BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014;10:e1004364. [PMID: 25210925 DOI: 10.1371/journal.ppat.1004364] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Takemura M, Yamaguchi M, Kobayashi M, Sumitomo T, Hirose Y, Okuzaki D, Ono M, Motooka D, Goto K, Nakata M, Uzawa N, Kawabata S. Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Front Cell Infect Microbiol 2022;12:844000. [DOI: 10.3389/fcimb.2022.844000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. Microbiology (Reading) 2022;168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Reference Citation Analysis]
3 Stevens EJ, Morse DJ, Bonini D, Duggan S, Brignoli T, Recker M, Lees JA, Croucher NJ, Bentley S, Wilson DJ, Earle SG, Dixon R, Nobbs A, Jenkinson H, van Opijnen T, Thibault D, Wilkinson OJ, Dillingham MS, Carlile S, McLoughlin RM, Massey RC. Targeted control of pneumolysin production by a mobile genetic element in Streptococcus pneumoniae. Microb Genom 2022;8. [PMID: 35416147 DOI: 10.1099/mgen.0.000784] [Reference Citation Analysis]
4 Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021;433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Moroz OV, Blagova E, Lebedev AA, Sánchez Rodríguez F, Rigden DJ, Tams JW, Wilting R, Vester JK, Longhin E, Hansen GH, Krogh KBRM, Pache RA, Davies GJ, Wilson KS. Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions. Acta Crystallogr D Struct Biol 2021;77:1564-78. [PMID: 34866612 DOI: 10.1107/S2059798321010949] [Reference Citation Analysis]
6 Hovorková M, Kulik N, Konvalinková D, Petrásková L, Křen V, Bojarová P. Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem 2021;13:4532-4542. [DOI: 10.1002/cctc.202101107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021;17:e1009222. [PMID: 33465168 DOI: 10.1371/journal.ppat.1009222] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
8 Pinheiro MP, Reis RAG, Dupree P, Ward RJ. Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed β-3-prism scaffold. Comput Struct Biotechnol J 2021;19:1108-18. [PMID: 33680354 DOI: 10.1016/j.csbj.2021.01.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Cao J, Liu C, Wang Q, Zhang D, Chang O, Wang Y, Shi C, Wang L. Investigating of type IV pili to the pathogenicity of Aeromonas schubertii. Aquaculture 2021;530:735800. [DOI: 10.1016/j.aquaculture.2020.735800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Bricio-Moreno L, Chaguza C, Yahya R, Shears RK, Cornick JE, Hokamp K, Yang M, Neill DR, French N, Hinton JCD, Everett DB, Kadioglu A. Lower Density and Shorter Duration of Nasopharyngeal Carriage by Pneumococcal Serotype 1 (ST217) May Explain Its Increased Invasiveness over Other Serotypes. mBio 2020;11:e00814-20. [PMID: 33293378 DOI: 10.1128/mBio.00814-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Choi JY, Hong H, Seo H, Pan JG, Kim EJ, Maeng PJ, Yang TH, Kim KJ. High Galacto-Oligosaccharide Production and a Structural Model for Transgalactosylation of β-Galactosidase II from Bacillus circulans. J Agric Food Chem 2020;68:13806-14. [PMID: 33169609 DOI: 10.1021/acs.jafc.0c05871] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Front Microbiol 2020;11:582437. [PMID: 33072054 DOI: 10.3389/fmicb.2020.582437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Gaytán MO, Singh AK, Woodiga SA, Patel SA, An S, de León AV, Mcgrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis.. [DOI: 10.1101/2020.07.17.206995] [Reference Citation Analysis]
14 Chaguza C, Senghore M, Bojang E, Gladstone RA, Lo SW, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat Commun 2020;11:3442. [PMID: 32651390 DOI: 10.1038/s41467-020-17327-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
15 Soroko M, Kwan DH. Enzymatic Synthesis of a Fluorogenic Reporter Substrate and the Development of a High-Throughput Assay for Fucosyltransferase VIII Provide a Toolkit to Probe and Inhibit Core Fucosylation. Biochemistry 2020;59:2100-10. [DOI: 10.1021/acs.biochem.0c00286] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Andreassen PR, Trappetti C, Minhas V, Nielsen FD, Pakula K, Paton JC, Jørgensen MG. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae. PLoS Pathog 2020;16:e1008332. [PMID: 32130269 DOI: 10.1371/journal.ppat.1008332] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Liang J, Mantelos A, Toh ZQ, Tortorella SM, Ververis K, Vongsvivut J, Bambery KR, Licciardi PV, Hung A, Karagiannis TC. Investigation of potential anti-pneumococcal effects of l-sulforaphane and metabolites: Insights from synchrotron-FTIR microspectroscopy and molecular docking studies. J Mol Graph Model 2020;97:107568. [PMID: 32097886 DOI: 10.1016/j.jmgm.2020.107568] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Hobbs JK, Meier EPW, Pluvinage B, Mey MA, Boraston AB. Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. J Biol Chem 2019;294:17197-208. [PMID: 31591266 DOI: 10.1074/jbc.RA119.010280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Cuevas RA, Ebrahimi E, Gazioglu O, Yesilkaya H, Hiller NL. Pneumococcal attachment to epithelial cells is enhanced by the secreted peptide VP1 via its control of hyaluronic acid processing.. [DOI: 10.1101/788430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Ronis A, Brockman K, Singh AK, Gaytán MO, Wong A, McGrath S, Owen CD, Magrini V, Wilson RK, van der Linden M, King SJ. Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019;87:e00406-19. [PMID: 31308084 DOI: 10.1128/IAI.00406-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
