BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marques F, Sousa JC, Sousa N, Palha JA. Blood-brain-barriers in aging and in Alzheimer's disease. Mol Neurodegener 2013;8:38. [PMID: 24148264 DOI: 10.1186/1750-1326-8-38] [Cited by in Crossref: 189] [Cited by in F6Publishing: 197] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Patil V, Mhamane S, More S, Pawar A, Arulmozhi S. Exploring the protective effect exhibited by curcumin-loaded coconut oil microemulsion in the experimental models of neurodegeneration: an insight of formulation development, in vitro and in vivo study. Futur J Pharm Sci 2022;8:51. [DOI: 10.1186/s43094-022-00441-5] [Reference Citation Analysis]
2 Alisch JSR, Egan JM, Bouhrara M. Differences in the choroid plexus volume and microstructure are associated with body adiposity. Front Endocrinol 2022;13:984929. [DOI: 10.3389/fendo.2022.984929] [Reference Citation Analysis]
3 Fareed MM, Qasmi M, Aziz S, Völker E, Förster CY, Shityakov S. The Role of Clusterin Transporter in the Pathogenesis of Alzheimer’s Disease at the Blood–Brain Barrier Interface: A Systematic Review. Biomolecules 2022;12:1452. [DOI: 10.3390/biom12101452] [Reference Citation Analysis]
4 Singh A, Vellapandian C. Structure of the Blood Brain Barrier and the Role of Transporters in the movement of substrates across the barriers. Qeios 2022. [DOI: 10.32388/5giw6a] [Reference Citation Analysis]
5 Wise Jr JP. The intersection between toxicology and aging research: A toxic aging coin perspective. Front Aging 2022;3. [DOI: 10.3389/fragi.2022.1014675] [Reference Citation Analysis]
6 Zhao Y, Lee D, Zhu X, Xiong W. Critical Role of Neuronal Vps35 in Blood Vessel Branching and Maturation in Developing Mouse Brain. Biomedicines 2022;10:1653. [DOI: 10.3390/biomedicines10071653] [Reference Citation Analysis]
7 Wu CY, Shapiro L, Ouk M, MacIntosh BJ, Black SE, Shah BR, Swardfager W. Glucose-lowering drugs, cognition, and dementia: The clinical evidence. Neurosci Biobehav Rev 2022;137:104654. [PMID: 35398114 DOI: 10.1016/j.neubiorev.2022.104654] [Reference Citation Analysis]
8 Harding A, Kanagasingam S, Welbury R, Singhrao SK. Periodontitis as a Risk Factor for Alzheimer's Disease: The Experimental Journey So Far, with Hope of Therapy. Adv Exp Med Biol 2022;1373:241-60. [PMID: 35612802 DOI: 10.1007/978-3-030-96881-6_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Visser PJ, Reus LM, Gobom J, Jansen I, Dicks E, van der Lee SJ, Tsolaki M, Verhey FRJ, Popp J, Martinez-Lage P, Vandenberghe R, Lleó A, Molinuevo JL, Engelborghs S, Freund-Levi Y, Froelich L, Sleegers K, Dobricic V, Lovestone S, Streffer J, Vos SJB, Bos I, Smit AB, Blennow K, Scheltens P, Teunissen CE, Bertram L, Zetterberg H, Tijms BM; ADNI. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease. Mol Neurodegener 2022;17:27. [PMID: 35346299 DOI: 10.1186/s13024-022-00521-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022;23:2445. [PMID: 35269587 DOI: 10.3390/ijms23052445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022;18:e1009994. [PMID: 35143487 DOI: 10.1371/journal.pgen.1009994] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
12 Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022;11:359. [DOI: 10.3390/cells11030359] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
13 Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang G, Tian H, Tang* Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging and disease 2022. [DOI: 10.14336/ad.2022.0826-1] [Reference Citation Analysis]
14 Ouerdane Y, El-nahas ZS, Ouerdane F, Hamam KM, Ebada MA. Gut–Brain Axis in Alzheimer’s Disease: Interplay Between Cholecystokinin, Dysbiosis, and Brain-Derived Neurotrophic Factor. Current Thoughts on Dementia 2022. [DOI: 10.1007/978-981-16-7606-2_12] [Reference Citation Analysis]
15 Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. Journal of Drug Delivery Science and Technology 2021;66:102791. [DOI: 10.1016/j.jddst.2021.102791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Faruqui NA, Prium DH, Mowna SA, Ullah MA, Araf Y, Sarkar B, Zohora US, Rahman MS. Gut microorganisms and neurological disease perspectives. Future Neurology 2021;16:FNL53. [DOI: 10.2217/fnl-2020-0026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Van Hoecke L, Van Cauwenberghe C, Dominko K, Van Imschoot G, Van Wonterghem E, Castelein J, Xie J, Claeys W, Vandendriessche C, Kremer A, Borghgraef P, De Rycke R, Hecimovic S, Vandenbroucke RE. Involvement of the Choroid Plexus in the Pathogenesis of Niemann-Pick Disease Type C. Front Cell Neurosci 2021;15:757482. [PMID: 34720883 DOI: 10.3389/fncel.2021.757482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong Z, Khattar N, Egan JM, Bouhrara M. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021;13:734992. [PMID: 34603011 DOI: 10.3389/fnagi.2021.734992] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
19 Blinkouskaya Y, Caçoilo A, Gollamudi T, Jalalian S, Weickenmeier J. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev 2021;200:111575. [PMID: 34600936 DOI: 10.1016/j.mad.2021.111575] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
20 Busse S, Hoffmann J, Michler E, Hartig R, Frodl T, Busse M. Dementia-associated changes of immune cell composition within the cerebrospinal fluid. Brain Behav Immun Health 2021;14:100218. [PMID: 34589754 DOI: 10.1016/j.bbih.2021.100218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Tao X, Mao S, Zhang Q, Yu H, Li Y, He X, Yang S, Zhang Z, Yi Z, Song Y, Feng X. Brain-Targeted Polysorbate 80-Emulsified Donepezil Drug-Loaded Nanoparticles for Neuroprotection. Nanoscale Res Lett 2021;16:132. [PMID: 34406517 DOI: 10.1186/s11671-021-03584-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Bahar B, Kanagasingam S, Tambuwala MM, Aljabali AAA, Dillon SA, Doaei S, Welbury R, Chukkapalli SS, Singhrao SK. Porphyromonas gingivalis (W83) Infection Induces Alzheimer's Disease-Like Pathophysiology in Obese and Diabetic Mice. J Alzheimers Dis 2021;82:1259-75. [PMID: 34151813 DOI: 10.3233/JAD-210465] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Chen C, Zhou Y, Wang H, Alam A, Kang SS, Ahn EH, Liu X, Jia J, Ye K. Gut inflammation triggers C/EBPβ/δ-secretase-dependent gut-to-brain propagation of Aβ and Tau fibrils in Alzheimer's disease. EMBO J 2021;40:e106320. [PMID: 34260075 DOI: 10.15252/embj.2020106320] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
24 Reibelt A, Mayinger M, Borm KJ, Combs SE, Duma MN. Neuroanatomical changes seen in MRI in patients with cerebral metastasized breast cancer after radiotherapy. Tumori 2021;:3008916211031301. [PMID: 34256653 DOI: 10.1177/03008916211031301] [Reference Citation Analysis]
