BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang H, Lee WS, Kong SJ, Kim CG, Kim JH, Chang SK, Kim S, Kim G, Chon HJ, Kim C. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest 2019;129:4350-64. [PMID: 31343989 DOI: 10.1172/JCI125413] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 15.3] [Reference Citation Analysis]
Number Citing Articles
1 Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A, Ndubaku CO, McWhirter SM, Raulet DH. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci Immunol 2020;5:eaaz2738. [PMID: 32198222 DOI: 10.1126/sciimmunol.aaz2738] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 16.5] [Reference Citation Analysis]
2 Chen X, He W, Sun M, Yan Y, Pang Y, Chai G. STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB J 2021;35:e21964. [PMID: 34694030 DOI: 10.1096/fj.202100069RR] [Reference Citation Analysis]
3 Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Front Immunol 2020;11:615. [PMID: 32411126 DOI: 10.3389/fimmu.2020.00615] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
4 Chamma H, Vila I, Taffoni C, Turtoi A, Laguette N. Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity. Cancer Lett 2022;:215694. [PMID: 35489447 DOI: 10.1016/j.canlet.2022.215694] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Newnes HV, Armitage JD, Audsley KM, Bosco A, Waithman J. Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers (Basel) 2021;13:5911. [PMID: 34885021 DOI: 10.3390/cancers13235911] [Reference Citation Analysis]
6 Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, Li W, Wang J, Cholka A, Fu YX, Sumer BD, Yu H, Gao J. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng 2021;5:455-66. [PMID: 33558734 DOI: 10.1038/s41551-020-00675-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
7 Park HS, Kim YM, Kim S, Lee WS, Kong SJ, Yang H, Kang B, Cheon J, Shin SJ, Kim C, Chon HJ. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer. J Immunother Cancer 2021;9:e003353. [PMID: 34670828 DOI: 10.1136/jitc-2021-003353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Choi SH, Yoo SS, Lee SY, Park JY. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer. Arch Pharm Res 2022. [PMID: 35449345 DOI: 10.1007/s12272-022-01382-6] [Reference Citation Analysis]
9 Liu L, Cai L, Du X, Zhao J, Zhao Y, Zou C, Yu S, Zhang C, Ye P, Su X, Yan X, Li W. Anti-tumour effect of in situ vaccines combined with VEGFR inhibitors in the treatment of metastatic cervical cancer. Int Immunopharmacol 2021;101:108302. [PMID: 34717193 DOI: 10.1016/j.intimp.2021.108302] [Reference Citation Analysis]
10 Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2020;11:629722. [PMID: 33597954 DOI: 10.3389/fimmu.2020.629722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, Ni C, Chen Z. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res 2021;9:59. [PMID: 34294146 DOI: 10.1186/s40364-021-00312-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 He T, Hao Z, Lin M, Xin Z, Chen Y, Ouyang W, Yang Q, Chen X, Zhou H, Zhang W, Wu P, Xu F. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. OncoImmunology 2022;11:2093054. [DOI: 10.1080/2162402x.2022.2093054] [Reference Citation Analysis]
13 Le Naour J, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020;9:1777624. [PMID: 32934881 DOI: 10.1080/2162402X.2020.1777624] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
14 Jeong SH, Yang MJ, Choi S, Kim J, Koh GY. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun 2021;12:4405. [PMID: 34285232 DOI: 10.1038/s41467-021-24603-w] [Reference Citation Analysis]
15 Yin M, Hu J, Yuan Z, Luo G, Yao J, Wang R, Liu D, Cao B, Wu W, Hu Z. STING agonist enhances the efficacy of programmed death-ligand 1 monoclonal antibody in breast cancer immunotherapy by activating the interferon-β signalling pathway. Cell Cycle 2022;:1-13. [PMID: 35130108 DOI: 10.1080/15384101.2022.2029996] [Reference Citation Analysis]
