Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. Biomaterials and Bionanotechnology 2019. [DOI: 10.1016/b978-0-12-814427-5.00004-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
66 |
Shahsavari S, Hadian-ghazvini S, Hooriabad Saboor F, Menbari Oskouie I, Hasany M, Simchi A, Rogach AL. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Mater Chem Front 2019;3:2326-56. [DOI: 10.1039/c9qm00492k] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 13.8] [Reference Citation Analysis]
|
67 |
Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019;138:259-75. [PMID: 30947810 DOI: 10.1016/j.addr.2018.10.012] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 25.8] [Reference Citation Analysis]
|
68 |
Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics. 2018;10. [PMID: 30404188 DOI: 10.3390/pharmaceutics10040218] [Cited by in Crossref: 266] [Cited by in F6Publishing: 281] [Article Influence: 53.2] [Reference Citation Analysis]
|
69 |
Taghipour YD, Bahramsoltani R, Marques AM, Naseri R, Rahimi R, Haratipour P, Iranpanah A, Panah AI, Farzaei MH, Abdollahi M. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. Daru 2018;26:229-39. [PMID: 30382546 DOI: 10.1007/s40199-018-0222-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
|
70 |
Zhang X, Alves DS, Lou J, Hill SD, Barrera FN, Best MD. Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding. Chem Commun (Camb) 2018;54:6169-72. [PMID: 29809225 DOI: 10.1039/c8cc00820e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
|
71 |
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018;47:8572-610. [DOI: 10.1039/c8cs00162f] [Cited by in Crossref: 505] [Cited by in F6Publishing: 521] [Article Influence: 101.0] [Reference Citation Analysis]
|