25 Perera C, Harrison IF, Lythgoe MF, Thomas DL, Wells JA. Pharmacological MRI with Simultaneous Measurement of Cerebral Perfusion and Blood-Cerebrospinal Fluid Barrier Function using Interleaved Echo-Time Arterial Spin Labelling. Neuroimage 2021;238:118270. [PMID: 34144160 DOI: 10.1016/j.neuroimage.2021.118270] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 Link CD. Is There a Brain Microbiome? Neurosci Insights 2021;16:26331055211018709. [PMID: 34104888 DOI: 10.1177/26331055211018709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Giovannini MG, Lana D, Traini C, Vannucchi MG. The Microbiota-Gut-Brain Axis and Alzheimer Disease. From Dysbiosis to Neurodegeneration: Focus on the Central Nervous System Glial Cells. J Clin Med 2021;10:2358. [PMID: 34072107 DOI: 10.3390/jcm10112358] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
28 Riemann S, Kolibabka M, Busch S, Lin J, Hoffmann S, Gretz N, Feng Y, Wohlfart P, Hammes HP. Microglial Activation Is Associated With Vasoprotection in a Rat Model of Inflammatory Retinal Vasoregression. Front Physiol 2021;12:660164. [PMID: 33981252 DOI: 10.3389/fphys.2021.660164] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Liao SS, Slatkin NE, Stambler N. The Influence of Age on Central Effects of Methylnaltrexone in Patients with Opioid-Induced Constipation. Drugs Aging 2021;38:503-11. [PMID: 33788162 DOI: 10.1007/s40266-021-00850-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Wang NY, Li JN, Liu WL, Huang Q, Li WX, Tan YH, Liu F, Song ZH, Wang MY, Xie N, Mao RR, Gan P, Ding YQ, Zhang Z, Shan BC, Chen LD, Zhou QX, Xu L. Ferulic Acid Ameliorates Alzheimer's Disease-like Pathology and Repairs Cognitive Decline by Preventing Capillary Hypofunction in APP/PS1 Mice. Neurotherapeutics 2021. [PMID: 33786807 DOI: 10.1007/s13311-021-01024-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
31 Pifferi F, Laurent B, Plourde M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 2021;12:645646. [PMID: 33868013 DOI: 10.3389/fphys.2021.645646] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
32 Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, Lehallier B, Quake SR, Wyss-Coray T. Brain Endothelial Cells Are Exquisite Sensors of Age-Related Circulatory Cues. Cell Rep 2020;30:4418-4432.e4. [PMID: 32234477 DOI: 10.1016/j.celrep.2020.03.012] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 80.0] [Reference Citation Analysis]
33 Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol 2021;61:100912. [PMID: 33713673 DOI: 10.1016/j.yfrne.2021.100912] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
34 Tahira A, Marques F, Lisboa B, Feltrin A, Barbosa A, de Oliveira KC, de Bragança Pereira CA, Leite R, Grinberg L, Suemoto C, de Lucena Ferretti-Rebustini RE, Pasqualucci CA, Jacob-Filho W, Brentani H, Palha JA. Are the 50's, the transition decade, in choroid plexus aging? Geroscience 2021;43:225-37. [PMID: 33576945 DOI: 10.1007/s11357-021-00329-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Hüls A, Robins C, Conneely KN, Edgar R, De Jager PL, Bennett DA, Wingo AP, Epstein MP, Wingo TS. Brain DNA Methylation Patterns in CLDN5 Associated With Cognitive Decline. Biol Psychiatry 2021:S0006-3223(21)00084-6. [PMID: 33838873 DOI: 10.1016/j.biopsych.2021.01.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Stover PJ, Garza C, Durga J, Field MS. Emerging Concepts in Nutrient Needs. J Nutr 2020;150:2593S-601S. [PMID: 33000157 DOI: 10.1093/jn/nxaa117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Prestwood TR, Asgariroozbehani R, Wu S, Agarwal SM, Logan RW, Ballon JS, Hahn MK, Freyberg Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res 2021;402:113101. [PMID: 33453341 DOI: 10.1016/j.bbr.2020.113101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
38 Cuervo-zanatta D, Perez-grijalva B, González-magaña E, Hernandez-acosta J, Murugesan S, García-mena J, Perez-cruz C. Modulation of the microbiota-gut-brain axis by bioactive food, prebiotics, and probiotics decelerates the course of Alzheimer's disease. Bioactive Natural Products 2021. [DOI: 10.1016/b978-0-12-819489-8.00019-3] [Reference Citation Analysis]
39 Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020;21:E9441. [PMID: 33322419 DOI: 10.3390/ijms21249441] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Panyatip P, Tadtong S, Sousa E, Puthongking P. BACE1 Inhibitor, Neuroprotective, and Neuritogenic Activities of Melatonin Derivatives. Sci Pharm 2020;88:58. [DOI: 10.3390/scipharm88040058] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Tyrrell DJ, Blin MG, Song J, Wood SC, Goldstein DR. Aging Impairs Mitochondrial Function and Mitophagy and Elevates Interleukin 6 Within the Cerebral Vasculature. J Am Heart Assoc 2020;9:e017820. [PMID: 33225820 DOI: 10.1161/JAHA.120.017820] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
42 Karton C, Hoshizaki TB. Biomechanics of Sport-Related Neurological Injury. Clin Sports Med 2021;40:19-38. [PMID: 33187609 DOI: 10.1016/j.csm.2020.09.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020;78:965-87. [PMID: 33074227 DOI: 10.3233/JAD-200568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, Sadegh C, Fame RM, Shannon ML, Flores VI, Kishkovich T, Jang E, Klein EM, Goldey GJ, He K, Zhang Y, Holtzman MJ, Kirchhausen T, Wyart C, Moore CI, Andermann ML, Lehtinen MK. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron 2020;108:623-639.e10. [PMID: 32961128 DOI: 10.1016/j.neuron.2020.08.024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
45 Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021;41:2689-745. [PMID: 32783388 DOI: 10.1002/med.21719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
46 Viscusi ER, Viscusi AR. Blood-brain barrier: mechanisms governing permeability and interaction with peripherally acting μ-opioid receptor antagonists. Reg Anesth Pain Med 2020;45:688-95. [PMID: 32723840 DOI: 10.1136/rapm-2020-101403] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
47 Munji RN, Daneman R. Unexpected amount of blood-borne protein enters the young brain. Nature 2020;583:362-363. [DOI: 10.1038/d41586-020-01791-x] [Reference Citation Analysis]
48 Bera S, Gayen N, Mohid SA, Bhattacharyya D, Krishnamoorthy J, Sarkar D, Choi J, Sahoo N, Mandal AK, Lee D, Bhunia A. Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution. ACS Chem Neurosci 2020;11:1965-77. [PMID: 32492332 DOI: 10.1021/acschemneuro.0c00166] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
49 Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020;60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
