BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McCluskey AJ, Bolewska-Pedyczak E, Jarvik N, Chen G, Sidhu SS, Gariépy J. Charged and hydrophobic surfaces on the a chain of shiga-like toxin 1 recognize the C-terminal domain of ribosomal stalk proteins. PLoS One 2012;7:e31191. [PMID: 22355345 DOI: 10.1371/journal.pone.0031191] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Basu D, Li XP, Kahn JN, May KL, Kahn PC, Tumer NE. The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 2016;84:149-61. [PMID: 26483409 DOI: 10.1128/IAI.00994-15] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
2 Huang H, Economopoulos NO, Liu BA, Uetrecht A, Gu J, Jarvik N, Nadeem V, Pawson T, Moffat J, Miersch S, Sidhu SS. Selection of recombinant anti-SH3 domain antibodies by high-throughput phage display. Protein Sci 2015;24:1890-900. [PMID: 26332758 DOI: 10.1002/pro.2799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
3 May KL, Yan Q, Tumer NE. Targeting ricin to the ribosome. Toxicon 2013;69:143-51. [PMID: 23454625 DOI: 10.1016/j.toxicon.2013.02.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
4 Shi WW, Tang YS, Sze SY, Zhu ZN, Wong KB, Shaw PC. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2. Toxins (Basel) 2016;8:E296. [PMID: 27754366 DOI: 10.3390/toxins8100296] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
5 Li XP, Kahn JN, Tumer NE. Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 2018;10:E371. [PMID: 30217009 DOI: 10.3390/toxins10090371] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
6 Jetzt AE, Li XP, Tumer NE, Cohick WS. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome. Toxicol Appl Pharmacol 2016;310:120-8. [PMID: 27639428 DOI: 10.1016/j.taap.2016.09.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
7 Campos RK, Wijeratne HRS, Shah P, Garcia-Blanco MA, Bradrick SS. Ribosomal stalk proteins RPLP1 and RPLP2 promote biogenesis of flaviviral and cellular multi-pass transmembrane proteins. Nucleic Acids Res 2020;48:9872-85. [PMID: 32890404 DOI: 10.1093/nar/gkaa717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 May KL, Li XP, Martínez-Azorín F, Ballesta JP, Grela P, Tchórzewski M, Tumer NE. The P1/P2 proteins of the human ribosomal stalk are required for ribosome binding and depurination by ricin in human cells. FEBS J 2012;279:3925-36. [PMID: 22909382 DOI: 10.1111/j.1742-4658.2012.08752.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
9 De Zaeytijd J, Van Damme EJ. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. Toxins (Basel) 2017;9:E123. [PMID: 28353660 DOI: 10.3390/toxins9040123] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
10 Grela P, Li XP, Horbowicz P, Dźwierzyńska M, Tchórzewski M, Tumer NE. Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci Rep 2017;7:5608. [PMID: 28717148 DOI: 10.1038/s41598-017-05675-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
11 Grela P, Szajwaj M, Horbowicz-Drożdżal P, Tchórzewski M. How Ricin Damages the Ribosome. Toxins (Basel) 2019;11:E241. [PMID: 31035546 DOI: 10.3390/toxins11050241] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
12 Zhou Y, Li XP, Chen BY, Tumer NE. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 2017;7:42912. [PMID: 28230053 DOI: 10.1038/srep42912] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
13 Wong YT, Ng YM, Mak AN, Sze KH, Wong KB, Shaw PC. Maize ribosome-inactivating protein uses Lys158-lys161 to interact with ribosomal protein P2 and the strength of interaction is correlated to the biological activities. PLoS One 2012;7:e49608. [PMID: 23251345 DOI: 10.1371/journal.pone.0049608] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
14 Melton-Celsa AR. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol Spectr 2014;2:EHEC-0024-2013. [PMID: 25530917 DOI: 10.1128/microbiolspec.EHEC-0024-2013] [Cited by in Crossref: 164] [Cited by in F6Publishing: 110] [Article Influence: 41.0] [Reference Citation Analysis]
15 Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015;7:1467-85. [PMID: 25938272 DOI: 10.3390/toxins7051467] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
16 Choi AK, Wong EC, Lee KM, Wong KB. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins (Basel) 2015;7:638-47. [PMID: 25723321 DOI: 10.3390/toxins7030638] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
17 Zhou Y, Li XP, Kahn JN, McLaughlin JE, Tumer NE. Leucine 232 and hydrophobic residues at the ribosomal P stalk binding site are critical for biological activity of ricin. Biosci Rep 2019;39:BSR20192022. [PMID: 31548364 DOI: 10.1042/BSR20192022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Basu D, Kahn JN, Li XP, Tumer NE. Conserved Arginines at the P-Protein Stalk Binding Site and the Active Site Are Critical for Ribosome Interactions of Shiga Toxins but Do Not Contribute to Differences in the Affinity of the A1 Subunits for the Ribosome. Infect Immun 2016;84:3290-301. [PMID: 27600507 DOI: 10.1128/IAI.00630-16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
19 Horbowicz-Drożdżal P, Kamel K, Kmiecik S, Borkiewicz L, Tumer NE, Shaw PC, Tchórzewski M, Grela P. Phosphorylation of the conserved C-terminal domain of ribosomal P-proteins impairs the mode of interaction with plant toxins. FEBS Lett 2021. [PMID: 34328639 DOI: 10.1002/1873-3468.14170] [Reference Citation Analysis]
20 Li XP, Kahn PC, Kahn JN, Grela P, Tumer NE. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk. J Biol Chem 2013;288:30270-84. [PMID: 24003229 DOI: 10.1074/jbc.M113.510966] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
21 Li XP, Tumer NE. Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins. Toxins (Basel) 2017;9:E133. [PMID: 28398250 DOI: 10.3390/toxins9040133] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
22 Shi WW, Wong KB, Shaw PC. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 2018;10:E335. [PMID: 30127254 DOI: 10.3390/toxins10080335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Li XP, Harijan RK, Cao B, Kahn JN, Pierce M, Tsymbal AM, Roberge JY, Augeri D, Tumer NE. Synthesis and Structural Characterization of Ricin Inhibitors Targeting Ribosome Binding Using Fragment-Based Methods and Structure-Based Design. J Med Chem 2021;64:15334-48. [PMID: 34648707 DOI: 10.1021/acs.jmedchem.1c01370] [Reference Citation Analysis]
24 Olombrada M, Rodríguez-mateos M, Prieto D, Pla J, Remacha M, Martínez-del-pozo Á, Gavilanes JG, Ballesta JPG, García-ortega L. The Acidic Ribosomal Stalk Proteins Are Not Required for the Highly Specific Inactivation Exerted by α-Sarcin of the Eukaryotic Ribosome. Biochemistry 2014;53:1545-7. [DOI: 10.1021/bi401470u] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
25 Rudolph MJ, Davis SA, Tumer NE, Li XP. Structural basis for the interaction of Shiga toxin 2a with a C-terminal peptide of ribosomal P stalk proteins. J Biol Chem 2020;295:15588-96. [PMID: 32878986 DOI: 10.1074/jbc.AC120.015070] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013;70:425-57. [PMID: 22766973 DOI: 10.1007/s00018-012-1060-z] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
27 Li XP, Harijan RK, Kahn JN, Schramm VL, Tumer NE. Small Molecule Inhibitors Targeting the Interaction of Ricin Toxin A Subunit with Ribosomes. ACS Infect Dis 2020;6:1894-905. [PMID: 32428396 DOI: 10.1021/acsinfecdis.0c00127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]