21 Hobbs JK, Pluvinage B, Robb M, Smith SP, Boraston AB. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J Biol Chem 2019;294:12670-82. [PMID: 31266803 DOI: 10.1074/jbc.RA119.009368] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
22 Rahfeld P, Sim L, Moon H, Constantinescu I, Morgan-lang C, Hallam SJ, Kizhakkedathu JN, Withers SG. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat Microbiol 2019;4:1475-85. [DOI: 10.1038/s41564-019-0469-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
23 Oide S, Tanaka Y, Watanabe A, Inui M. Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme and Microbial Technology 2019;125:13-20. [DOI: 10.1016/j.enzmictec.2019.02.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
24 Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. Biomicrofluidics 2019;13:034106. [PMID: 31123538 DOI: 10.1063/1.5088517] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Zhang X, Chen F, Petrella A, Chacón-Huete F, Covone J, Tsai TW, Yu CC, Forgione P, Kwan DH. A High-Throughput Glycosyltransferase Inhibition Assay for Identifying Molecules Targeting Fucosylation in Cancer Cell-Surface Modification. ACS Chem Biol 2019;14:715-24. [PMID: 30831024 DOI: 10.1021/acschembio.8b01123] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
26 Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018;333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
27 Wong A, Grau MA, Singh AK, Woodiga SA, King SJ. Role of Neuraminidase-Producing Bacteria in Exposing Cryptic Carbohydrate Receptors for Streptococcus gordonii Adherence. Infect Immun 2018;86:e00068-18. [PMID: 29661931 DOI: 10.1128/IAI.00068-18] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
28 Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018;592:3865-97. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
29 Pluvinage B, Grondin JM, Amundsen C, Klassen L, Moote PE, Xiao Y, Thomas D, Pudlo NA, Anele A, Martens EC, Inglis GD, Uwiera RER, Boraston AB, Abbott DW. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 2018;9:1043. [PMID: 29535379 DOI: 10.1038/s41467-018-03366-x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 17.3] [Reference Citation Analysis]
30 Owen CD, Tailford LE, Monaco S, Šuligoj T, Vaux L, Lallement R, Khedri Z, Yu H, Lecointe K, Walshaw J, Tribolo S, Horrex M, Bell A, Chen X, Taylor GL, Varki A, Angulo J, Juge N. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat Commun 2017;8:2196. [PMID: 29259165 DOI: 10.1038/s41467-017-02109-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
31 Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017;156:S51-62. [PMID: 28372529 DOI: 10.1177/0194599816639028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
32 Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R. Advances in molecular engineering of carbohydrate-binding modules. Proteins 2017;85:1602-17. [PMID: 28547780 DOI: 10.1002/prot.25327] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
33 Singh AK, Woodiga SA, Grau MA, King SJ. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017;85:e00774-16. [PMID: 27993975 DOI: 10.1128/IAI.00774-16] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
34 Grondin JM, Duan D, Kirlin AC, Abe KT, Chitayat S, Spencer HL, Spencer C, Campigotto A, Houliston S, Arrowsmith CH, Allingham JS, Boraston AB, Smith SP. Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens. PLoS One 2017;12:e0171606. [PMID: 28158290 DOI: 10.1371/journal.pone.0171606] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
35 Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS. Engineering of the Bacillus circulans β-Galactosidase Product Specificity. Biochemistry 2017;56:704-11. [PMID: 28092444 DOI: 10.1021/acs.biochem.7b00032] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
36 Ding H, Zeng Q, Zhou L, Yu Y, Chen B. Biochemical and Structural Insights into a Novel Thermostable β-1,3-Galactosidase from Marinomonas sp. BSi20414. Mar Drugs 2017;15:E13. [PMID: 28075353 DOI: 10.3390/md15010013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
37 Talens-Perales D, Górska A, Huson DH, Polaina J, Marín-Navarro J. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). PLoS One 2016;11:e0168035. [PMID: 27930742 DOI: 10.1371/journal.pone.0168035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
38 Fleming E, Camilli A. ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae. Mol Microbiol 2016;102:467-87. [PMID: 27472033 DOI: 10.1111/mmi.13473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
39 Yang J, Zhou Y, Zhang L, Shah N, Jin C, Palmer RJ Jr, Cisar JO. Cell Surface Glycoside Hydrolases of Streptococcus gordonii Promote Growth in Saliva. Appl Environ Microbiol 2016;82:5278-86. [PMID: 27316967 DOI: 10.1128/AEM.01291-16] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
40 Siegel SJ, Weiser JN. Mechanisms of Bacterial Colonization of the Respiratory Tract. Annu Rev Microbiol 2015;69:425-44. [PMID: 26488280 DOI: 10.1146/annurev-micro-091014-104209] [Cited by in Crossref: 116] [Cited by in F6Publishing: 116] [Article Influence: 19.3] [Reference Citation Analysis]
41 Robb M, Robb CS, Higgins MA, Hobbs JK, Paton JC, Boraston AB. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. J Biol Chem 2015;290:30888-900. [PMID: 26491009 DOI: 10.1074/jbc.M115.688630] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
42 Kwan DH, Ernst S, Kötzler MP, Withers SG. Chemoenzymatic Synthesis of a Type 2 Blood Group A Tetrasaccharide and Development of High-throughput Assays Enables a Platform for Screening Blood Group Antigen-cleaving Enzymes. Glycobiology 2015;25:806-11. [DOI: 10.1093/glycob/cwv031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]