50 Xie Y, Yan L, Zeng H, Chen W, Lu JH, Wan JB, Su H, Yao X. Fish oil protects the blood-brain barrier integrity in a mouse model of Alzheimer's disease. Chin Med 2020;15:29. [PMID: 32256685 DOI: 10.1186/s13020-020-00314-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
51 Huang J, Hou B, Zhang S, Wang M, Lu X, Wang Q, Liu Y. The Protective Effect of Adiponectin-Transfected Endothelial Progenitor Cells on Cognitive Function in D-Galactose-Induced Aging Rats. Neural Plast 2020;2020:1273198. [PMID: 32273888 DOI: 10.1155/2020/1273198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
52 Chen W, Barback CV, Wang S, Hoh CK, Chang EY, Hall DJ, Head BP, Vera DR. A receptor-binding radiopharmaceutical for imaging of traumatic brain injury in a rodent model: [99mTc]Tc-tilmanocept. Nucl Med Biol 2021;92:107-14. [PMID: 32169304 DOI: 10.1016/j.nucmedbio.2020.02.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Van Cauwenberghe C, Gorlé N, Vandenbroucke RE. Roles of the Choroid Plexus in Aging. Physiology in Health and Disease 2020. [DOI: 10.1007/978-1-0716-0536-3_9] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
54 Stanciu GD, Luca A, Rusu RN, Bild V, Beschea Chiriac SI, Solcan C, Bild W, Ababei DC. Alzheimer's Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2019;10:E40. [PMID: 31888102 DOI: 10.3390/biom10010040] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 23.3] [Reference Citation Analysis]
55 Gambino CM, Sasso BL, Bivona G, Agnello L, Ciaccio M. Aging and Neuroinflammatory Disorders: New Biomarkers and Therapeutic Targets. CPD 2019;25:4168-74. [DOI: 10.2174/1381612825666191112093034] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
56 Yamazaki Y, Shinohara M, Shinohara M, Yamazaki A, Murray ME, Liesinger AM, Heckman MG, Lesser ER, Parisi JE, Petersen RC, Dickson DW, Kanekiyo T, Bu G. Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression. Brain 2019;142:1077-92. [PMID: 30770921 DOI: 10.1093/brain/awz011] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 24.7] [Reference Citation Analysis]
57 Lee S, Chung M, Lee SR, Jeon NL. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro. Biotechnol Bioeng 2020;117:748-62. [PMID: 31709508 DOI: 10.1002/bit.27224] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 18.0] [Reference Citation Analysis]
58 Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019;12:104. [PMID: 31801553 DOI: 10.1186/s13041-019-0525-5] [Cited by in Crossref: 96] [Cited by in F6Publishing: 103] [Article Influence: 32.0] [Reference Citation Analysis]
59 Hüls A, Robins C, Conneely KN, Edgar R, De Jager PL, Bennett DA, Wingo AP, Epstein MP, Wingo TS. Brain DNA Methylation Patterns in CLDN5 Associated With Cognitive Decline.. [DOI: 10.1101/857953] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
60 Vasefi M, Hudson M, Ghaboolian-Zare E. Diet Associated with Inflammation and Alzheimer's Disease. J Alzheimers Dis Rep 2019;3:299-309. [PMID: 31867568 DOI: 10.3233/ADR-190152] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
61 Herold R, Schroten H, Schwerk C. Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019;20:E5393. [PMID: 31671896 DOI: 10.3390/ijms20215393] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
62 Cozzi A, Orellana DI, Santambrogio P, Rubio A, Cancellieri C, Giannelli S, Ripamonti M, Taverna S, Di Lullo G, Rovida E, Ferrari M, Forni GL, Fiorillo C, Broccoli V, Levi S. Stem Cell Modeling of Neuroferritinopathy Reveals Iron as a Determinant of Senescence and Ferroptosis during Neuronal Aging. Stem Cell Reports. 2019;13:832-846. [PMID: 31587993 DOI: 10.1016/j.stemcr.2019.09.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
63 Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine 2019;47:529-42. [PMID: 31477562 DOI: 10.1016/j.ebiom.2019.08.032] [Cited by in Crossref: 179] [Cited by in F6Publishing: 189] [Article Influence: 59.7] [Reference Citation Analysis]
64 Wong MWK, Braidy N, Pickford R, Sachdev PS, Poljak A. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Front Neurol 2019;10:879. [PMID: 31496985 DOI: 10.3389/fneur.2019.00879] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
65 Vojdani A, Vojdani E, Saidara E, Kharrazian D. Reaction of Amyloid-β Peptide Antibody with Different Infectious Agents Involved in Alzheimer's Disease. J Alzheimers Dis 2018;63:847-60. [PMID: 29689721 DOI: 10.3233/JAD-170961] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
66 Cummings J, Ritter A, Zhong K. Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future. J Alzheimers Dis 2018;64:S3-S22. [PMID: 29562511 DOI: 10.3233/JAD-179901] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 27.3] [Reference Citation Analysis]
67 Vallianatou T, Shariatgorji M, Nilsson A, Fridjonsdottir E, Källback P, Schintu N, Svenningsson P, Andrén PE. Molecular imaging identifies age-related attenuation of acetylcholine in retrosplenial cortex in response to acetylcholinesterase inhibition. Neuropsychopharmacology 2019;44:2091-8. [PMID: 31009936 DOI: 10.1038/s41386-019-0397-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
68 Couto M, Coelho-Santos V, Santos L, Fontes-Ribeiro C, Silva AP, Gomes CMF. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol 2019;234:19750-60. [PMID: 30937892 DOI: 10.1002/jcp.28575] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
69 Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, Van Imschoot G, Van Wonterghem E, De Rycke R, Kremer A, Lippens S, Stopa E, Johanson CE, Libert C, Vandenbroucke RE. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer's disease. EMBO Mol Med 2018;10:e8300. [PMID: 29472246 DOI: 10.15252/emmm.201708300] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 17.7] [Reference Citation Analysis]
70 Sobol CV. Role of Microbiota in Neurodegenerative Diseases. Russ J Dev Biol 2018;49:297-313. [DOI: 10.1134/s1062360418060061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Kumar S, Trivedi V. Extracellular methemoglobin promotes cyto‐adherence of uninfected RBC to endothelial cells: Insight into cerebral malaria pathology. J Cell Biochem 2019;120:11140-9. [DOI: 10.1002/jcb.28390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 Singhrao SK, Olsen I. Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer's disease. J Oral Microbiol 2019;11:1563405. [PMID: 30728914 DOI: 10.1080/20002297.2018.1563405] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 26.3] [Reference Citation Analysis]
73 Saksida T, Koprivica I, Vujičić M, Stošić-Grujičić S, Perović M, Kanazir S, Stojanović I. Impaired IL-17 Production in Gut-Residing Immune Cells of 5xFAD Mice with Alzheimer's Disease Pathology. J Alzheimers Dis 2018;61:619-30. [PMID: 29254086 DOI: 10.3233/JAD-170538] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
