BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021;58:2003957. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang Y, Guo Y, Feng X, Yang P, Liu Y, Dai X, Zhao F, Lei D, Li X, Liu Y, Li Y. Iron metabolism disorder regulated by BMP signaling in hypoxic pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023;1869:166589. [PMID: 36343841 DOI: 10.1016/j.bbadis.2022.166589] [Reference Citation Analysis]
2 Peng Y, Dai J, Zhao Y. Egln1Tie2Cre Mice Exhibit Similar Therapeutic Responses to Sildenafil, Ambrisentan, and Treprostinil as Pulmonary Arterial Hypertension (PAH) Patients, Supporting Egln1Tie2Cre Mice as a Useful PAH Model. IJMS 2023;24:2391. [DOI: 10.3390/ijms24032391] [Reference Citation Analysis]
3 Hu Y, Zong Y, Jin L, Zou J, Wang Z. Reduced Apela/APJ system expression in patients with pulmonary artery hypertension secondary to chronic obstructive pulmonary disease. Heart Lung 2023;59:8-15. [PMID: 36669444 DOI: 10.1016/j.hrtlng.2023.01.008] [Reference Citation Analysis]
4 Jiang Y, Huang J, Xia Y, Sun Z, Hu P, Wang D, Liu Y, Tao T, Liu Y. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells. Eur J Pharmacol 2023;941:175502. [PMID: 36638952 DOI: 10.1016/j.ejphar.2023.175502] [Reference Citation Analysis]
5 Vahdatpour C, Epstein S, Jones K, Smoot M, Parker A, Ryan J, Bryant A. A review of cardio-pulmonary microvascular dysfunction in pulmonary hypertension. American Heart Journal Plus: Cardiology Research and Practice 2023. [DOI: 10.1016/j.ahjo.2023.100255] [Reference Citation Analysis]
6 Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022;13:1039618. [PMID: 36618396 DOI: 10.3389/fimmu.2022.1039618] [Reference Citation Analysis]
7 Luo X, Hang C, Zhang Z, Le K, Ying Y, Lv Y, Yan L, Huang Y, Ye L, Xu X, Zhong Y, Du L. PVECs-Derived Exosomal microRNAs Regulate PASMCs via FoxM1 Signaling in IUGR-induced Pulmonary Hypertension. J Am Heart Assoc 2022;11:e027177. [PMID: 36533591 DOI: 10.1161/JAHA.122.027177] [Reference Citation Analysis]
8 Li X, Zhang X, Hou X, Bing X, Zhu F, Wu X, Guo N, Zhao H, Xu F, Xia M. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis 2022. [DOI: 10.1007/s10495-022-01797-y] [Reference Citation Analysis]
9 Liu B, Dai Z. Fatty Acid Metabolism in Endothelial Cell. Genes (Basel) 2022;13. [PMID: 36553568 DOI: 10.3390/genes13122301] [Reference Citation Analysis]
10 Tiezzi M, Deng H, Baeyens N. Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension? Biochemical Pharmacology 2022;206:115290. [DOI: 10.1016/j.bcp.2022.115290] [Reference Citation Analysis]
11 Pham AT, Oliveira AC, Fu C, Alves MD, Dupee Z, Mukhsinova L, Ebrahimi E, Patel H, Patel R, Nguyen A, Jin L, Bryant AJ. Cell dichotomous role of STING in pulmonary hypertension.. [DOI: 10.1101/2022.11.29.518422] [Reference Citation Analysis]
12 Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacology & Therapeutics 2022;239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Reference Citation Analysis]
13 Lai Y, Tian Y, You X, Du J, Huang J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis 2022;21:101. [PMID: 36229882 DOI: 10.1186/s12944-022-01701-2] [Reference Citation Analysis]
14 Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022;12:e12156. [PMID: 36438452 DOI: 10.1002/pul2.12156] [Reference Citation Analysis]
15 Ge T, Yang Y, Zhao Y. A study of the efficacy of sacubitril/valsartan plus dapagliflozin combination treatment in pulmonary arterial hypertension due to left heart disease. Perfusion 2022;:2676591221127924. [PMID: 36173344 DOI: 10.1177/02676591221127924] [Reference Citation Analysis]
16 Shah AJ, Vorla M, Kalra DK. Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022;23:10001. [PMID: 36077398 DOI: 10.3390/ijms231710001] [Reference Citation Analysis]
17 Yu M, Wu X, Peng L, Yang M, Zhou H, Xu J, Wang J, Wang H, Xie W, Kong H, Han Y. Inhibition of Bruton’s Tyrosine Kinase Alleviates Monocrotaline-Induced Pulmonary Arterial Hypertension by Modulating Macrophage Polarization. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/6526036] [Reference Citation Analysis]
18 Wiedemann J, Coppes RP, van Luijk P. Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Front Oncol 2022;12:931023. [DOI: 10.3389/fonc.2022.931023] [Reference Citation Analysis]
19 Ji L, Su S, Xin M, Zhang Z, Nan X, Li Z, Lu D. Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. Phytomedicine 2022;104:154329. [PMID: 35843187 DOI: 10.1016/j.phymed.2022.154329] [Reference Citation Analysis]
20 Zhang J, Hui Y, Liu F, Yang Q, Lu Y, Chang Y, Liu Q, Ding Y. Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling. Front Pharmacol 2022;13:890202. [PMID: 35677431 DOI: 10.3389/fphar.2022.890202] [Reference Citation Analysis]