16 Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022. [PMID: 35470988 DOI: 10.1002/cac2.12294] [Reference Citation Analysis]
17 Shi LZ, Bonner JA. Bridging Radiotherapy to Immunotherapy: The IFN-JAK-STAT Axis. Int J Mol Sci 2021;22:12295. [PMID: 34830176 DOI: 10.3390/ijms222212295] [Reference Citation Analysis]
18 Ganss R. Tumour vessel remodelling: new opportunities in cancer treatment. Vasc Biol 2020;2:R35-43. [PMID: 32923973 DOI: 10.1530/VB-19-0032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Boustani J, Lecoester B, Baude J, Latour C, Adotevi O, Mirjolet C, Truc G. Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies. Cancers (Basel) 2021;13:4893. [PMID: 34638376 DOI: 10.3390/cancers13194893] [Reference Citation Analysis]
20 Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021;13:1724. [PMID: 33917287 DOI: 10.3390/cancers13071724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu ZX, Bei JX, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. Adv Sci (Weinh) 2022;9:e2103029. [PMID: 35064757 DOI: 10.1002/advs.202103029] [Reference Citation Analysis]
22 Campisi M, Sundararaman SK, Shelton SE, Knelson EH, Mahadevan NR, Yoshida R, Tani T, Ivanova E, Cañadas I, Osaki T, Lee SWL, Thai T, Han S, Piel BP, Gilhooley S, Paweletz CP, Chiono V, Kamm RD, Kitajima S, Barbie DA. Tumor-Derived cGAMP Regulates Activation of the Vasculature. Front Immunol 2020;11:2090. [PMID: 33013881 DOI: 10.3389/fimmu.2020.02090] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. Biology (Basel) 2021;10:856. [PMID: 34571733 DOI: 10.3390/biology10090856] [Reference Citation Analysis]
24 Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers (Basel) 2021;13:2695. [PMID: 34070756 DOI: 10.3390/cancers13112695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Pu F, Chen F, Liu J, Zhang Z, Shao Z. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. Onco Targets Ther 2021;14:1501-16. [PMID: 33688199 DOI: 10.2147/OTT.S298958] [Reference Citation Analysis]
26 Wilski NA, Stotesbury C, Del Casale C, Montoya B, Wong E, Sigal LJ, Snyder CM. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. J Immunol 2020;204:2961-72. [PMID: 32284333 DOI: 10.4049/jimmunol.1901136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022. [PMID: 35107989 DOI: 10.1021/acs.chemrev.1c00750] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
28 Syeda MZ, Hong T, Zhang M, Han Y, Zhu X, Ying S, Tang L. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res . [DOI: 10.1007/s12274-022-4598-6] [Reference Citation Analysis]
29 Burn OK, Prasit KK, Hermans IF. Modulating the Tumour Microenvironment by Intratumoural Injection of Pattern Recognition Receptor Agonists. Cancers (Basel) 2020;12:E3824. [PMID: 33352882 DOI: 10.3390/cancers12123824] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Filderman JN, Appleman M, Chelvanambi M, Taylor JL, Storkus WJ. STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Front Immunol 2021;12:690105. [PMID: 34054879 DOI: 10.3389/fimmu.2021.690105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 van Vugt MATM, Parkes EE. When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022:S2405-8033(21)00251-X. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
32 Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer 2019;18:152. [PMID: 31679519 DOI: 10.1186/s12943-019-1087-y] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 19.7] [Reference Citation Analysis]
33 An HJ, Chon HJ, Kim C. Peripheral Blood-Based Biomarkers for Immune Checkpoint Inhibitors. Int J Mol Sci 2021;22:9414. [PMID: 34502325 DOI: 10.3390/ijms22179414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Kim CW, Chon HJ, Kim C. Combination Immunotherapies to Overcome Intrinsic Resistance to Checkpoint Blockade in Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2021;13:4906. [PMID: 34638390 DOI: 10.3390/cancers13194906] [Reference Citation Analysis]