74 Lee S, Ko J, Park D, Lee SR, Chung M, Lee Y, Jeon NL. Microfluidic-based vascularized microphysiological systems. Lab Chip 2018;18:2686-709. [PMID: 30110034 DOI: 10.1039/c8lc00285a] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 18.3] [Reference Citation Analysis]
75 Gonçalves I, Quintela T, Duarte AC, Hubbard P, Baltazar G, Schwerk C, Belin AC, Tomás J, Santos CRA. Experimental Tools to Study the Regulation and Function of the Choroid Plexus. Blood-Brain Barrier 2019. [DOI: 10.1007/978-1-4939-8946-1_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Bera S, Bhunia A. Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease. Blood-Brain Barrier 2019. [DOI: 10.1007/978-1-4939-8946-1_7] [Reference Citation Analysis]
77 Martínez-martos JM, Pulido-navas ME, Ramírez-expósito MJ. Altered Plasma Global Arginine Bioavailability Ratio in Early-stage Alzheimer’s Disease. TOBIOMJ 2018;8:34-41. [DOI: 10.2174/1875318301808010034] [Reference Citation Analysis]
78 Atienza M, Ziontz J, Cantero JL. Low-grade inflammation in the relationship between sleep disruption, dysfunctional adiposity, and cognitive decline in aging. Sleep Medicine Reviews 2018;42:171-83. [DOI: 10.1016/j.smrv.2018.08.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
79 Salami A, Avelar-pereira B, Garzón B, Sitnikov R, Kalpouzos G. Functional coherence of striatal resting-state networks is modulated by striatal iron content. NeuroImage 2018;183:495-503. [DOI: 10.1016/j.neuroimage.2018.08.036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
80 Selles MC, Fortuna JTS, Santos LE. Immunomodulation via Toll-like Receptor 9: An Adjunct Therapy Strategy against Alzheimer's Disease? J Neurosci 2017;37:4864-7. [PMID: 28490638 DOI: 10.1523/JNEUROSCI.0579-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
81 Ceafalan LC, Fertig TE, Gheorghe TC, Hinescu ME, Popescu BO, Pahnke J, Gherghiceanu M. Age-related ultrastructural changes of the basement membrane in the mouse blood-brain barrier. J Cell Mol Med 2019;23:819-27. [PMID: 30450815 DOI: 10.1111/jcmm.13980] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
82 Tamtaji OR, Mobini M, Reiter RJ, Azami A, Gholami MS, Asemi Z. Melatonin, a toll-like receptor inhibitor: Current status and future perspectives. J Cell Physiol 2019;234:7788-95. [PMID: 30387141 DOI: 10.1002/jcp.27698] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
83 Wang J, Pan Y, Cui Q, Yao B, Wang J, Dai J. Penetration of PFASs Across the Blood Cerebrospinal Fluid Barrier and Its Determinants in Humans. Environ Sci Technol 2018;52:13553-61. [DOI: 10.1021/acs.est.8b04550] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 12.5] [Reference Citation Analysis]
84 Hoyk Z, Tóth ME, Lénárt N, Nagy D, Dukay B, Csefová A, Zvara Á, Seprényi G, Kincses A, Walter FR, Veszelka S, Vígh J, Barabási B, Harazin A, Kittel Á, Puskás LG, Penke B, Vígh L, Deli MA, Sántha M. Cerebrovascular Pathology in Hypertriglyceridemic APOB-100 Transgenic Mice. Front Cell Neurosci 2018;12:380. [PMID: 30410436 DOI: 10.3389/fncel.2018.00380] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
85 Han X, Man Z, Xu S, Cong L, Wang Y, Wang X, Du Y, Zhang Q, Tang S, Liu Z, Li W. A gold nanocluster chemical tongue sensor array for Alzheimer's disease diagnosis. Colloids Surf B Biointerfaces 2019;173:478-85. [PMID: 30326364 DOI: 10.1016/j.colsurfb.2018.10.020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
86 Zhang T, Han Y, Wang J, Hou D, Deng H, Deng YL, Song Z. Comparative Epidemiological Investigation of Alzheimer's Disease and Colorectal Cancer: The Possible Role of Gastrointestinal Conditions in the Pathogenesis of AD. Front Aging Neurosci 2018;10:176. [PMID: 30323761 DOI: 10.3389/fnagi.2018.00176] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
87 Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer's disease. J Neuroinflammation 2018;15:240. [PMID: 30149799 DOI: 10.1186/s12974-018-1284-4] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
88 Menta BW, Swerdlow RH. An Integrative Overview of Non-Amyloid and Non-Tau Pathologies in Alzheimer's Disease. Neurochem Res 2019;44:12-21. [PMID: 30084096 DOI: 10.1007/s11064-018-2603-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
89 Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018;10:234. [PMID: 30127733 DOI: 10.3389/fnagi.2018.00234] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
90 Brai E, Alberi L. Olfaction, among the First Senses to Develop and Decline. Sensory Nervous System 2018. [DOI: 10.5772/intechopen.75061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
91 Vojdani A, Vojdani E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int J Alzheimers Dis. 2018;2018:1672568. [PMID: 30034864 DOI: 10.1155/2018/1672568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
92 Charisiadis P, Andrianou XD, van der Meer TP, den Dunnen WFA, Swaab DF, Wolffenbuttel BHR, Makris KC, van Vliet-Ostaptchouk JV. Possible Obesogenic Effects of Bisphenols Accumulation in the Human Brain. Sci Rep 2018;8:8186. [PMID: 29844501 DOI: 10.1038/s41598-018-26498-y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
93 Marizzoni M, Provasi S, Cattaneo A, Frisoni GB. Microbiota and neurodegenerative diseases. Curr Opin Neurol 2017;30:630-8. [PMID: 28906270 DOI: 10.1097/WCO.0000000000000496] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
94 Johansson JU, Brubaker WD, Javitz H, Bergen AW, Nishita D, Trigunaite A, Crane A, Ceballos J, Mastroeni D, Tenner AJ, Sabbagh M, Rogers J. Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: Polymorphisms, structure, and function of complement receptor 1. Alzheimers Dement 2018;14:1438-49. [PMID: 29792870 DOI: 10.1016/j.jalz.2018.04.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
95 Bylicky MA, Mueller GP, Day RM. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. Oxid Med Cell Longev 2018;2018:6501031. [PMID: 29805731 DOI: 10.1155/2018/6501031] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 19.5] [Reference Citation Analysis]
96 Elfakhri KH, Duong QV, Langley C, Depaula A, Mousa YM, Lebeouf T, Cain C, Kaddoumi A. Characterization of Hit Compounds Identified from High-throughput Screening for their Effect on Blood-brain Barrier Integrity and Amyloid-β Clearance: In Vitro and In Vivo Studies. Neuroscience 2018;379:269-80. [PMID: 29596966 DOI: 10.1016/j.neuroscience.2018.03.028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
97 Kolarova M, Sengupta U, Bartos A, Ricny J, Kayed R. Tau Oligomers in Sera of Patients with Alzheimer's Disease and Aged Controls. J Alzheimers Dis 2017;58:471-8. [PMID: 28453485 DOI: 10.3233/JAD-170048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