21 Krzyżewska A, Baranowska-kuczko M, Jastrząb A, Kasacka I, Kozłowska H. Cannabidiol Improves Antioxidant Capacity and Reduces Inflammation in the Lungs of Rats with Monocrotaline-Induced Pulmonary Hypertension. Molecules 2022;27:3327. [DOI: 10.3390/molecules27103327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Oliveira SD. Insights on the Gut-Mesentery-Lung Axis in Pulmonary Arterial Hypertension: A Poorly Investigated Crossroad. Arterioscler Thromb Vasc Biol 2022;42:516-26. [PMID: 35296152 DOI: 10.1161/ATVBAHA.121.316236] [Reference Citation Analysis]
23 Christou H, Khalil RA. Mechanisms of Pulmonary Vascular Dysfunction in Pulmonary Hypertension and Implications for Novel Therapies. Am J Physiol Heart Circ Physiol 2022. [PMID: 35213243 DOI: 10.1152/ajpheart.00021.2022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Sountoulidis A, Salas SM, Braun E, Avenel C, Bergenstråhle J, Vicari M, Czarnewski P, Theelke J, Liontos A, Abalo X, Andrusivová Ž, Asp M, Li X, Hu L, Sariyar S, Casals AM, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. Developmental origins of cell heterogeneity in the human lung.. [DOI: 10.1101/2022.01.11.475631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zhang Y, Wang Y. Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Rev Physiol Biochem Pharmacol 2023;184:159-79. [PMID: 35380274 DOI: 10.1007/112_2022_70] [Reference Citation Analysis]
26 Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021;22:12098. [PMID: 34829978 DOI: 10.3390/ijms222212098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Negi V, Yang J, Speyer G, Pulgarin A, Handen A, Zhao J, Tai YY, Tang Y, Culley MK, Yu Q, Forsythe P, Gorelova A, Watson AM, Al Aaraj Y, Satoh T, Sharifi-Sanjani M, Rajaratnam A, Sembrat J, Provencher S, Yin X, Vargas SO, Rojas M, Bonnet S, Torrino S, Wagner BK, Schreiber SL, Dai M, Bertero T, Al Ghouleh I, Kim S, Chan SY. Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Sci Adv 2021;7:eabh3794. [PMID: 34669463 DOI: 10.1126/sciadv.abh3794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
28 Jian M, He S, Liu Y, Liu X, Gui J, Zheng M, Feng B, Zhang X, Liu C. The high-risk factors of different severities of bronchopulmonary dysplasia (BPD) based on the national institute of child health and human development (NICHD) diagnosis criteria in 2018. J Bras Pneumol 2021;47:e20210125. [PMID: 34614093 DOI: 10.36416/1806-3756/e20210125] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Antigny F, Le Ribeuz H, Humbert M, Montani D. Comment on: Transcriptomic analysis of CFTR-impaired endothelial cells reveals a pro-inflammatory phenotype. Eur Respir J 2021;58:2101365. [PMID: 34413125 DOI: 10.1183/13993003.01365-2021] [Reference Citation Analysis]
30 Declercq M, Treps L, Bousfia S, Carmeliet P, Witters P. Endothelial CFTR dysfunction and its involvement in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021;58:2101645. [PMID: 34385264 DOI: 10.1183/13993003.01645-2021] [Reference Citation Analysis]
31 Tura-Ceide O, Blanco I, Garcia-Lucio J, Del Pozo R, García AR, Ferrer E, Crespo I, Rodríguez-Chiaradia DA, Simeon-Aznar CP, López-Meseguer M, Martín-Ontiyuelo C, Peinado VI, Barberà JA. Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells 2021;10:1688. [PMID: 34359858 DOI: 10.3390/cells10071688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Wan N, Rong W, Zhu W, Jia D, Bai P, Liu G, Wan Q, Lyu A. Tregs-derived interleukin 35 attenuates endothelial proliferation through STAT1 in pulmonary hypertension. Ann Transl Med 2021;9:926. [PMID: 34350241 DOI: 10.21037/atm-21-1952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Wu Y, Zhan S, Xu Y, Gao X. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci 2021;278:119565. [PMID: 33965380 DOI: 10.1016/j.lfs.2021.119565] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
34 Li Q, Zhu Z, Wang L, Lin Y, Fang H, Lei J, Cao T, Wang G, Dang E. Single-cell transcriptome profiling reveals vascular endothelial cell heterogeneity in human skin. Theranostics 2021;11:6461-76. [PMID: 33995668 DOI: 10.7150/thno.54917] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
35 Li X, Liu L, Li T, Liu M, Wang Y, Ma H, Mu N, Wang H. SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front Cell Dev Biol 2021;9:641315. [PMID: 33855020 DOI: 10.3389/fcell.2021.641315] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
36 Yi D, Liu B, Wang T, Liao Q, Zhu MM, Zhao YY, Dai Z. Endothelial Autocrine Signaling through CXCL12/CXCR4/FoxM1 Axis Contributes to Severe Pulmonary Arterial Hypertension. Int J Mol Sci 2021;22:3182. [PMID: 33804745 DOI: 10.3390/ijms22063182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]