35 Zhang Y, Brekken RA. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukocyte Bio. [DOI: 10.1002/jlb.5ru0222-082r] [Reference Citation Analysis]
36 Wang Z, Xi Z. Chemical evolution of cyclic dinucleotides: Perspective of the analogs and their preparation. Tetrahedron 2021;87:132096. [DOI: 10.1016/j.tet.2021.132096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zhao Y, Yu X, Li J. Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020;10:2018-36. [PMID: 33304777 DOI: 10.1016/j.apsb.2020.09.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
38 Waters CM. Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Open Biol 2021;11:210277. [PMID: 34905701 DOI: 10.1098/rsob.210277] [Reference Citation Analysis]
39 Gao KM, Motwani M, Tedder T, Marshak-Rothstein A, Fitzgerald KA. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proc Natl Acad Sci U S A 2022;119:e2202327119. [PMID: 35696583 DOI: 10.1073/pnas.2202327119] [Reference Citation Analysis]
40 Lee SJ, Yang H, Kim WR, Lee YS, Lee WS, Kong SJ, Lee HJ, Kim JH, Cheon J, Kang B, Chon HJ, Kim C. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J Immunother Cancer 2021;9:e002195. [PMID: 34145029 DOI: 10.1136/jitc-2020-002195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Go EJ, Yang H, Chon HJ, Yang D, Ryu W, Kim DH, Han DK, Kim C, Park W. Combination of Irreversible Electroporation and STING Agonist for Effective Cancer Immunotherapy. Cancers (Basel). 2020;12. [PMID: 33114476 DOI: 10.3390/cancers12113123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
42 Reschke R, Olson DJ. Leveraging STING, Batf3 Dendritic Cells, CXCR3 Ligands, and Other Components Related to Innate Immunity to Induce A "Hot" Tumor Microenvironment That Is Responsive to Immunotherapy. Cancers (Basel) 2022;14:2458. [PMID: 35626062 DOI: 10.3390/cancers14102458] [Reference Citation Analysis]
43 Shen R, Liu D, Wang X, Guo Z, Sun H, Song Y, Wang D. DNA Damage and Activation of cGAS/STING Pathway Induce Tumor Microenvironment Remodeling. Front Cell Dev Biol 2021;9:828657. [PMID: 35265630 DOI: 10.3389/fcell.2021.828657] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
44 Kang N, Eccleston M, Clermont PL, Latarani M, Male DK, Wang Y, Crea F. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 2020;12:1457-76. [PMID: 32938196 DOI: 10.2217/epi-2020-0186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
45 Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021;26:951-67. [PMID: 33450394 DOI: 10.1016/j.drudis.2021.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
46 Oh CM, Chon HJ, Kim C. Combination Immunotherapy Using Oncolytic Virus for the Treatment of Advanced Solid Tumors. Int J Mol Sci 2020;21:E7743. [PMID: 33086754 DOI: 10.3390/ijms21207743] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
47 Zhang YP, Bao ZW, Wu JB, Chen YH, Chen JR, Xie HY, Zhou L, Wu J, Zheng SS. Cancer-Testis Gene Expression in Hepatocellular Carcinoma: Identification of Prognostic Markers and Potential Targets for Immunotherapy. Technol Cancer Res Treat 2020;19:1533033820944274. [PMID: 32715976 DOI: 10.1177/1533033820944274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020;8:766. [PMID: 32974337 DOI: 10.3389/fcell.2020.00766] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
49 Kim JH, Lee WS, Lee HJ, Yang H, Lee SJ, Kong SJ, Je S, Yang HJ, Jung J, Cheon J, Kang B, Chon HJ, Kim C. Deep learning model enables the discovery of a novel immunotherapeutic agent regulating the kynurenine pathway. Oncoimmunology 2021;10:2005280. [PMID: 34858729 DOI: 10.1080/2162402X.2021.2005280] [Reference Citation Analysis]