98 Kuszewski JC, Wong RHX, Howe PRC. Can Curcumin Counteract Cognitive Decline? Clinical Trial Evidence and Rationale for Combining ω-3 Fatty Acids with Curcumin. Adv Nutr 2018;9:105-13. [PMID: 29659685 DOI: 10.1093/advances/nmx013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
99 Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer's Disease. J Alzheimers Dis. 2017;58:1-15. [PMID: 28372330 DOI: 10.3233/jad-161141] [Cited by in Crossref: 416] [Cited by in F6Publishing: 433] [Article Influence: 104.0] [Reference Citation Analysis]
100 Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, Quinn JF, Galasko DR, Peskind ER. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry 2018;33:763-8. [PMID: 29446123 DOI: 10.1002/gps.4856] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
101 Virgili J, Lebbadi M, Tremblay C, St-amour I, Pierrisnard C, Faucher-genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018;72:e22025. [DOI: 10.1002/syn.22025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
102 Bosworth AM, Faley SL, Bellan LM, Lippmann ES. Modeling Neurovascular Disorders and Therapeutic Outcomes with Human-Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2017;5:87. [PMID: 29441348 DOI: 10.3389/fbioe.2017.00087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
103 Kim DK, Park J, Han D, Yang J, Kim A, Woo J, Kim Y, Mook-Jung I. Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics. Mol Neurodegener 2018;13:2. [PMID: 29338754 DOI: 10.1186/s13024-017-0234-4] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 12.5] [Reference Citation Analysis]
104 Costa AR, Marcelino H, Gonçalves I, Quintela T, Tomás J, Duarte AC, Fonseca AM, Santos CR. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310. J Neuroendocrinol 2016;28. [PMID: 27328988 DOI: 10.1111/jne.12404] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
105 Ku MC, Waiczies S, Niendorf T, Pohlmann A. Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI. Methods Mol Biol 2018;1718:395-408. [PMID: 29341021 DOI: 10.1007/978-1-4939-7531-0_23] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
106 Koster A, Levy JH. Understanding Potential Drug Side Effects: Can We Translate Molecular Mechanisms to Clinical Applications? Anesthesiology 2017;127:6-8. [PMID: 28475557 DOI: 10.1097/ALN.0000000000001666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
107 Gorlé N, Blaecher C, Bauwens E, Vandendriessche C, Balusu S, Vandewalle J, Van Cauwenberghe C, Van Wonterghem E, Van Imschoot G, Liu C, Ducatelle R, Libert C, Haesebrouck F, Smet A, Vandenbroucke RE. The choroid plexus epithelium as a novel player in the stomach-brain axis during Helicobacter infection. Brain Behav Immun 2018;69:35-47. [PMID: 29258921 DOI: 10.1016/j.bbi.2017.12.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
108 Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron 2016;91:957-73. [PMID: 27608759 DOI: 10.1016/j.neuron.2016.08.027] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 21.0] [Reference Citation Analysis]
109 van der Meer TP, Artacho-Cordón F, Swaab DF, Struik D, Makris KC, Wolffenbuttel BHR, Frederiksen H, van Vliet-Ostaptchouk JV. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain. Int J Environ Res Public Health 2017;14:E1059. [PMID: 28902174 DOI: 10.3390/ijerph14091059] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
110 Moussa CE. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer's disease. Expert Opin Investig Drugs 2017;26:1131-6. [PMID: 28817311 DOI: 10.1080/13543784.2017.1369527] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
111 Wong MW, Braidy N, Poljak A, Sachdev PS. The application of lipidomics to biomarker research and pathomechanisms in Alzheimer's disease. Curr Opin Psychiatry 2017;30:136-44. [PMID: 28002106 DOI: 10.1097/YCO.0000000000000303] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
112 Parrish AR. The impact of aging on epithelial barriers. Tissue Barriers 2017;5:e1343172. [PMID: 28686506 DOI: 10.1080/21688370.2017.1343172] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
113 Tsuneki H, Yoshida H, Endo K, Mori N, Hosoh S, Tsuda M, Wada T, Sasaoka T. Different impacts of acylated and non-acylated long-acting insulin analogs on neural functions in vitro and in vivo. Diabetes Res Clin Pract. 2017;129:62-72. [PMID: 28511140 DOI: 10.1016/j.diabres.2017.03.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
114 Natarajan R, Northrop N, Yamamoto B. Fluorescein Isothiocyanate (FITC)-Dextran Extravasation as a Measure of Blood-Brain Barrier Permeability. Curr Protoc Neurosci 2017;79:9.58.1-9.58.15. [PMID: 28398646 DOI: 10.1002/cpns.25] [Cited by in Crossref: 32] [Cited by in F6Publishing: 38] [Article Influence: 6.4] [Reference Citation Analysis]
115 Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017;10:54. [PMID: 28298885 DOI: 10.3389/fnmol.2017.00054] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
116 Furkan M, Rizvi A, Alam MT, Naeem A. Peroxidase improves the activity of catalase by preventing aggregation during TFE-induced denaturation. Journal of Biomolecular Structure and Dynamics 2018;36:551-60. [DOI: 10.1080/07391102.2017.1287007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
117 Stover PJ, Durga J, Field MS. Folate nutrition and blood-brain barrier dysfunction. Curr Opin Biotechnol 2017;44:146-52. [PMID: 28189938 DOI: 10.1016/j.copbio.2017.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
118 Yamchuen P, Jeenapongsa R, Nudmamud-thanoi S, Limpeanchob N. Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells. Biologia 2017;72:238-244. [DOI: 10.1515/biolog-2017-0024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
119 Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, Tomimoto H, Murata M, Oikawa S. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer's disease. Neurol Res 2017;39:231-8. [PMID: 28107809 DOI: 10.1080/01616412.2017.1281195] [Cited by in Crossref: 66] [Cited by in F6Publishing: 50] [Article Influence: 13.2] [Reference Citation Analysis]
120 Patel MM, Patel BM. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 2017;31:109-33. [DOI: 10.1007/s40263-016-0405-9] [Cited by in Crossref: 215] [Cited by in F6Publishing: 176] [Article Influence: 43.0] [Reference Citation Analysis]
121 Sharma A, Menon PK, Patnaik R, Muresanu DF, Lafuente JV, Tian ZR, Ozkizilcik A, Castellani RJ, Mössler H, Sharma HS. Novel Treatment Strategies Using TiO 2 -Nanowired Delivery of Histaminergic Drugs and Antibodies to Tau With Cerebrolysin for Superior Neuroprotection in the Pathophysiology of Alzheimer's Disease. Nanomedicine in Central Nervous System Injury and Repair. Elsevier; 2017. pp. 123-65. [DOI: 10.1016/bs.irn.2017.09.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
122 Dumond JB, Chen J, Cottrell M, Trezza CR, Prince H, Sykes C, Torrice C, White N, Malone S, Wang R, Patterson KB, Sharpless NE, Forrest A. Population Pharmacokinetics Modeling of Unbound Efavirenz, Atazanavir, and Ritonavir in HIV-Infected Subjects With Aging Biomarkers. CPT Pharmacometrics Syst Pharmacol 2017;6:128-35. [PMID: 28032946 DOI: 10.1002/psp4.12151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
123 Mayhan WG, Arrick DM. The Blook-Brain Barrier in Health and Disease. Colloquium Series on Integrated Systems Physiology: From Molecule to Function 2016;8:i-67. [DOI: 10.4199/c00148ed1v01y201612isp072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
124 Roberts BR, Doecke JD, Rembach A, Yévenes LF, Fowler CJ, McLean CA, Lind M, Volitakis I, Masters CL, Bush AI, Hare DJ; AIBL research group. Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol Commun 2016;4:119. [PMID: 27842602 DOI: 10.1186/s40478-016-0390-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
125 Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y 12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases: P2Y 12 Expression on Human Microglia. Glia 2017;65:375-87. [DOI: 10.1002/glia.23097] [Cited by in Crossref: 159] [Cited by in F6Publishing: 164] [Article Influence: 26.5] [Reference Citation Analysis]
126 Quintela T, Marcelino H, Deery MJ, Feret R, Howard J, Lilley KS, Albuquerque T, Gonçalves I, Duarte AC, Santos CR. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis. J Neuroendocrinol 2016;28. [PMID: 26606900 DOI: 10.1111/jne.12340] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
127 Park SE, Lee NK, Lee J, Hwang JW, Choi SJ, Hwang H, Hyung B, Chang JW, Na DL. Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection. Neuroreport 2016;27:235-41. [PMID: 26752148 DOI: 10.1097/WNR.0000000000000526] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
128 Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, Ganneau C, Maskos U, Czech C, Grueninger F, Duyckaerts C, Dhenain M, Bay S, Delatour B, Lafaye P. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release 2016;243:1-10. [PMID: 27671875 DOI: 10.1016/j.jconrel.2016.09.019] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 10.3] [Reference Citation Analysis]
129 Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. JAD 2016;54:859-78. [DOI: 10.3233/jad-160517] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 8.8] [Reference Citation Analysis]
130 Bhusri N, Lim DC. Correlation of clivoaxial angle to skeletal malocclusions: A prescreening for future risk of neurodegenerative disorders. APOS 2016;6:246-250. [DOI: 10.4103/2321-1407.190726] [Reference Citation Analysis]
131 Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016;74:624-34. [DOI: 10.1093/nutrit/nuw023] [Cited by in Crossref: 271] [Cited by in F6Publishing: 282] [Article Influence: 45.2] [Reference Citation Analysis]
132 Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M, Palha JA. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 2017;107:32-40. [PMID: 27546055 DOI: 10.1016/j.nbd.2016.08.011] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 10.2] [Reference Citation Analysis]
133 Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017;26:542-60. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
134 Kang S, Jeong H, Baek J, Lee S, Han S, Cho HJ, Kim H, Hong HS, Kim YH, Yi EC, Seo SW, Na DL, Hwang D, Mook-jung I, Kim B. PiB-PET Imaging-Based Serum Proteome Profiles Predict Mild Cognitive Impairment and Alzheimer’s Disease. JAD 2016;53:1563-76. [DOI: 10.3233/jad-160025] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
135 Meulenbroek O, O'Dwyer S, de Jong D, van Spijker G, Kennelly S, Cregg F, Olde Rikkert M, Abdullah L, Wallin A, Walsh C, Coen R, Kenny RA, Daly L, Segurado R, Borjesson-Hanson A, Crawford F, Mullan M, Lucca U, Banzi R, Pasquier F, Breuilh L, Riepe M, Kalman J, Molloy W, Tsolaki M, Howard R, Adams J, Gaynor S, Lawlor B. European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer's disease-the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow. BMJ Open 2016;6:e011584. [PMID: 27436668 DOI: 10.1136/bmjopen-2016-011584] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
136 Magistri M, Velmeshev D, Makhmutova M, Faghihi MA. Transcriptomics Profiling of Alzheimer's Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs. J Alzheimers Dis 2015;48:647-65. [PMID: 26402107 DOI: 10.3233/JAD-150398] [Cited by in Crossref: 115] [Cited by in F6Publishing: 119] [Article Influence: 19.2] [Reference Citation Analysis]
137 Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 2016;68:547-62. [PMID: 27328788 DOI: 10.1016/j.neubiorev.2016.06.014] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 14.5] [Reference Citation Analysis]
138 Löffler T, Flunkert S, Temmel M, Hutter-Paier B. Decreased Plasma Aβ in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci 2016;10:232. [PMID: 27313503 DOI: 10.3389/fnins.2016.00232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
139 Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer's disease: more than just a barrier. Neural Regen Res 2016;11:534-7. [PMID: 27212900 DOI: 10.4103/1673-5374.180372] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 9.8] [Reference Citation Analysis]
140 Gorlé N, Van Cauwenberghe C, Libert C, Vandenbroucke RE. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm Genome 2016;27:407-20. [DOI: 10.1007/s00335-016-9637-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
141 De Spiegeleer B, Wynendaele E, Bracke N, Veryser L, Taevernier L, Degroote A, Stalmans S. Regulatory development of geriatric medicines: To GIP or not to GIP? Ageing Res Rev 2016;27:23-36. [PMID: 26899877 DOI: 10.1016/j.arr.2016.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
142 Giannoni P, Arango-lievano M, Neves ID, Rousset M, Baranger K, Rivera S, Jeanneteau F, Claeysen S, Marchi N. Cerebrovascular pathology during the progression of experimental Alzheimer's disease. Neurobiology of Disease 2016;88:107-17. [DOI: 10.1016/j.nbd.2016.01.001] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 12.0] [Reference Citation Analysis]
143 Llorens F, Schmitz M, Ferrer I, Zerr I. CSF biomarkers in neurodegenerative and vascular dementias. Progress in Neurobiology 2016;138-140:36-53. [DOI: 10.1016/j.pneurobio.2016.03.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