50 Luo K, Li N, Ye W, Gao H, Luo X, Cheng B. Activation of Stimulation of Interferon Genes (STING) Signal and Cancer Immunotherapy. Molecules 2022;27:4638. [DOI: 10.3390/molecules27144638] [Reference Citation Analysis]
51 Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021;:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Reference Citation Analysis]
52 Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines (Basel) 2020;8:E453. [PMID: 32823563 DOI: 10.3390/vaccines8030453] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
53 Lee YS, Lee WS, Kim CW, Lee SJ, Yang H, Kong SJ, Ning J, Yang KM, Kang B, Kim WR, Chon HJ, Kim C. Oncolytic vaccinia virus reinvigorates peritoneal immunity and cooperates with immune checkpoint inhibitor to suppress peritoneal carcinomatosis in colon cancer. J Immunother Cancer 2020;8:e000857. [PMID: 33199510 DOI: 10.1136/jitc-2020-000857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
54 Kim CG, Sang YB, Lee JH, Chon HJ. Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach. Int J Mol Sci 2021;22:8035. [PMID: 34360800 DOI: 10.3390/ijms22158035] [Reference Citation Analysis]
55 Melo V, Bremer E, Martin JD. Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment. Front Cell Dev Biol 2022;10:908389. [PMID: 35712656 DOI: 10.3389/fcell.2022.908389] [Reference Citation Analysis]
56 Chon HJ, Kim H, Noh JH, Yang H, Lee WS, Kong SJ, Lee SJ, Lee YS, Kim WR, Kim JH, Kim G, Kim C. STING signaling is a potential immunotherapeutic target in colorectal cancer. J Cancer 2019;10:4932-8. [PMID: 31598165 DOI: 10.7150/jca.32806] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
57 Kang BH, Lee HK. Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. IJMS 2022;23:7325. [DOI: 10.3390/ijms23137325] [Reference Citation Analysis]
58 Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. Annu Rev Pathol 2021;16:167-98. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
59 Chelvanambi M, Fecek RJ, Taylor JL, Storkus WJ. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J Immunother Cancer 2021;9:e001906. [PMID: 33526609 DOI: 10.1136/jitc-2020-001906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
60 Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19:145. [PMID: 32972405 DOI: 10.1186/s12943-020-01258-7] [Cited by in Crossref: 124] [Cited by in F6Publishing: 100] [Article Influence: 62.0] [Reference Citation Analysis]
61 Zhang Z, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. Cell Insight 2022;1:100001. [DOI: 10.1016/j.cellin.2021.100001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
62 Zhao W, Jin L, Chen P, Li D, Gao W, Dong G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett 2022;545:215816. [PMID: 35810989 DOI: 10.1016/j.canlet.2022.215816] [Reference Citation Analysis]
63 Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021;13:4452. [PMID: 34503262 DOI: 10.3390/cancers13174452] [Reference Citation Analysis]
64 Kong X, Zuo H, Huang HD, Zhang Q, Chen J, He C, Hu Y. STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. J Adv Res 2022:S2090-1232(22)00118-7. [PMID: 35636721 DOI: 10.1016/j.jare.2022.05.006] [Reference Citation Analysis]
65 Covarrubias G, Moon TJ, Loutrianakis G, Sims HM, Umapathy MP, Lorkowski ME, Bielecki PA, Wiese ML, Atukorale PU, Karathanasis E. Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer. J Mater Chem B 2021. [PMID: 34846443 DOI: 10.1039/d1tb02256c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Gan Y, Li X, Han S, Liang Q, Ma X, Rong P, Wang W, Li W. The cGAS/STING Pathway: A Novel Target for Cancer Therapy. Front Immunol 2021;12:795401. [PMID: 35046953 DOI: 10.3389/fimmu.2021.795401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
67 Ke X, Hu T, Jiang M. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers. FASEB J 2022;36:e22029. [PMID: 34907606 DOI: 10.1096/fj.202101199R] [Reference Citation Analysis]