144 Kaur C, Rathnasamy G, Ling E. The Choroid Plexus in Healthy and Diseased Brain. J Neuropathol Exp Neurol 2016;75:198-213. [DOI: 10.1093/jnen/nlv030] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 14.0] [Reference Citation Analysis]
145 Yamazaki Y, Baker DJ, Tachibana M, Liu CC, van Deursen JM, Brott TG, Bu G, Kanekiyo T. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown. Stroke 2016;47:1068-77. [PMID: 26883501 DOI: 10.1161/STROKEAHA.115.010835] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 19.0] [Reference Citation Analysis]
146 Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S, Libert C, Vandenbroucke RE. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci 2015;35:12766-78. [PMID: 26377465 DOI: 10.1523/JNEUROSCI.0006-15.2015] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 17.5] [Reference Citation Analysis]
147 Harry GJ, Mcpherson CA. Microglia: Features of Polarization and Aging. Inflammation, Aging, and Oxidative Stress 2016. [DOI: 10.1007/978-3-319-33486-8_3] [Reference Citation Analysis]
148 Vassar R. β-Secretase Inhibition. Developing Therapeutics for Alzheimer's Disease 2016. [DOI: 10.1016/b978-0-12-802173-6.00003-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
149 Mercatelli R, Lana D, Bucciantini M, Giovannini MG, Cerbai F, Quercioli F, Zecchi-Orlandini S, Delfino G, Wenk GL, Nosi D. Clasmatodendrosis and β-amyloidosis in aging hippocampus. FASEB J 2016;30:1480-91. [PMID: 26722005 DOI: 10.1096/fj.15-275503] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
150 Llorens F, Schmitz M, Karch A, Cramm M, Lange P, Gherib K, Varges D, Schmidt C, Zerr I, Stoeck K. Comparative analysis of cerebrospinal fluid biomarkers in the differential diagnosis of neurodegenerative dementia. Alzheimer's & Dementia 2016;12:577-89. [DOI: 10.1016/j.jalz.2015.10.009] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 7.7] [Reference Citation Analysis]
151 Benarroch EE. Choroid plexus--CSF system: Recent developments and clinical correlations. Neurology 2016;86:286-96. [PMID: 26683646 DOI: 10.1212/WNL.0000000000002298] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
152 Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016;136:475-91. [PMID: 26546579 DOI: 10.1111/jnc.13424] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
153 Flanagan MF. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol Res Int 2015;2015:794829. [PMID: 26770824 DOI: 10.1155/2015/794829] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
154 Bergen AA, Kaing S, ten Brink JB, Gorgels TG, Janssen SF; Netherlands Brain Bank. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics 2015;16:956. [PMID: 26573292 DOI: 10.1186/s12864-015-2159-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
155 Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, Correia-neves M, Sousa N, Palha JA, Marques F. The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain, Behavior, and Immunity 2015;49:280-92. [DOI: 10.1016/j.bbi.2015.06.008] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
156 Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, Younkin S, Das P, Fryer JD, Bu G. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem 2015;290:26043-50. [PMID: 26374899 DOI: 10.1074/jbc.M115.679043] [Cited by in Crossref: 290] [Cited by in F6Publishing: 295] [Article Influence: 41.4] [Reference Citation Analysis]
157 Bassil F, Monvoisin A, Canron MH, Vital A, Meissner WG, Tison F, Fernagut PO. Region-Specific Alterations of Matrix Metalloproteinase Activity in Multiple System Atrophy. Mov Disord 2015;30:1802-12. [PMID: 26260627 DOI: 10.1002/mds.26329] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
158 Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015;11:457-70. [PMID: 26195256 DOI: 10.1038/nrneurol.2015.119] [Cited by in Crossref: 796] [Cited by in F6Publishing: 833] [Article Influence: 113.7] [Reference Citation Analysis]
159 Brock AJ, Kasus-Jacobi A, Lerner M, Logan S, Adesina AM, Anne Pereira H. The antimicrobial protein, CAP37, is upregulated in pyramidal neurons during Alzheimer's disease. Histochem Cell Biol 2015;144:293-308. [PMID: 26170148 DOI: 10.1007/s00418-015-1347-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
160 Reuss B, Schroten H, Ishikawa H, Asif AR. Cross-reactivity of Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae With Heat Shock Protein 60 and ATP-Binding Protein Correlates to Reduced Mitochondrial Activity in HIBCPP Choroid Plexus Papilloma Cells. J Mol Neurosci 2015;57:123-38. [PMID: 26080747 DOI: 10.1007/s12031-015-0585-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
161 Krzyzanowska A, García-Consuegra I, Pascual C, Antequera D, Ferrer I, Carro E. Expression of regulatory proteins in choroid plexus changes in early stages of Alzheimer disease. J Neuropathol Exp Neurol 2015;74:359-69. [PMID: 25756589 DOI: 10.1097/NEN.0000000000000181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
162 Schmitz M, Hermann P, Oikonomou P, Stoeck K, Ebert E, Poliakova T, Schmidt C, Llorens F, Zafar S, Zerr I. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiol Aging 2015;36:2597-606. [PMID: 26170132 DOI: 10.1016/j.neurobiolaging.2015.05.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
163 Liu WY, Wang ZB, Wang Y, Tong LC, Li Y, Wei X, Luan P, Li L. Increasing the Permeability of the Blood-brain Barrier in Three Different Models in vivo. CNS Neurosci Ther 2015;21:568-74. [PMID: 25982054 DOI: 10.1111/cns.12405] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
164 Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Front Neurol 2015;6:90. [PMID: 26029153 DOI: 10.3389/fneur.2015.00090] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
165 Janota CS, Brites D, Lemere CA, Brito MA. Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice. Brain Res 2015;1620:153-68. [PMID: 25966615 DOI: 10.1016/j.brainres.2015.04.056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
166 Morrone CD, Liu M, Black SE, McLaurin J. Interaction between therapeutic interventions for Alzheimer's disease and physiological Aβ clearance mechanisms. Front Aging Neurosci 2015;7:64. [PMID: 25999850 DOI: 10.3389/fnagi.2015.00064] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
167 Baruch K, Kertser A, Porat Z, Schwartz M. Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking. EMBO J 2015;34:1816-28. [PMID: 25940071 DOI: 10.15252/embj.201591468] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 7.4] [Reference Citation Analysis]
168 Lauzon M, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. Journal of Controlled Release 2015;206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
169 Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015;21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 8.4] [Reference Citation Analysis]
170 Ashton NJ, Kiddle SJ, Graf J, Ward M, Baird AL, Hye A, Westwood S, Wong KV, Dobson RJ, Rabinovici GD, Miller BL, Rosen HJ, Torres A, Zhang Z, Thurfjell L, Covin A, Hehir CT, Baker D, Bazenet C, Lovestone S; AIBL Research Group. Blood protein predictors of brain amyloid for enrichment in clinical trials? Alzheimers Dement (Amst) 2015;1:48-60. [PMID: 27239491 DOI: 10.1016/j.dadm.2014.11.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
171 Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, Nelson D, Takechi R. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing 2015;12:2. [PMID: 25784952 DOI: 10.1186/s12979-015-0029-9] [Cited by in Crossref: 160] [Cited by in F6Publishing: 163] [Article Influence: 22.9] [Reference Citation Analysis]
172 Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015;27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
173 Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wáng YJ, Chow AHL, Wu EX, Baum L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 2015;44:155-72. [DOI: 10.1016/j.biomaterials.2014.12.005] [Cited by in Crossref: 183] [Cited by in F6Publishing: 191] [Article Influence: 26.1] [Reference Citation Analysis]
174 Bishnoi RJ, Palmer RF, Royall DR. Serum interleukin (IL)-15 as a biomarker of Alzheimer's disease. PLoS One 2015;10:e0117282. [PMID: 25710473 DOI: 10.1371/journal.pone.0117282] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
175 Jefferson AL, Beiser AS, Himali JJ, Seshadri S, O'Donnell CJ, Manning WJ, Wolf PA, Au R, Benjamin EJ. Low cardiac index is associated with incident dementia and Alzheimer disease: the Framingham Heart Study. Circulation 2015;131:1333-9. [PMID: 25700178 DOI: 10.1161/CIRCULATIONAHA.114.012438] [Cited by in Crossref: 104] [Cited by in F6Publishing: 112] [Article Influence: 14.9] [Reference Citation Analysis]
176 Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci 2015;7:9. [PMID: 25713531 DOI: 10.3389/fnagi.2015.00009] [Cited by in Crossref: 93] [Cited by in F6Publishing: 110] [Article Influence: 13.3] [Reference Citation Analysis]
177 Blair LJ, Frauen HD, Zhang B, Nordhues BA, Bijan S, Lin YC, Zamudio F, Hernandez LD, Sabbagh JJ, Selenica ML, Dickey CA. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun 2015;3:8. [PMID: 25775028 DOI: 10.1186/s40478-015-0186-2] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 13.3] [Reference Citation Analysis]
178 Mehra A, Jerath G, Ramakrishnan V, Trivedi V. Characterization of ICAM-1 biophore to design cytoadherence blocking peptides. J Mol Graph Model 2015;57:27-35. [PMID: 25625914 DOI: 10.1016/j.jmgm.2015.01.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
179 Zhao Y, Dua P, Lukiw WJ. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer's Disease (AD). J Alzheimers Dis Parkinsonism 2015;5:177. [PMID: 25977840 DOI: 10.4172/2161-0460.1000177] [Cited by in Crossref: 33] [Cited by in F6Publishing: 64] [Article Influence: 4.7] [Reference Citation Analysis]
180 Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimers Res Ther 2014;6:89. [PMID: 25621019 DOI: 10.1186/s13195-014-0089-7] [Cited by in Crossref: 272] [Cited by in F6Publishing: 286] [Article Influence: 34.0] [Reference Citation Analysis]
181 Gaur S, Agnihotri R. Alzheimer's disease and chronic periodontitis: is there an association? Geriatr Gerontol Int 2015;15:391-404. [PMID: 25511390 DOI: 10.1111/ggi.12425] [Cited by in Crossref: 56] [Cited by in F6Publishing: 66] [Article Influence: 7.0] [Reference Citation Analysis]
182 Stilling RM, Benito E, Gertig M, Barth J, Capece V, Burkhardt S, Bonn S, Fischer A. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front Cell Neurosci 2014;8:373. [PMID: 25431548 DOI: 10.3389/fncel.2014.00373] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 9.3] [Reference Citation Analysis]
183 Huntley MA, Bien-Ly N, Daneman R, Watts RJ. Dissecting gene expression at the blood-brain barrier. Front Neurosci 2014;8:355. [PMID: 25414634 DOI: 10.3389/fnins.2014.00355] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
184 Altunoglu E, Guntas G, Erdenen F, Akkaya E, Topac I, Irmak H, Derici H, Yavuzer H, Gelisgen R, Uzun H. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer's disease. Geriatr Gerontol Int 2015;15:872-80. [PMID: 25345484 DOI: 10.1111/ggi.12361] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
185 Stoeck K, Schmitz M, Ebert E, Schmidt C, Zerr I. Immune responses in rapidly progressive dementia: a comparative study of neuroinflammatory markers in Creutzfeldt-Jakob disease, Alzheimer's disease and multiple sclerosis. J Neuroinflammation 2014;11:170. [PMID: 25315814 DOI: 10.1186/s12974-014-0170-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
186 Firasat S, Hecker M, Binder L, Asif AR. Advances in endothelial shear stress proteomics. Expert Review of Proteomics 2014;11:611-9. [DOI: 10.1586/14789450.2014.933673] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
187 Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease. Front Aging Neurosci 2014;6:93. [PMID: 24904407 DOI: 10.3389/fnagi.2014.00093] [Cited by in Crossref: 141] [Cited by in F6Publishing: 154] [Article Influence: 17.6] [Reference Citation Analysis]
188 Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron 2014;81:740-54. [PMID: 24559670 DOI: 10.1016/j.neuron.2014.01.045] [Cited by in Crossref: 358] [Cited by in F6Publishing: 332] [Article Influence: 44.8] [Reference Citation Analysis]
189 Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H. Altered arginine metabolism in Alzheimer's disease brains. Neurobiol Aging 2014;35:1992-2003. [PMID: 24746363 DOI: 10.1016/j.neurobiolaging.2014.03.013] [Cited by in Crossref: 121] [Cited by in F6Publishing: 125] [Article Influence: 15.1] [Reference Citation Analysis]
190 Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014;88:594-604. [PMID: 24445162 DOI: 10.1016/j.bcp.2014.01.008] [Cited by in Crossref: 359] [Cited by in F6Publishing: 374] [Article Influence: 44.9] [Reference Citation Analysis]
191 von Bernhardi R, Flores B, Nakanishi H. Aging. Microglia in Health and Disease 2014. [DOI: 10.1007/978-1-4939-1429-6_13] [Reference Citation Analysis]
192 Rutten BP, Steinbusch HW. Current concepts in Alzheimer's Disease: molecules, models and translational perspectives. Mol Neurodegener 2013;8:33. [PMID: 24148188 DOI: 10.1186/1750-1326-8-33] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
193 [DOI: 10.1101/627539] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
194 [DOI: 10.1101/471334] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]